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Abstract

A procedure that can be used to evaluate the variance inflation factors and tolerance
indices in linear regression models is discussed. The method permits both point and
interval estimation of these factors and indices associated with explanatory variables
considered for inclusion in a regression model. The approach makes use of popular
latent variable modeling software to obtain these point and interval estimates. The
procedure allows more informed evaluation of these quantities when addressing
multicollinearity-related issues in empirical research using regression models. The
method is illustrated on an empirical example using the popular software Mplus.
Results of a simulation study investigating the capabilities of the procedure are also
presented.
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Regression modeling is extremely popular with researchers in the social, behavioral,

clinical, educational, economic, business, marketing, organizational, and communi-

cation sciences (e.g., Raykov & Marcoulides, 2012). To appropriately examine the
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unique explanatory power of a set of studied independent variables, researchers must

pay careful attention and resolve the issue of multicollinearity (or near multicolli-

nearity) as it can contribute markedly to inflated standard errors and spurious lack of

statistically significant findings (e.g., Draper & Smith, 2012). Variance inflation fac-

tors (VIFs), or the closely related tolerance indices (TIs), are two relevant and fre-

quently used quantities that may be consulted to examine individual predictors for

potentially strong contributions to (near) multicollinearity (e.g., Wooldridge, 2015).

Both VIFs and TIs are considered important quantities because they reflect estimates

of the degree of interrelationship of an independent variable with other explanatory

variables in a regression model (O’Brien, 2007).

An important limitation of currently widely used point estimates of VIFs and TIs

that are readily available in statistical software programs (e.g., SAS, SPSS, Stata) is

that they do not reflect the associated degree of instability of their estimation. Hence,

when using what may at times be considered rough ‘‘rules-of-thumb’’ for VIFs (or

TIs; e.g., Chatterjee & Simonoff, 2013), a researcher may miss a relevant finding for

a predictor with a VIF that has been estimated as below a ‘‘threshold’’ assumed of

importance while being higher in the studied population. This could for instance be

due to sample size that may not be sufficiently large to afford more precise VIF (or

TI) estimation and handling of the associated sampling error. In such cases, examina-

tion of interval estimates of the VIF and TI quantities may be very helpful as they

may signal a potential problem with a predictor possibly contributing considerably to

(near) multicollinearity.

Unfortunately, to date no readily applicable interval estimation procedures for

VIFs or TIs have been made widely available for applied researchers. It is the aim of

this article to discuss a directly utilizable method for this purpose. The approach is

readily employed with the popular latent variable modeling software Mplus (Muthén

& Muthén, 2018) and can be used on a routine basis in empirical research using lin-

ear regression models.

Variance Inflation Factors and Tolerance Indices

The standard (multiple) linear regression analysis model (e.g., Draper & Smith,

2012) assumes that a response variable (i.e., dependent variable, outcome variable,

or regressand), denoted Y, is related as follows to a given set of predictors (i.e.,

covariates, independent variables, explanatory variables, or regressors), designated

X1, . . ., Xk:

Y = a + b1X1 + b2X2 + � � � + bkXk + e, ð1Þ

where the model parameters are the intercept a, the partial regression coefficients b1,

. . ., bk, and the variance of the residual term e, symbolized s2, that is, s2 = Var(e),

where Var(.) denotes variance (k� 1). The associated and well-known standard

assumptions also include homoscedasticity and exogeneity (e.g., Wooldridge, 2015).
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When some of the predictors are involved in considerable linear relationships

among themselves, standard errors for one or more individual partial regression coef-

ficients can be unduly inflated. This tends to produce findings of possible lack of

unique significance for substantively important regressors, in the context of other

explanatory variables (e.g., Draper & Smith, 2012). As a means of gauging potential

(near) multicollinearity, the variance inflation factors (VIFs)

Vj = 1= 1� R2
j

� �
ð2Þ

have been proposed, where R2
j denotes the R2 index when the jth explanatory vari-

able is regressed on the remaining independent variables, or alternatively the use of

the related tolerance indices (TIs)

Tj = 1=Vj ð3Þ

(j = 1, . . ., k; cf. Wooldridge, 2015). Informal, rough ‘‘rules-of-thumb’’ suggest that

a predictor, Xj, with Vj . 10 or Tj \ 0.10 values, may well be a cause of serious

(near) multicollinearity. Other informal threshold criteria have also been suggested,

endorsing that predictors with values above a VIF . 5 or a TI \ 0.20 could also be

contributing considerably to multicollinearity and generally deserve close inspection

(e.g., Chatterjee & Simonoff, 2013; O’Brien, 2007). For example, Menard (1995)

noted, ‘‘A tolerance of less than 0.20 is cause for concern; a tolerance of less than

0.10 almost certainly indicates a serious collinearity problem’’ (p. 66). Given that

VIF is the inverse of TI, a tolerance value of 0.20 corresponds to what may be called

the ‘‘rule of 5’’ and a tolerance value of 0.10 to the ‘‘rule of 10’’ with respect to the

VIF.

