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Abstract

Rater effects, or raters’ tendencies to assign ratings to performances that are differ-
ent from the ratings that the performances warranted, are well documented in rater-
mediated assessments across a variety of disciplines. In many real-data studies of rater
effects, researchers have reported that raters exhibit more than one effect, such as a
combination of misfit and systematic biases related to student subgroups (i.e., differ-
ential rater functioning [DRF]). However, researchers who conduct simulation studies
of rater effects usually focus on the effects in isolation. The purpose of this study was
to explore the degree to which rater effect indicators are sensitive to rater effects
when raters exhibit more than one type of effect, and to explore the degree to which
this sensitivity changes under different data collection designs. We used a simulation
study to explore combinations of DRF and rater misfit. Overall, our findings sug-
gested that it is possible to use common numeric and graphical indicators of DRF and
rater misfit when raters exhibit both these effects, but that these effects may be diffi-
cult to distinguish using only numeric indicators. We also observed that combinations
of rater effects are easier to identify when complete rating designs are used. We dis-
cuss implications of our findings as they result to research and practice.
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There is a large body of literature in which researchers have proposed quantitative

techniques for identifying rater effects, or raters’ systematic or random tendencies

that result in ratings assigned to student performances that are different from the rat-

ings that the performances warranted (Wind, 2019). For example, researchers have

frequently studied rater severity/leniency, raters’ tendencies to limit their ratings to

certain rating scale categories (e.g., centrality), rater biases related to test-taker char-

acteristics (e.g., gender or best language) or components of the assessment system

(e.g., tasks or domains in an analytic scoring rubric), and idiosyncratic or otherwise

inaccurate ratings (Johnson, Penny, & Gordon, 2009; Myford & Wolfe, 2003). This

research includes a number of real-data studies and simulation studies.

In real-data studies related to rater effects, researchers have generally focused on

identifying evidence of rater effects and exploring the consequences of these effects.

An interesting trend is that, in these analyses, researchers have often reported that the

same raters exhibited multiple rater effects. For example, Engelhard (1994) used a

Many-Facet Rasch (MFR) model (Linacre, 1989) to analyze 15 raters’ ratings of 264

student compositions from the 1990 administration of the Eighth Grade Writing Test

in Georgia. His results showed that one rater (Rater 75) exhibited leniency as well as

a halo effect, or a tendency to not distinguish student achievement between domains

on an analytic scoring rubric. Using an approach based on Generalizability theory,

Longford (1994) used real data from Advanced Placement examinations in biology

and studio art to demonstrate that raters often exhibit between-rater variability (i.e.,

differences in severity) as well as within-rater variability (i.e., inconsistency within

individual raters’ ratings of the same performance). With these data, Longford illu-

strated how one can use a variance components approach to estimate between- and

within-rater variability simultaneously. This researcher also demonstrated the use of a

simulation technique to estimate standard errors for the variance components. In both

assessments, Longford observed that the raters demonstrated higher levels of within-

rater variability than between-rater variability, and that the nature of these variances

was inconsistent across the scoring tasks. However, the approach that Longford pre-

sented did not target individual raters, so this approach did not provide insight into

the degree to which individual raters exhibited combinations of between-rater varia-

bility and within-rater variability.

Using a Rasch measurement approach, Wolfe and McVay (2012) analyzed 40

raters’ ratings of 120 students’ essays for evidence of rater effects. These researchers

found that 10% of the raters exhibited multiple rater effects, including combinations

of rater misfit (frequent unexpected ratings, given model estimates) with severity/

leniency or centrality. Along the same lines, several researchers have analyzed rater-

mediated performance assessments and found that some raters exhibit severity or

leniency in combination with differential rater functioning (DRF)—or the tendency

for raters to be systematically severe or lenient related to student or test characteris-

tics. For example, Engelhard and Myford (2003) evaluated the rating behaviors of

faculty consultants who rated essays written for 1999 Advanced Placement English

Literature and Composition Exam and found that some faculty consultants
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demonstrated both misfit and DRF related to student gender, student race/ethnicity,

or student best language. Similarly, Wesolowski, Wind, and Engelhard (2015) evalu-

ated the rating behaviors of 24 expert jazz educators who scored jazz band perfor-

mances and found 4 of 24 expert raters exhibited both misfit and DRF related to

school-level subgroup (middle school, high school, collegiate, and professional).

