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Abstract

Within the context of moderated multiple regression, mean centering is recommended
both to simplify the interpretation of the coefficients and to reduce the problem of mul-
ticollinearity. For almost 30 years, theoreticians and applied researchers have advocated
for centering as an effective way to reduce the correlation between variables and thus
produce more stable estimates of regression coefficients. By reviewing the theory on
which this recommendation is based, this article presents three new findings. First, that
the original assumption of expectation-independence among predictors on which this
recommendation is based can be expanded to encompass many other joint distribu-
tions. Second, that for many jointly distributed random variables, even some that enjoy
considerable symmetry, the correlation between the centered main effects and their
respective interaction can increase when compared with the correlation of the uncen-
tered effects. Third, that the higher order moments of the joint distribution play as
much of a role as lower order moments such that the symmetry of lower dimensional
marginals is a necessary but not sufficient condition for a decrease in correlation
between centered main effects and their interaction. Theoretical and simulation results
are presented to help conceptualize the issues.
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Introduction

Within the social, behavioral, and health sciences, the product-interaction term in a

multiple linear regression context is perhaps the most prevalent and popular approach

researchers are familiar with when attempting to account for nonlinear influences in

their statistical models (Baron & Kenny, 1986; Dawson, 2014; Wu & Zumbo, 2008).

Although its origins can be traced to the early 20th century in Court (1930), the use

of product-interactions was popularized by Cohen (1968) when advocating for the

use of multiple regression as a ‘‘general’’ data-analytic strategy and took its final

form in the seminal work of Aiken and West (1991) on simple slope analysis. The

term moderation became synonymous with multiplicative interaction and, today, it is

an essential tool in the methodologist’s repertoire and a staple of any introductory

course to linear regression and the general linear model (Chaplin, 1991; Irwin &

McClelland, 2001).

Using Aiken and West’s (1991) notation, the classical product-interaction

approach in linear regression follows a model of the form:

Y = b0 + b1X + b2Z + b3XZ + ε ð1Þ

for continuous, nondegenerate random variables Y , X , and Z and where all the

assumptions of ordinary least square linear regression are satisfied, as described in

Cohen, Cohen, West, and Aiken (2002). A recommended preliminary step before

running model (1) is to subtract the mean from X and Z so that the predictors in the

equation are

Y = b0 + b1(X � E(X )) + b2(Z � E(Z)) + b3(X � E(X ))(Z � E(Z)) + ε

This process is known as ‘‘centering’’ and is usually advocated both on conceptual

and statistical grounds. The conceptual reasoning is mostly due to the interpretation of

the coefficients in the presence of the multiplicative interaction term, and a thorough

discussion of this issue can be found in Bedeian and Mossholder (1994), Iacobucci,

Schneider, Popovich, and Bakamitsos (2016), and Kraemer and Blasey (2004). The

statistical reasoning, however, is the main focus of this article, which we expect to

clarify by revisiting some old assumptions made by Aiken and West (1991).

The main statistical concern behind centering in regression models is the issue of

multicollinearity. Product-interaction terms are generally highly correlated with their

main effects and subtracting the mean of the predictors has been recommended to

alleviate the issue (Cohen et al., 2002). Indeed, Cohen et al. (2002, p. 264) advise,

If X and Z are each completely symmetrical as, in our numerical example, then the covar-

iance between X and XZ is

Cov(X , XZ) = Var(X )E(Z) + Cov(X , Z)E(X )

If X and Z are centered then E Xð Þ and E Zð Þ are both zero and the covariance between X

and XZ is zero as well. The same holds for the covariance between Z and XZ. The amount
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of correlation that is produced between X and XZ by the nonzero means of X and Z is

referred to as nonessential multicollinearity. This nonessential multicollinearity is due

purely to scaling when variables are centered, it disappears. The amount of correlation

between X and XZ that is due to skew in X cannot be removed by centering. This source

of correlation between X and XZ is termed essential multicollinearity.