If when fitted to a given data set the regression model (1) is found plausible (e.g.,

Raykov & Marcoulides, 2012), point estimates of the VIFs and TIs are readily

obtained by substitution of the resulting R2 indices into Equations (2) and (3), lead-

ing to (j = 1, . . ., k)

V̂j =
1

1� R̂2
j

ð4Þ

and

T̂j = 1� R̂j
2
, ð5Þ

where a circumflex is used to denote an estimate. These point estimates are straight-

forwardly obtained with widely circulated statistical software, such as SPSS, Stata, or

SAS. Unfortunately, however, these and other statistical software do not provide the

interval estimates associated with the VIFs and TIs. Yet their interval estimates can

play an important role in empirical research. Specifically, confidence intervals (CIs)

at prespecified confidence levels can reveal that certain predictors deserve more
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attention as potentially ‘‘offending’’ regressors than may be warranted by just examin-

ing their VIF or TI point estimates, V̂j or T̂j, respectively (1 � j� k). This may in par-

ticular be the case when the upper endpoints of these intervals are above certain

‘‘thresholds,’’ such as say 5 or 10 mentioned above (e.g., Chatterjee & Simonoff,

2013). Such findings may be of relevance in studies with less than (fairly) large sam-

ples for predictors with say VIF point estimates close to but under a VIF ‘‘threshold’’

(e.g., 5). In these cases, the associated estimation imprecision or instability in the VIF

point estimate (4) may cause a researcher to miss paying attention to a potentially rel-

evant predictor, viz. one with a possibly true (population) VIF above that ‘‘threshold.’’

Examination then (and not only) of the confidence interval for the pertinent VIF

index, say at an appropriate confidence level, can help sense that potential problem

and thus contribute to a more informed decision and action on part of the researcher.

Point and Interval Estimation of Variance Inflation Factors
and Tolerance Indices With Latent Variable Modeling
Software

VIF and TI evaluation can be readily accomplished using the latent variable modeling

(LVM; B. O. Muthén, 2002) framework, and in particular the popular LVM software

Mplus (Muthén & Muthén, 2018). To this end, while fitting the regression model of

relevance, one can request the standardized solution that will provide the associated

R2 index along with a standard error. Employing on these R2 and standard error val-

ues the initial monotone transformation approach given in Raykov and Marcoulides

(2011), will render a corresponding large-sample CI for the R2 index, denoted say

ðr2
lo, r2

upÞ, where r2
lo and r2

up symbolize the lower and upper endpoint of the determined

CI, respectively.

Next, based on Equation (2) and due to the fact that its right-hand side is a mono-

tone increasing function of the R2 index, the sought CI at the same confidence level

for the VIF results by a corresponding inversion of the lower and upper endpoints of

the above CI as

1= 1� r2
lo

� �
, 1= 1� r2

up

� �� �
: ð7Þ

The same level CI for the tolerance index, based on Equation (3) and the fact that this

index is a decreasing function of the VIF, follows similarly as

1� r2
up, 1� r2

lo

� �
: ð8Þ

The discussed CI construction procedure for the VIF and TI is readily conducted

using the R-function ‘‘ci.vif_ti’’ provided in Appendix B. We note in passing that

since the aforementioned monotone transformation approach yields upper and lower

limits of the CI for the R2 index that are within the interval (0, 1), the corresponding
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endpoints of the CIs in (7) and (8) will also reside within the same interval and could

not fall outside it.

We demonstrate the application of the discussed VIF and TI evaluation procedure

on empirical data in the next section and present subsequently the results of a simula-

tion study on its performance.

Illustration on Empirical Data and a Simulation Study

A Numerical Data Example

To demonstrate the utility of the outlined method, we use an adapted data set from an

ecological study concerned with examining daily average temperature in medium to

large cities in the United States, denoted Y. We are interested in predicting this tem-

perature using five relevant predictors, designated X1 through X5, which represent the

number of manufacturing jobs, the number of inhabitants, the number of windy days

per year, precipitation, and the number of sunny days per year, respectively (e.g.,

Hamilton, 2013). The analyzed data are available from the authors upon request.