Other researchers have identified combinations of rater severity/leniency with DRF

related to components of the assessment. For example, Kim, Park, and Kang (2012)

examined rater effects in an administration of the second edition of the Test of Gross

Motor Development, which is an instrument that can be used to measure 3- to 10-

year-old children’s movement skills made up of 12 subtests. These researchers

observed that the most-severe rater also exhibited DRF related to the subtests, where

the rater was differentially lenient or severe depending on the subtest. Liu and Xie

(2014) found similar results in their analysis of six raters’ ratings of student perfor-

mance in the Written Discourse Completion Task (WDCT), an assessment that aims

to measure English as a Foreign Language (EFL) learners’ interlanguage pragmatic

knowledge using 12 scenarios. These researchers observed one rater who exhibited

both severity and DRF. Schaefer (2008) also observed a combination of rater sever-

ity/leniency and DRF. Specifically, this researcher examined rater effects in an anal-

ysis of 40 essays that EFL students composed. In addition to severity/leniency

effects, Schaefer observed that some raters also exhibited DRF related to domains in

the analytic scoring rubric.

Somewhat in contrast to these real-data studies, researchers who have conducted

simulation studies of rater effects have most often focused on the effects one at a

time. Generally, researchers use these focused analyses so that they can examine the

sensitivity of particular statistics to rater effects. For example, in Wolfe and McVay’s

(2012) real-data study that we mentioned earlier, the researchers also simulated rat-

ings to demonstrate the sensitivity of various indicators to four types of rater effects:

leniency, centrality, inaccuracy, and differential dimensionality. When they generated

their simulated ratings, these authors assigned each of the simulated raters to exhibit

one or none of the selected rater effects. Along the same lines, Wolfe and Song

(2015) used a simulation study to examine the sensitivity of several indicators to rater

centrality. Although these authors simulated raters to exhibit varying degrees of cen-

trality, they did not model the raters to exhibit any other rater effects. Wolfe, Jiao,

and Song (2014) also used a simulation study to examine the sensitivity of rater accu-

racy models to rater severity, centrality, and inaccuracy. Similar to the analysis in

Wolfe and McVay (2012), these authors simulated individual raters to exhibit either

no rater effects or one of these rater effects. As another example, Wind and Jones

(2018) simulated raters to exhibit range restriction in order to explore the impact of

this effect on the precision of parameter estimates when there are large proportions

of missing data. However, these authors did not systematically model the raters to

exhibit any other effects beyond range restrictions. Similarly, Wind (2019) used a

simulation study to examine the practical impacts of rater severity, centrality, and

misfit on estimates of test-taker achievement. Similar to other simulation studies of
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rater effects, this author simulated raters to exhibit only one type of rater effect or no

rater effects.

As evidenced by real-data studies of rater-mediated assessments, it is likely that

raters will exhibit multiple rater effects simultaneously in operational assessment sys-

tems. However, there is currently limited guidance from simulation studies regarding

the sensitivity of indicators of rater effects when multiple effects are present. As a

result, the impacts of combinations of rater effects on the sensitivity of various rater

effect indicators have not been fully documented in simulation research. Simulation

studies of rater effects are important because they help researchers and practitioners

understand the degree to which various indicators can reliably detect rater effects

under various conditions and analytic approaches. In order to meaningfully use sta-

tistical indicators to detect rater effects in practical assessment settings, guidance

regarding the sensitivity of rater effect indicators in the presence of combinations of

rater effects is necessary. In this study, we embrace the position that Luecht and

Ackerman (2018) recently put forth in their discussion of the design of item response

theory simulation studies: ‘‘We SHOULD [systematically] make the observed data

used in simulations as complicated and ‘messy’ as the real data that we are likely to

encounter in practice’’ (p. 75, emphasis and bracketed text in the original). In our

analysis, we attempt to mimic raters’ exhibition of multiple rater effects in a simula-

tion study. To more closely reflect practice, we also consider these issues in the con-

text of assessment systems in which all the raters do not rate all the students.

Purpose

The purpose of this study is to explore the sensitivity of rater effect indicators when

raters exhibit more than one type of rater effect, and the degree to which this sensitiv-

ity changes under different data collection designs. We focus specifically on two rater

effects that researchers have documented in numerous studies: rater misfit and DRF.

Briefly, rater misfit occurs when raters’ ratings do not match the patterns that would

be expected, given the model used to estimate the parameters of an assessment proce-

dure. Rater misfit is problematic because when raters exhibit misfit, there is no clear

interpretation of the estimates from the assessment procedure. As a result, it is not

possible to directly compare the estimates of rater severity, student achievement, and

other facets within the same frame of reference. On the other hand, raters who exhibit

DRF display systematic differences in their severity between student subgroups, such

as demographic subgroups. DRF is problematic because, when raters exhibit this

effect, estimates of student achievement are not comparable between subgroups. In

practice, it is likely that raters could exhibit both misfit and DRF. In this study, we

consider rater misfit and DRF in the context of two data collection designs: complete

designs and incomplete designs. Complete rating designs are data collection proce-

dures in which every rater rates every student’s performance on every element of the

assessment procedure (e.g., domains or tasks). On the other hand, incomplete rating

designs are data collection designs in which every rater does not rate every student’s
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performance on every element. Incomplete rating designs are common in practice

because of limited resources for scoring, such as time and rater salaries (Johnson et

al., 2009).