We will see, however, that there are three mistakes with this typical advice. First, we

provide an explicit example when X and Z are both completely symmetrical, yet the

covariance identity given by Cohen et al. (2002) does not hold (see Figure 3 and

accompanying text). Second, what Cohen et al. (2002) refer to as ‘‘nonessential mul-

ticollinearity’’ does not automatically disappear when variables are centered. And

third, the implication that centering always reduces multicollinearity (by reducing or

removing ‘‘nonessential multicollinearity’’) is incorrect; in fact, in many cases, cen-

tering will greatly increase the multicollinearity problem.

The covariance between the product term and any of its constituent terms was

derived by Bohrnstedt and Goldberger (1969) and reproduced in Aiken and West

(1991) as

Cov(XZ, X ) = E(X 2
c Zc) + Var(X )E(Z) + Cov(X , Z)E(X )

where Xc = X � E(X ) and Zc = Z � E(Z). If the predictors in multiple regression are

centered, then E(Xc) = E(Zc) = 0 and the covariance between the main effects and

their interaction is exclusively a function of E(X 2
c Zc), a central third-order moment

of the joint distribution. Aiken and West (1991), Osborne and Waters (2002),

Tabachnick and Fidell (2007), and others further assume that the variables in the

model are jointly normally distributed so that E(X 2Z) is in fact equal to 0. Note that

this fact takes advantage of special properties of a bivariate normal distribution; it

has nothing to do with the idea that odd moments of even functions are always zero.

Indeed, such a statement only makes sense in a purely univariate setting as the con-

cept of distributional symmetry is not uniquely defined in higher dimensions. We will

explore this subtlety in greater detail in the section ‘‘Symmetry and Expectation-

Independence.’’

Within the social sciences, most of what is known with regard to the properties of

the covariance of the interaction term and its main effects comes indirectly from

reinterpretations of the work of Bohrnstedt and Goldberger (1969). As such, under-

standing the assumptions made in the original source and how they were translated

into data analytic practice are crucialto better characterize the instances where they

hold, where they are suspect, and how the overall process of analyzing multiplicative

interactions would change if different assumptions were set in place. The main pur-

pose of this article is, therefore, to highlight the original framework of Bohrnstedt

and Goldberger (1969), with particular emphasis on the assumption they label

‘‘expectation-independence.’’ By adjusting this assumption, we present a class of

bivariate random variables that exhibit a rotational form of expectation-independence

to expand the class of described bivariate distributions where centering decreases the
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covariance between the product terms and their interaction. Moreover, we identify

some prototypical cases where the opposite holds; that is, where centering increases

(rather than decreases) the covariance between the product terms and their interac-

tion. We derive a set of general conditions for this increase in covariance to take

place. We will define a type of symmetry relevant to bivariate distributions and con-

nect it to the concept of expectation-independence to show that this symmetry

implies expectation-independence in the sense of Bohrnstedt and Goldberger (1969),

so that the vanishing correlation between main effects and their multiplicative inter-

action is a consequence of it. We also present a graphical representation of these con-

ditions and discuss their impact on the analysis of three-way interaction terms.

Results

Centered Versus Uncentered Covariance Products

Consider the jointly distributed, nondegenerate, continuous random variables (X , Z)

with Z expectation-independent of X ; that is, E(ZjX ) =E(Z). This condition states

that the average value of Z does not depend on the value of X . Geometrically then,

the joint distribution of X and Z should enjoy reflectional symmetry about the X axis.