Fitting first the pertinent multiple regression model,

Y = a + b1X1 + b2X2 + � � � + b5X5 + e, ð9Þ

and requesting the standardized solution, we obtain an R2 estimate of 0.735 with a

standard error of 0.037. (See Appendix A for the source code needed to accomplish

these activities.)

Applying then on this estimate and standard error the R-function ‘‘ci.vif_ti’’ pro-

vided in Appendix B, we obtain the following point and interval estimates corre-

spondingly for this model’s VIF and TI indices (95% CI follows point estimate):

VIF : 3:774 2:911, 5:025ð Þ and TI : 0:265ð0:199, 0:343Þ: ð10Þ

These results suggest a potentially important finding for a researcher conducting

this study. Specifically, the fact that the upper endpoint of the VIF CI is above 5 (while

lower than 10; see earlier discussion) suggests that although there is no strong evi-

dence for near multicollinearity it would be recommended to examine the used predic-

tors for a possible relationship nearing linearity. Since city size is markedly correlated

with number of manufacturing jobs and inhabitants, it may be suggested to consider

possibly removing one of these two predictors from the model. When removing the

‘‘number of inhabitants’’ variable, for instance, the adjusted R2 index (e.g., Raykov &

Marcoulides, 2012) drops by .026 units down from .735, which may be viewed as not

necessarily considerable. Although the drop in R2 then to .706 is found to be signifi-

cant, this result may be in part due to a sample size effect. Ultimately whether this pre-

dictor removal is to be carried out indeed is a decision that needs to be taken after

thorough examination of its effect on the explanatory power of the model as well as

the specifics of the research question and purpose of regression analysis conducted,

and is best left to experts in the subject-matter domain.
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Simulation Study and Results

To systematically evaluate the capability of the proposed procedure to supply informa-

tive point and interval VIF and TI index estimates, simulated data using Monte Carlo

techniques were analyzed under a variety of conditions. All simulated data were gener-

ated using the Monte Carlo features available in Mplus (L. K. Muthén & Muthén,

2018). We considered different magnitudes of relationships between predictor variables

to represent different levels of collinearity. The simulated data were modeled after a

study that examined the relationships between various patient health–related predictors

(e.g., age, weight, triglycerides, high-density lipoprotein, and low-density lipoprotein

levels) and measures of heart disease levels obtained from a sample of n = 95 patients

at a California hospital (SAS Institute, 2014; data set ‘‘lipids.xls’’). In the original study,

the magnitude of the correlation coefficients among the predictor variables ranged from

0.2 to 0.96. Intuitively, the changing amounts of collinearity should be reflected in the

point and interval VIF and TI index estimates associated with the data.

Based on a review of the literature on similar past simulation studies, a number of

factors were selected to be fixed across all data design conditions while other factors

were varied (e.g., Vatcheva, Lee, McCormick, & Rahbar, 2016). Parameters that

were fixed in the present simulations included the sample size, the magnitudes of the

correlations between the predictors and the outcome variable, and the means and var-

iances of the variables. Parameters that were varied in the simulations included the

magnitude of the correlation between the predictors. Based on the recommendations

of Vatcheva et al. (2016), these values were selected to reflect different degrees of

multicollinearity that are commonly encountered in empirical research studies. Table

1 provides the different correlation matrices that were used in this simulation study

to represent the different degrees of multicollinearity in the generated data along with

the average obtained VIF and TI point and interval values across replications.

An examination of the various point and interval estimates displayed in Table 1

indicates several noteworthy findings. First, it is evident that the proposed procedure

for generating interval estimates is able to provide informative supplementary

insights over and above those furnished by only examining point estimates. For

example, in the case of Model D, although the obtained VIF point estimate (VIF =

3.273) does not seem to suggests that there is evidence of multicollinearity following

the earlier mentioned ‘‘rule of thumb’’ for VIF . 5 (Chatterjee & Simonoff, 2013),

the fact that the upper endpoint of the VIF CI [2.086, 5.760] is above 5 suggests (1)

that there is evidence for potential near multicollinearity and (2) that it would be

recommendable to examine the used predictors for a possible relationship nearing

linearity. An examination of the correlation matrix used to simulate data for Model

D reveals that there is indeed a sizeable correlation between variables X1 and X2.