We focus our analyses on the following research questions:

1. What is the sensitivity of rater fit statistics when raters exhibit both misfit and

DRF?

2. What is the sensitivity of DRF indices when raters exhibit both misfit and

DRF?

3. Does the sensitivity of rater fit statistics and DRF indices change when differ-

ent data collection designs are used?

We address these research questions using a simulation study. Because we consider

the impacts of combinations of rater effects on the sensitivity of rater fit statistics and

DRF indices, our study provides insight into methods for detecting rater effects when

raters exhibit multiple effects. Our study also builds on previous research related to

rating designs by presenting evidence related to the impacts of different data collec-

tion designs on the sensitivity of rater effect indices.

Method

Although it is possible to use methods based on Generalizability theory (Brennan,

2001; Cronbach, Gleser, Nanda, & Rajaratnam, 1972) to gather information about

multiple sources of variability in raters’ ratings in a single analysis (e.g., Longford,

1994), we were interested in examining rater effects as they relate to individual raters.

Accordingly, we situated our simulation study and data analysis procedures within

the framework of Rasch measurement theory (Rasch, 1960).

Simulated Data

We used R (R Core Team, 2018) to simulate polytomous ratings based on a Rating

Scale model (Andrich, 1978) version of a three-facet MFR model (Linacre, 1989)

with facets for student achievement, rater severity, and domain difficulty:

ln
Pnij(x = k)

Pnij(x = k�1)

� �
= un � li � dj � tk ; ð1Þ

where un is the estimated location (judged achievement) for Student n, li is the esti-

mated location (severity) for Rater i, dj is the estimated location (judged difficulty)

for domain j, and t is the location at which there is an equal probability for rating

scale categories k and k2 1.

We used a Rasch model because researchers have frequently adopted this

approach to examine rater effects in real-data and simulation studies (e.g., Engelhard

& Wind, 2018; Wolfe & McVay, 2012).
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Table 1 summarizes our simulation design in terms of the variables that we

manipulated and held constant. We generated 100 data sets based on each of the 16

conditions for a total of 1,600 data sets. We describe each of the variables in our

simulation design below.

Manipulated Variables. We used four different rater sample sizes: N = 30, 60, 100, or

600 raters. These sample sizes reflect the number of raters that researchers have

reported in previous real-data and simulation studies of rater effects (e.g., Meyer &

Hailey, 2012; Stafford, Wolfe, Casabianca, & Song, 2018; Wolfe & McVay, 2012;

Wolfe & Song, 2015). Next, we simulated either 5% or 10% of the raters to exhibit

DRF, misfit, or both DRF and misfit; we randomly selected the raters who we simu-

lated to exhibit these effects. For the raters who we simulated to exhibit misfit, we

added a discrimination parameter (i.e., slope) to our simulation procedure with a

value randomly selected from a ~ U[20.4, 0.4]. Because the expected value of rater

discrimination according to the Rasch model is 1.0, selecting values from this distri-

bution allowed us to generate substantial-to-moderate misfit. By adding the discrimi-

nation parameter to our simulation, we purposefully simulated selected raters to

deviate from the Rasch model. This procedure allowed us to examine whether rater

fit statistics could identify such deviations.

To generate DRF, we started by randomly assigning the simulated students to one

of two subgroups: We assigned one third of the students to the focal subgroup, and

we assigned the remaining two thirds of the students to the reference subgroup. For

the raters who we simulated to exhibit DRF, we used two different severity para-

meters to generate ratings. For the reference subgroup, we selected the rater’s severity

parameter from l ~ N(0, 1). For the focal subgroup, we selected the rater’s severity

Table 1. Simulation Design.

Design factors Levels

Manipulated Rater sample size 30, 60, 100, 600
Percent of raters demonstrating each

effect (DRF, misfit, combined DRF +
misfit)

5, 10

Rating design Complete, incomplete
with systematic links

Held constant Student-to-rater ratio 10:1
Generating student achievement

parameters
u ~ N(0, 1)

Generating rater severity parameters l ~ N(0, 1)
Generating rater slopes (for raters not

simulated to misfit)
a ~ N(1, 0.05)

Number of rating scale categories 5

Note. DRF = differential rater functioning. We generated 100 data sets based on each of the 16

conditions for a total of 1,600 data sets.
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parameter from (l ~ U[4, 5])—resulting in systematically lower (more severe) ratings

for students in the focal subgroup. For the raters who we simulated to exhibit both

misfit and DRF, we manipulated these raters’ discrimination parameters and severity

parameters using the procedures that we described earlier in this paragraph.