Bohrnstedt and Goldberger (1969) show that Z expectation-independent of X yields

E½(X � E(X ))2(Z � E(Z))� = 0, which implies that

E(X 2Z) = 2E(XZ)� E(X )2
E(Z) +E(X 2)E(Z) ð2Þ

Using the definition of the covariance between random variables and substituting

the expression derived in (1), the Aiken and West (1991) identity A.14 can be

obtained as

Cov(X , XZ) =E(X 2Z)� E(XZ)E(X )

=E(XZ)E(X )� 2E(X )2
E(Z) +E(X 2)E(Z)

=E(X )Cov(X , Z) +E(Z)Var(X )

As before, set Xc = X � E(X ) and Zc = Z � E(Z). It then follows from the previous

definitions that Cov(Xc, XcZc) =E(X 2
c Zc) and, by expectation independence, if

E(ZjX ) =E(Z) then E(ZcjX ) =E(Zc) = 0, in which case E(X 2
c Zc) = Cov(Xc, XcZc) = 0

and

jCov(Xc, XcZc)j � jCov(X , XZ)j ð3Þ

which is the standard result presented in introductory textbooks in regression analy-

sis. Note that we could derive the analogous result

jCov(Zc, ZcXc)j � jCov(Z, ZX )j

by simply assuming that X is expectation-independent of Z.
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If no kind of expectation-independence is assumed, however, the following

expression can be derived for Cov(Xc, XcZc). The proof of this identity can be found

in the appendix:

Cov(Xc, XcZc) = Cov(X , XZ)� E(Z)Var(X )� E(X )Cov(X , Z) ð4Þ

From this identity, one can obtain four different conditions under which the covar-

iance of the centered terms is larger than the covariance of the uncentered terms.

jCov(X , XZ)j � jCov(Xc, XcZc)j if:

0 � Cov(X , XZ) � Cov(Xc, XcZc),
E(Z)Var(X ) � �E(X )Cov(X , Z)

ð5Þ

0 � Cov(X , XZ) � �Cov(Xc, XcZc),
�E(Z)Var(X ) � �2Cov(X , XZ) +E(X )Cov(X , Z)

ð6Þ

0 � �Cov(X , XZ) � �Cov(Xc, XcZc),
�E(Z)Var(X ) � E(X )Cov(X , Z)

ð7Þ

0 � �Cov(X , XZ) � Cov(Xc, XcZc),
E(Z)Var(X ) � 2Cov(X , XZ)� E(X )Cov(X , Z)

ð8Þ

Note that there are really only two distinct conditions here, as replacing X by �X

and Z by �Z will transform Conditions (5) and (6) into Conditions (7) and (8),

respectively.

To apply these conditions in practice, one must first estimate Cov(X , XZ). If we

have Cov(X , XZ) . 0, and if exactly one of Conditions (5) or (6) hold, then centering

will not reduce the correlation between X and XZ. On the other hand, if both or none

of Conditions (5) and (6) hold, while Cov(X , XZ) . 0, then centering must reduce

the correlation between X and XZ. If Cov(X , XZ)\0, then simply replacing X by

�X and Z by �Z, one can apply the same diagnostics to determine if centering will

reduce correlation.

Symmetry and Expectation-Independence

We have already remarked that the concept of a symmetric distribution is not

uniquely defined in a multivariate setting. In a single variable, we often use a density

function’s evenness to facilitate analytical arguments; that is, the property

fX (x) = fX (� x) enjoyed by the normal distribution, for example. In a bivariate set-

ting, one natural generalization of this property is to suppose that the joint density

function of X and Z satisfies the following two conditions:

fX , Z(x, z) = fX , Z(� x, z) = fX , Z(x, � z): ð9Þ
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Notice that these two conditions imply the final component-wise symmetry condition

fX , Z(x, z) = fX , Z(� x, � z) and that these conditions taken together force the density

function to be symmetric in each quadrant of the plane, with respect to the origin.

From this definition of an ‘‘even’’ bivariate density function, we have the follow-

ing result:

Proposition 1: Suppose X and Z are jointly distributed such that their joint

density function is symmetric in the sense of condition (9). Then X is

expectation-independent of Z and Z is expectation-independent of X .