Model G is also another example of a situation where the obtained VIF point esti-

mate (VIF = 4.1667) does not seem to reveal that there is evidence of multicollinear-

ity. An examination of the upper endpoint of the VIF CI [2.081, 10.274] that is

however above 10, indicates (1) that there is evidence for near multicollinearity and

(2) that it would be recommendable in particular to examine the used predictors for a
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possible relationship nearing linearity. In both of these cases, we may stress that

through an examination of the interval estimates of the VIF (and the corresponding

TI) quantities would it become evident that there is a potential problem with a pre-

dictor possibly contributing notably to (near) multicollinearity.

Conclusion

This article discussed a procedure for interval estimation of VIFs and TIs in regres-

sion models. The method is readily and widely applied using popular LVM software,

such as Mplus. The approach permits more informed decisions about potentially

important near multicollinearity situations to be sensed in empirical research. A par-

ticularly useful feature of the procedure lies in the fact that it provides CIs at any

Table 1. Correlations With Different Degrees of Multicollinearity Used for the Simulated
Data (n = 100).

Model Matrix specification VIF CI TI CI

A 1 :5 :1 :2
:5 1 :1 :2
:1 :1 1 :4
:2 :2 :4 1

2
664

3
775

1.242 [1.089, 1.657] .805 [.604, .918]

B 1 :85 :1 :2
:85 1 :5 :2
:1 :1 1 :4
:2 :2 :4 1

2
664

3
775

1.532 [1.2664, 2.063] .653 [.485, .790]

C 1 :95 :1 :2
:95 1 :5 :2
:25 :5 1 :4
:2 :2 :4 1

2
664

3
775

1.974 [1.300, 4.156] .506 [.241, .769]

D 1 :85 :5 :2
:85 1 :85 :2
:5 :85 1 :4
:2 :2 :4 1

2
664

3
775

3.273 [2.086, 5.760] .306 [.174, .479]

E 1 :95 :85 :2
:95 1 :85 :4
:85 :85 1 :6
:2 :4 :6 1

2
664

3
775

15.303 [17.974, 257.105] .065 [.004, .056]

F 1 :5 :1 :2
:5 1 :1 :4
:1 :1 1 :6
:2 :4 :6 1

2
664

3
775

1.915 [1.451, 2.855] .522 [.350, .689]

G 1 :95 :5 :2
:95 1 :85 :4
:5 :5 1 :6
:2 :4 :6 1

2
664

3
775

4.167 [2.081, 10.274] .240 [.097, .480]

Note. VIF = variance inflation factor; TI = tolerance index; CI = confidence interval.
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prespecified confidence level for the VIFs and TIs. The method is applicable under

the same assumptions made when using regression analysis (e.g., Wooldridge,

2015) and is best used with larger samples so that the underlying delta method and

related standard error procedure applications are more trustworthy. We encourage

future research with more comprehensive simulation studies that could shed addi-

tional light on the performance of the discussed interval estimation procedure for

VIFs and TIs.

In conclusion, this article provides behavioral, social, educational, marketing,

clinical, and organizational scholars with a procedure for evaluation of estimation

instability of routinely output multicollinearity-related indices by statistical

software.

Appendix A

Mplus Source Code for Evaluation of Variance Inflation Factors and Tolerance
Indices in Regression Models

TITLE: FITTING A REGRESSION MODEL, FOR INTERVAL ESTIMATION OF

R-SQUARE.

DATA: FILE =\NAME OF RAW DATA FILE .;

VARIABLE: NAMES = ID SO2 TEMP MANUF POP WIND PRECIP DAYS;

USEV = TEMP-DAYS;

ANALYSIS: ESTIMATOR = MLR;

MODEL: TEMP ON MANUF-DAYS;

OUTPUT: STANDARDIZED;

Appendix B

R-Function for Interval Estimation of Variance Inflation Factors and Tolerance
Indices

ci.vif_ti = function(r, se){ # R-function for CI construction for VIF and TI.

l = log(r/(1-r)) # see Raykov & Marcoulides (2011, ch. 7) for details.

sel = se/(r*(1-r))

ci_l_lo = l-1.96*sel

ci_l_up = l+1.96*sel

ci_lo = 1/(1+exp(-ci_l_lo))

ci_up = 1/(1+exp(-ci_l_up))

vif = 1/(1-r)

ti = 1-r

vif_ti_pe_ci = c(vif, 1/(1-ci_lo), 1/(1-ci_up), ti, 1-ci_up, 1-ci_lo)

vif_ti_pe_ci # prints to screen VIF, its 95%-CI, TI, and its 95%-CI, in this

order.

}
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