Finally, we used two different rating designs in our simulation study: complete or

incomplete with systematic links. These rating designs reflect assessments in which

all the raters rate all the students (complete designs) and assessments in which all the

raters do not rate all the students (incomplete designs). In the simulation designs in

which we used a complete rating design, we simulated all the raters to rate all the

students. Figure 1 illustrates the incomplete with systematic links rating design.

There is a large proportion of missing data in this design because each rater only

rates a subset of the students. However, because each rater rates students in common

with two other raters, it is possible to estimate the MFR model parameters. We

selected these two designs based on Wind and Peterson’s (2017) finding that lan-

guage testing researchers reported these two rating designs most often in research on

rater-mediated performance assessments, and because they appear frequently in

research on rater-mediated assessments in other domains, such as music performance

assessment (e.g., Wesolowski et al., 2015).

Variables Held Constant. We held several variables constant in each simulated data

set. First, we used a student-to-rater ratio of 10 to 1 in all the simulated data sets. We

selected this ratio based on previous studies in which researchers have reported many

Figure 1. Incomplete rating design.
Note. An ‘‘X’’ indicates that a rater scored a student. A blank cell indicates that a rater did not score a

student.
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more students than raters (Brown, Glasswell, & Harland, 2004; Raczynski, Cohen,

Engelhard, & Lu, 2015; Wolfe, Matthews, & Vickers, 2010). We also used the same

distribution to select generating student achievement parameters: u ~ N(0, 1), and the

same distribution to select generating rater severity parameters: l ~ N(0, 1). We used

these distributions because they are the distribution that other researchers have used

in simulation studies related to rater effects (e.g., Wolfe & McVay, 2012; Myford &

Wolfe, 2004).

Data Analysis

We used the Facets software program (Linacre, 2015) to analyze our simulated

data sets according to Equation (1). Before we considered indicators of rater

effects, we checked the estimates of student achievement, rater severity, and

domain difficulty, along with three indicators of model–data fit for each facet, to

ensure that our simulated data included the intended characteristics. Then, we

examined the results related to the rater facet in detail in order to address our

research questions. Specifically, we focused on indicators of rater misfit and DRF.

In our simulated data sets, we examined patterns of rater fit and DRF across the

raters who we simulated to exhibit misfit, DRF, and both misfit and DRF using

numeric and graphical analyses.

Numeric Indicators of Rater Misfit. Rater fit statistics are distinct from other fit indica-

tors that researchers often evaluate in item-response theory analyses, including per-

son fit (i.e., subject or examinee fit) and item fit. Specifically, analysts use person fit

statistics to identify individual subjects who provide unexpected item-score patterns

(e.g., when students answer easy items incorrectly but hard items correctly).

Likewise, one can use item fit statistics to identify assessment items on which stu-

dents provide unexpected responses. Rater fit statistics provide information about the

degree to which individual raters give ratings to student performances that are unex-

pected, given model estimates of student achievement.

We used three numeric indicators to evaluate model–data fit for raters: infit mean

square error (MSE) statistics, outfit MSE statistics, and an estimate of rater discrimi-

nation (slope). We selected these indicators of rater fit for two main reasons. First,

other researchers have reported these statistics in previous real data and simulation

studies of rater effects (Engelhard & Wind, 2018; Myford & Wolfe, 2004;

Wesolowski et al., 2015; Wind & Schumacker, 2017; Wolfe & McVay, 2012).

Second, these statistics have a relatively straightforward interpretation—we describe

these statistics and their interpretations below.

For raters, infit and outfit MSE statistics are indicators of the magnitude of resi-

duals, or discrepancies between the ratings that raters actually assign (i.e., observed

ratings) and the ratings that they would be expected to give based on their severity

estimates. Both these statistics are weighted averages of standardized residuals:
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zni =
xni � Enið Þffiffiffiffiffiffiffi

Wni

p ; ð2Þ

where xni is the observed rating that rater i gave to student n, and Eni is the expected

rating for student n when they were rated by rater i:

Eni =
Xm

k = 0

kpnik; ð3Þ

where k is the scored responses, ranging from 0 to m, and pnik is the model-based

probability that student n will be rated in category k by rater i. Finally, Wni is the

variance:

Wni =
Xm

k = 0

(k � Eni)
2pnik : ð4Þ

One can use standardized residuals to calculate fit statistics for any facet in a

Rasch model. For raters, the unweighted MSE statistic, referred to as outfit MSE, is

calculated as

outfit =

PN
n = 1

Z2
ni

N
: ð5Þ

Outfit MSE statistics are calculated as the average of the squared standardized resi-

duals across all the students that rater i rated (N). Individuals who use Rasch models

also frequently calculate a weighted MSE statistic, referred to as infit MSE, as

follows:

infit =

PN
n = 1

Z2
niWni

PN
n = 1

Wni

: ð6Þ

Infit MSE is the average of the squared standardized residuals across all the students

who rater i rated, where each squared standardized residual is weighted by its

variance.