Proof. We first show that E(X jZ) =E(ZjX ) = 0, proceeding as follows:

E(X jZ) =
Ð
R

xfX jZ(xjz)dx

=
Ð
R

x
fX , Z (x, z)

fZ (z)
dx

= 1
fZ (z)

Ð 0

�‘
x fX , Z(x, z) dx +

Ð ‘

0
x fX , Z(x, z) dx

� �
= 1

fZ (z)

Ð 0

‘
x fX , Z(� x, z) dx +

Ð ‘

0
x fX , Z(x, z) dx

� �
= 1

fZ (z)
�
Ð ‘

0
x fX , Z(x, z) dx +

Ð ‘

0
x fX , Z(x, z) dx

� �
= 0,

where the final step follows from the definition of ‘‘even’’ presented before. The

same argument shows that E(ZjX ) = 0. Now applying double expectaction (Casella

& Berger, 2002), we find E(X ) =E(Z) = 0. h

Because expectation-independence guarantees that centering will reduce the cov-

ariance between the interaction and first-order terms in regression model (1),

Proposition 1 shows that symmetric joint distributions in the sense of (9) also satisfy

the covariance condition in (3). It turns out that we can characterize another class of

bivariate distributions where (3) holds that are neither symmetric in the sense of (9)

nor expectation-independent in terms of the original variables X and Z. For this class

of distributions, we can find a new system of coordinates (eX , eZ ) where the kind of

symmetry given by (9), and thus expectation-independence, holds with respect to

these transformed coordinates. As a special case, this class includes all bivariate nor-

mal random variables.

Proposition 2: Suppose that there exists an invertible linear transformation of

the plane A such that for (eX , eZ )T : = A � (Xc, Zc)T the following conditions

hold: (i) eX is expectation-independent of eZ , (ii) eZ is expectation-independent

of eX , (iii) E(eX 3) =E(eZ 3) = 0. Then, E(X 2
c Zc) =E(Z2

c Xc) = 0 and thus the covar-

iance condition (3) must hold for X and XZ and for Z and XZ.

To prove Proposition 2, we will need the following technical lemma.
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Lemma 1: If E(X1) =E(X2) = 0, and if (eX1, eX2)T : = A � (X1, X2)T for some

rotation of the plane A, then E(eX1) =E(eX2) = 0.

Proof. Let pj denote the jth coordinate projection operator; that is,

pj : R2 ! R via pj(x) = xj. Then,

E(eX1) =E(p1(A � (X1, X2)T )):

Now, A is a 232 matrix of real numbers, so p1(A � (X1, X2)T ) is a linear combination

of X1 and X2. Consequently, we may write,

E(eX1) =E(c1X1 + c2X2),

for some real numbers c1 and c2. But since E(X1) =E(X2) = 0, we must have that

E(eX1) = 0. A similar argument shows that E(eX2) = 0 as well. h

Proof of Proposition 2: We imitate the method in the proof of Lemma 1 and

write,

E(X 2Z) =E (p1(A�1 � (eX , eZ )
T

))
2

(p2(A�1 � (eX , eZ )
T

))

� �
:

Recall that A�1 exists as a 232 matrix of real numbers since A is assumed to be

invertible. Now, p2(A�1 � (eX , eZ )T ) is a linear combination of X and Z; thus, we may

write,

E(X 2Z) =E (c1
eX + c2

eZ )
2
(c3
eX + c4

eZ )
h i

,

for some real numbers cj, 1 � j � 4. Expanding the product and distributing the

expectation yields,

E(X 2Z) =E(d1
eX 3) +E(d2

eX 2eZ ) +E(d3
eX eZ 2) +E(d4

eZ 3),

for some other real numbers dj, 1 � j � 4. By conditions (i) and (ii) of our

Proposition, the two cross terms must equal zero, while condition (iii) ensures that

the third moments are zero. Thus, E(X 2Z) = 0. A similar argument will show that

E(Z2X ) = 0. h

Recall that all invertible linear transformations of the plane are at most combina-

tions of reflections, rotations, expansions or compressions, and shears. Geometrically

then, what Proposition 2 tells us is that centering will reduce the correlation between