We also examined estimated rater discrimination parameters. Although Rasch

models in general, as well as the MFR model that we used in this study, do not

include a discrimination (i.e., slope) parameter, it is possible to calculate an estimate

of discrimination for persons, items, and other facets (Linacre, 2004) as an additional

descriptive indicator of fit to the model. Specifically, by definition, the expected

value of the discrimination parameter is 1.0 when there is acceptable fit to the Rasch

model (DeAyala, 2009; Hambleton & Swaminathan, 1985). Accordingly, substantial
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deviations from this value indicate misfit. One can calculate an estimate of the dis-

crimination parameter for raters as follows:

a
_

= 1 +

P
N

(MniXnij
�
Pm
k = 1

PnijkMnijk)

P
n

Pm
k = 1

M2
nijkPnijk �

Pm
k = 1

MnijkPnijk

� �2
 !

2
66664

3
77775; ð7Þ

with

Mnik = k(un � li)�
Xk

l = 1

tij; ð8Þ

where Mnik = the value of M in Equation (7) for the rating k = Xnij, that was observed

when Rater i rated Student n on Domain j. Currently, there is not a well-established

value of the estimated discrimination parameter that analysts can use to identify sub-

stantial levels of misfit. However, Schumacker (2015) pointed out that higher-than-

expected discrimination parameters indicate responses (in this case, ratings) that are

more consistent than would be expected under acceptable fit to the Rasch model, and

lower-than-expected discrimination parameters indicate ratings that are less consis-

tent (i.e., more haphazard) than would be expected under acceptable fit to the Rasch

model. Similar to Schumacker’s approach, we used the discrimination parameters as

a descriptive indicator of model–data fit for raters, and we did not directly calculate

rater discrimination as part of the model estimation procedure.

Indicators of Differential Rater Functioning. We also used Facets to calculate an indicator

of DRF for each rater. In previous studies, researchers have proposed various meth-

ods for gauging DRF. Essentially, these DRF indices are used to identify raters who

exhibit differences in severity that are systematically related to test-taker subgroups

(Engelhard, 2008). A popular method for evaluating DRF in the context of the MFR

model reflects a method that Raju (1988) proposed for evaluating differential item

functioning (i.e., DIF) using the difference between item response functions. For one-

parameter logistic models and Rasch models, this difference is equal to the absolute

value of the difference in difficulty calibrations (Gamerman, Goncalves, & Soares,

2018). Accordingly, we used Facets to estimate rater severity separately for the focal

and reference student subgroups in each of our simulated data sets and calculated the

absolute value of the difference for each rater. Because we were investigating DRF

within the framework of Rasch measurement theory, it was not possible to examine

nonuniform DRF.

Although it is possible to conduct statistical hypothesis tests, such as t tests, to

evaluate the difference between rater severity parameters, we wanted to avoid this

approach because of the limitations associated with interpreting p values, as well as

the large sample sizes that we included in our simulation study. Accordingly, we
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treated the absolute differences as continuous variables, while recognizing several

previous researchers’ recommendations that differences in Rasch calibrations that

exceed 0.5 logits indicate substantively meaningful differences (e.g., Draba, 1977;

Wright, Mead, & Draba, 1976).

Graphical Residual Analyses. Finally, following Wells and Hambleton’s (2016) recom-

mendations related to exploring item fit, we created plots of standardized residuals to

interpret patterns of expected and unexpected ratings related to rater misfit and DRF.

Specifically, we calculated standardized residuals (Zni) using the model-expected rat-

ing given estimates of Student n’s achievement and Rater i’s severity. Then, we

examined plots of standardized residuals among the misfit-only raters, DRF-only

raters, and the misfit-and-DRF raters.

Results

Accuracy of the Simulation Procedure

Before we used our simulated data to address the research questions for our study,

we checked the accuracy of our simulation procedure to make sure that our simulated

ratings had the characteristics that we intended, based on our simulation design.

Overall, we observed that our simulation procedure accurately produced our speci-

fied characteristics for the student facet, where the average student achievement esti-

mates were close to 0.0 logits, the average standard errors were within the range that

previous researchers have reported for complete and incomplete rating designs, and

the model–data fit statistics were close to the values that previous researchers have

reported as ‘‘expected’’ when there is acceptable fit to the Rasch model (around

1.00; e.g., Smith, 2004; Wu & Adams, 2013). For the raters who we did not simulate

to exhibit rater effects (the ‘‘no-effect’’ raters, see Table 2), the average rater severity

estimates were close to 0.0 logits, the average standard errors were within the range

that previous researchers have reported for complete and incomplete rating designs,

and the average model–data fit statistics (MSE statistics and estimated discrimina-

tion) were close to the 1.00 for the raters who we simulated to exhibit acceptable

model–data fit. Importantly, the average absolute logit differences in rater severity

between the reference and focal subgroups were relatively small for the raters who

we did not simulate to exhibit DRF—suggesting that the no-effect raters did not

exhibit systematic differences in severity between student subgroups.

Raters Simulated to Exhibit Differential Rater Functioning

For the raters who we simulated to exhibit DRF only (see Table 3), the model–data

fit statistics indicated more-extreme departures from model expectations compared

with the no-effect raters (Table 2). Across replications of the simulation procedure,

the average infit MSE statistic for these raters ranged from 1.16 to 1.50, and the aver-

age outfit MSE statistic ranged from 1.26 to 1.57. These values indicate more
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variation in the DRF raters’ ratings than was expected by the MFR model. With the

exception of the smallest sample size conditions, the infit and outfit MSE statistics

were notably higher (indicating more frequent unexpected ratings) in the conditions

in which we simulated complete ratings (1.29 � mean infit MSE � 1.50; 1.35 �
mean outfit MSE � 1.57) compared with the conditions in which we simulated

incomplete ratings (1.21 � mean infit MSE � 1.27; 1.31 � mean outfit MSE � 1.54).

For the simulation conditions in which we simulated 30 raters and 300 students, the

average infit and outfit MSE statistics were higher in the complete data conditions

(1.29 � infit MSE � 1.35; 1.34 � outfit MSE � 1.39) compared with the incomplete

data conditions (1.16 � infit MSE � 1.24; 1.26 � outfit MSE � 1.29).

The average estimated discrimination parameters also indicated deviations from

model expectations for the DRF-only raters, with average values notably lower than

the model-expected value of 1.00. Specifically, the average estimated discrimination

parameters for the DRF-only raters ranged from 0.43 to 0.89. These lower-than-

expected values suggest that, on average, the DRF-only raters exhibited more varia-

tion in their ratings than expected by the Rasch model—corresponding to average

estimated discrimination parameters that are lower than the expected value of 1.0

when data fit the MFR model. Similar to the MSE statistics, misfit was more extreme

(lower average a) in the conditions in which we simulated complete ratings (0.43 �
a � 0.70) compared with the conditions in which we simulated incomplete ratings

(0.73 � a � 0.89).

Finally, with regard to DRF, we observed notable differences in rater severity

between subgroups for the DRF-only raters. As we show in Table 5, the average

absolute differences in rater severity between the reference and focal subgroups ran-

ged from 0.48 logits to 1.64 logits. Similar to the fit statistics, these values were

more extreme (larger differences between subgroups) in the conditions in which we

simulated complete ratings (0.81 � |lreference2lfocal| � 1.64) compared with the con-

ditions in which we simulated incomplete ratings (0.48 � |lreference2lfocal| � 0.72).

Finally, we observed larger absolute average differences in the conditions in which

we simulated 5% of the rater sample size to exhibit DRF (complete rating design:

1.43 � |lreference2lfocal| � 1.64; incomplete rating design: 0.61 � |lreference2lfocal|

� 0.72) compared with the conditions in which we simulated 10% of the rater sam-

ple size to exhibit DRF (complete rating design: 0.81 � |lreference2lfocal| � 0.88;

incomplete rating design: 0.48 � |lreference2lfocal| � 0.53). This difference is likely

due to the fact that the DRF-only raters’ ratings contributed to the estimates of stu-

dent achievement in both subgroups, so when more raters were exhibiting DRF

(10% compared with 5%), the estimates of student achievement may have been more

strongly influenced by these raters.

Figure 2 includes plots of standardized residuals for selected raters who we simu-

lated to exhibit DRF. We randomly selected seven replications of each simulation

condition, and then plotted standardized residuals for several randomly selected no-

effect raters within each condition. When we examined these plots, we observed sim-

ilar patterns over the different sample sizes and proportions of raters who we
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simulated to exhibit rater effects; therefore, we have only included plots for the 60-

rater, 10% effect conditions in order to save space. In each plot, the x-axis shows the

student IDs, and the y-axis shows the value of the standardized residuals. Individual

plotting symbols show the standardized residual for the selected rater’s rating of each

student. We used dashed horizontal lines to indicate three important values on the y-

axis: First, a standardized residual value of 0 indicates that the rater’s rating was

Figure 2. Plots of standardized residuals for raters simulated to exhibit differential rater
functioning.
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equal to the model-expected rating. We also plotted dashed horizontal lines to indi-

cate critical values of + 2 and 22 for evaluating the statistical significance of stan-

dardized residuals; residuals that are more extreme than these values are typically

considered statistically significant. Finally, we used different plotting symbols to

indicate whether students were members of the reference subgroup (circles) or focal

subgroup (triangles). The standardized residual plots for the DRF raters indicated that

these raters gave many ratings that were substantially different from the model-

expected ratings. Although these raters gave unexpected ratings to students in both

subgroups, the unexpected ratings were relatively more frequent and extreme within

the focal subgroup compared with the unexpected ratings in the reference subgroup.