X and XZ whenever there exists a pair of perpendicular lines through the joint distri-

bution of X and Z, each marginally unskewed, such that the joint distribution has the

same shape in each of the quadrants defined by those lines. In other words, whenever

we can define a new set of coordinate axes so that the joint distribution is symmetric
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in the sense of (9) and unskewed with respect to the transformed variables eX and eZ
defined by the new coordinate axes. Figure 1 in the following section illustrates a typ-

ical case.

Empirical Simulation

To further develop the theory elucidated in the previous section, a series of simulated

examples are presented here to further explore the cases where the correlation

between centered terms and their interaction is larger than between the latter and its

uncentered main effects. Notice the differences in the scaling of the axes in the pairs

of plots throughout this section.

Figure 1. Centered and uncentered X and Z from a bivariate normal distribution.

820 Educational and Psychological Measurement 79(5)



Figure 1 presents the ‘‘benchmark’’ case alluded to in Aiken and West (1991) and

Cohen et al. (2002) where (X , Z) are jointly normally distributed. For this example,

mx = 10; mz = 5; s2
x = s2

z = 10; sxz = 5 so that r = 0:5 and N = 1, 000.

Notice that neither is X expectation-independent of Z nor is Z expectation-

independent of X in this example. However, their joint distribution does satisfy the

criterion of Proposition 2; that is, there exists a line through the centered joint distri-

bution of (Xc, Zc) such that if we rotate this line atop the Z-axis, say, then the trans-

formed joint distribution is expectation-independent in the transformed variables

(eX , eZ ). Moreover, the corresponding marginal distributions will not be skewed.

The left panel presents the scatter plot of the marginal distributions and the right

panel shows the relationship between one of the marginal distributions, X , and the

product term XZ. As it is commonly known, the leftmost plot of one-dimensional

marginals shows the classical elliptical shape that characterizes the multivariate nor-

mal distribution (among others). The rightmost one depicts the quadratic effect of the

product-interaction term so that a saddle-like point can be observed along the origin,

which further expands as one move along the horizontal axis. For this particular

example, Cor(X , XZ) = 0:918 and Cor(Xc, XcZc) = 0:033, showing the expected reduc-

tion in correlation when one centers the main effects.

Now consider the following bivariate normal mixture:

(0:9)3N 1
4

4

� �
,

1 0:6
0:6 1

� �� 	
+ (0:1)3N 2

7

�1

� �
,

1 0:1
0:1 1

� �� 	

Figure 2 shows the scatter plot of the main effects and interaction of 1,000 units

sampled from this distribution. Notice that, whether one looks at the centered or

uncentered clouds of points, two distinct clusters can be observed as a function of

the mixture proportions. Once X and Z are centered and the multiplicative interac-

tion term is formed, the smaller cluster for the centered case rotates, creating a

downward-sloping line that connects the origin to the mean of this smaller group of

points, forcing a correlation between the main effect X and its interaction. Although

the cloud of points for the uncentered terms still remains and is also present,

the points are too far apart to induce a slope connecting the new center of the interac-

tion term with the smaller cloud of points. For this particular example

Cor(X , XZ) = � 0:033 and Cor(Xc, XcZc) = � 0:585.

Figure 3 presents a third example, a bivariate distribution generated through the

copula-based method outlined in Mair, Satorra, and Bentler (2012). For this particu-

lar case, normal distributions are chosen for the marginals with parameters

mX = 15, mZ = 5; sX = sZ = 10 and sX , Z = 5 to obtain a correlation coefficient of

r = 0:5. A Joe copula function with parameter u = 19 was used (see Joe, 2014, p.