Raters Simulated to Exhibit Misfit

For the raters who we simulated to exhibit only misfit (see Table 4), the average infit

and outfit MSE statistics were higher than the average fit statistics for the no-effect

raters (see Table 2). Likewise, the estimated discrimination parameters were lower

than the expected value of 1.0 (0.72 � a � 0.98), indicating more variation in raters’

ratings than expected by the Rasch model. These estimated discrimination para-

meters deviated more substantially from the model-expected value of 1.0 in the con-

ditions in which we simulated complete ratings (0.72 � a � 0.95) compared with

the conditions in which we simulated incomplete ratings (0.85 � a � 0.98). Finally,

we observed that the raters who we simulated to exhibit only misfit displayed differ-

ences in severity between the reference and focal subgroups, but these differences

were relatively small (0.13 � |lfemale2lmale| � 0.39).

Figure 3 includes plots of standardized residuals for the raters who we simulated

to exhibit misfit. As before, we have only included plots for the 60-rater, 10% effect

or 100-rater, 5% effect conditions to save space. The plots of standardized residuals

for the misfit raters indicate that these raters gave ratings that were substantially dif-

ferent from the model-expected ratings, and these unexpected observations included

a mix of higher-than-expected and lower-than-expected ratings. However, the plots

of standardized residuals do not indicate any systematic patterns related to student

subgroups.

Raters Simulated to Exhibit Differential Rater Functioning and Misfit

For the raters who we simulated to exhibit both DRF and misfit (see Table 5), all the

model–data fit statistics indicated notable deviations from the Rasch model expecta-

tions. The average infit and outfit MSE statistics exceeded 1.0 in all conditions (1.31

� infit MSE � 1.66; 1.37 � outfit MSE � 1.81). We observed higher average values

of both MSE fit statistics in the conditions in which we simulated complete ratings

(1.47 � infit MSE � 1.66; 1.57 � outfit MSE � 1.81) compared with the conditions

in which we simulated incomplete ratings (1.31 � infit MSE � 1.38; 1.37 � outfit

MSE � 1.58). Likewise, the average estimated discrimination parameters were lower
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than 1.0 for the DRF-and-misfit raters, suggesting more variation in these raters’ rat-

ings than expected (0.10 � a � 0.71). Similar to the other numeric fit statistics, we

observed more-extreme deviations from the model-expected value of 1.0 in the condi-

tions in which we simulated complete ratings (0.10 � a � 0.33) compared with the

conditions in which we simulated incomplete ratings (0.52 � a � 0.71). Finally, the

average absolute logit difference between subgroups were substantial among these

raters (0.32 � |lreference2lfocal| � 1.68)—indicating that the DRF-and-misfit raters

Figure 3. Plots of standardized residuals for raters simulated to exhibit misfit.
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exhibited systematic differences in severity between student subgroups. These differ-

ences were more pronounced in the simulation conditions with complete ratings (0.81

� |lreference2lfocal| � 1.68) compared to the simulation conditions with incomplete

ratings (0.32 � |lreference2lfocal| � 0.69).

Figure 4 includes plots of standardized residuals for the raters who we simulated

to exhibit DRF and misfit. As before, we have only included plots for the 60-rater,

Figure 4. Plots of standardized residuals for raters simulated to exhibit differential rater
functioning and misfit.
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10% effect conditions to save space. The plots for the DRF-and-misfit raters indicate

that these raters gave many ratings that were substantially different from the model-

expected ratings, and these unexpected observations included a mix of higher-than-

expected and lower-than-expected ratings. In contrast to the plots for the DRF-only

raters (Figure 2), the plots in Figure 4 include more-frequent statistically significant

standardized residuals in both student subgroups—indicating misfit. Furthermore, in

contrast to the plots for the misfit-only raters (Figure 3), the plots in Figure 4 show

more systematic patterns related to student subgroups. Specifically, although there

are significant standardized residuals for both subgroups, the residuals are more

extreme and relatively more frequent for students in the focal subgroup—indicating

DRF.

Discussion

The purpose of this study was to explore the degree to which indicators that research-

ers have used to examine rater effects for individual raters are sensitive to these

effects when raters exhibit more than one type of effect, and to explore the degree to

which this sensitivity changes under different data collection designs. We used a

simulation study to explore combinations of DRF and rater misfit. The simulation

study allowed us to isolate DRF and rater misfit, and to also simulate combinations

of these two effects with both complete and incomplete rating designs.

Sensitivity of Rater Effect Indicators to Combinations of Effects

Our results suggested that it is possible to identify raters who exhibit misfit and DRF

using indicators that researchers have used to detect these effects for individual raters

in previous studies: MSE fit statistics, estimates of rater discrimination, absolute value

of the difference in rater severity parameters between student subgroups, and graphi-

cal displays of standardized residuals. Importantly, we also observed that it is possible

to use the same indicators to identify raters who exhibited combinations of misfit and

DRF. Specifically, for the raters who we simulated to exhibit both misfit and DRF,

the model–data fit statistics and plots of standardized residuals indicated many unex-

pected ratings (misfit), and the absolute difference in severity estimates between stu-

dent subgroups and plots of standardized residuals indicated systematic differences in

the severity with which these raters rated performances in the two student subgroups

(DRF).

Our finding that model–data fit statistics identified many DRF-only raters as mis-

fitting suggests that DRF and rater misfit may be difficult to distinguish using only

numeric indicators. However, the graphical displays of standardized residuals pro-

vided insight into the nature of rater misfit and DRF, including the direction and mag-

nitude of unexpected ratings. The plots also highlighted that DRF is a type of rater

misfit, and detailed residual analyses can help disentangle patterns of unexpected rat-

ings to better interpret rater effects such as DRF.
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Detecting Rater Effects With Different Rating Designs

We also considered differences in the sensitivity of indicators of rater misfit and DRF

between complete and incomplete rating designs. Over all the simulation conditions,

we observed that the indicators of rater effects were more sensitive to misfit, DRF,

and combinations of misfit and DRF in the conditions in which we simulated com-

plete ratings compared with the conditions in which we simulated incomplete ratings.

Our finding that the indicators were more sensitive to rater effects with complete rat-

ings is unsurprising—with complete ratings, more evidence is available with which

to detect rater effects. Nonetheless, the indicators of these effects still performed rea-

sonably well in incomplete rating designs, particularly, when we supplemented the

numeric indicators with graphical displays of standardized residuals.

Implications

Our findings have several implications for research and practice. As we noted at the

beginning of our article, researchers who have analyzed real data from rater-mediated

performance assessments have frequently identified raters who exhibit combinations

of effects. However, researchers who have conducted simulation studies related to

detecting rater effects for individual raters have focused on the effects in isolation.

Accordingly, our study contributes to existing research related to rater effects in per-

formance assessment by offering initial insight into the sensitivity of rater-level indi-

cators of rater misfit and DRF when raters exhibit the effects in isolation and in

combination. In particular, our finding that indicators of rater misfit often identify

raters as misfitting who also exhibit DRF suggests that researchers and practitioners

should not rely solely on numeric summary statistics to detect rater effects, but to

incorporate residual analyses such as graphical displays of standardized residuals as

an additional method for evaluating the quality of raters’ ratings. Likewise, our find-

ing that indicators of rater misfit also reflected DRF for some, but not all raters high-

lights the importance of carefully examining rating patterns for raters who exhibit

misfit to identify systematic patterns such as DRF that could threaten the fairness of

rater-mediated assessment systems.

Our results also have implications related to the design of data collection systems

for rater-mediated assessments. As we noted earlier, many performance assessment

systems use incomplete rating designs during operational scoring as a result of prac-

tical constraints (Johnson et al., 2009). As a result, it is important that researchers

and practitioners are aware of the degree to which various indicators can accurately

detect rater effects when it is not possible for every rater to rate every performance.

The results from our analyses suggest that, although it is possible to detect isolated

rater effects and combinations of rater effects when incomplete rating designs are

used, these indicators are more sensitive with complete rating designs. As a result,

we encourage researchers and practitioners to include subsets of complete ratings

where possible to monitor rating quality (e.g., during rater training or evaluations

during operational scoring), and to also supplement numeric checks for rater effects
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with graphical analyses that may provide additional insight into potentially proble-

matic scoring tendencies.

Limitations and Directions for Future Research

Our study has several limitations that warrant consideration and additional research.

First, the characteristics of our simulation study do not reflect the full scope of rater-

mediated performance assessments. Accordingly, we encourage researchers and

practitioners to consider the characteristics of the data that we analyzed before gener-

alizing our results to other performance assessment contexts that have different char-

acteristics. Second, we considered rater effects using a framework and related set of

indicators based on Rasch models. We focused on indicators of rater effects that sev-

eral researchers who have used Rasch models have used to detect rater misfit and

DRF. However, there are other approaches to classifying and detecting rater effects

based on Rasch models, as well as methods based on other measurement frame-

works, such as methods based on latent class and signal detection theory models

(DeCarlo, 2005; DeCarlo, Kim, & Johnson, 2011, 2015; Patterson, Wind, &

Engelhard, 2017), Generalizability theory (Brennan, 2000; Longford, 1994), among

others. In future studies, researchers could explore the sensitivity of rater effect indi-

cators based on frameworks besides Rasch models to isolated rater effects and com-

binations of rater effects.
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