170) and 1,000 datapoints were sampled. The scenario presented here highlights the

fact that even though lower order (i.e. marginal) symmetry can be present (such as

with the normal distribution), lack of symmetry in higher dimensions can still make

centered interaction terms exhibit higher correlation than their uncentered counter-

parts. The left panel of Figure 3 suggests a jointly skewed distribution with its longer
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tail in the positive quadrant and the rest of the mass moving toward the negative

quadrant, becoming more dispersed as it does. When the multiplicative interaction is

formed, the points of the shorter tail among the centered distributions are mostly

reflected upward with a smaller group of them creating a subset close to the origin

so that an upward-sloping line can be traced from the origin to these points. For the

uncentered case, it is possible to again see the horizontal reflection that induces a U -

shape, but the spread of points below their mean centroid is not as strongly defined

as in the centered case to induce an upward-sloping line. For this particular case,

Cor(X , XZ) = 0:190 and Cor(Xc, XcZc) = 0:273.

Table 1 offers a summary of the increase or decrease in correlation between X or

Z and the XZ term as well as which conditions from section ‘‘Centered Versus

Figure 2. Centered and uncentered X and Z from a bivariate normal mixture.
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Figure 3. Centered and uncentered X and Z from a Joe copula distribution.

Table 1. Correlation for Centered and Uncentered Main Effects With Interactions.

Distribution
Uncentered
correlation

Centered
correlation Condition (5) Condition (6)

Symmetric 0.918 0.033 False False
Mixture 20.033 20.585 True* False
Copula 0.190 0.273 True False

*Refers to the need to switch signs for X and Z before testing the conditions.
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Uncentered Covariance Products’’ hold for each of the three cases just described.

The ‘‘symmetric’’ case (which encompasses the bivariate normal distribution) shows

the classic reduction in correlation for the centered main effects. As expected, neither

Condition (5) nor Condition (6) hold true. The mixture of normal distributions shows

the greatest increase (in absolute value) of the correlation between the centered terms

and their interaction. Condition (5) holds in this case, after replacing X by �X and Z

by �Z. Finally, the Joe copula with standard normal marginals does not show an

increase in the absolute value of the correlation as dramatic as the normal mixture

case, but it still demonstrates the fact that under nonsymmetric conditions, the corre-

lation between uncentered terms can be lower than that for centered terms. Condition

(5) is also true in this scenario.

Conclusion

As the theory and examples we have explored show, centering will not always reduce

the multicollinearity problem of multiple regression, even when a pair of predictors

X and Z have marginally symmetric distribution functions. This fact runs counter to

some common wisdom on the centering issue, presented, for example, in Cohen et al.

(2002). Making use of careful mathematical definitions like expectation-

independence and bivariate symmetry, as in (9), can greatly help correct and clarify

our understanding of these issues.

In practice, centering can still be considered a viable tool for the applied

researcher when multicollinearity is a concern, but only in certain cases. This article

describes what to watch for, but we can summarize our general advice as follows. If

centering is being considered:

1. Plot the (X , Z) and (X , XZ) data.

2. Visually assess if there could exist a pair of perpendicular lines one could

place on the (X , Z) plane so that the distribution of points in the scatterplot

are symmetric with respect to the transformed origin created by the intersec-

tion of these perpendicular lines. If yes, then centering will reduce the prob-

lem of multicollinearity.

3. On the other hand, if the (X , Z) data appear in clusters, centering is unlikely

to reduce the problem of multicollinearity.

We have included the R code used to generate our example figures in the

Supplementary Material (available in the online version of the article) as a teaching

resource for introductory regression courses.

Finally, we remark that our investigations in this article apply only to the bivariate

setting of Model (1). In higher dimensional settings, the issue of multicollinearity

becomes considerably more complicated. Indeed, centering will actually change the

least squares estimators and standard errors of the pairwise interaction term coeffi-

cients when third-order (or higher) interactions are present in a linear regression
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model. Thus, a researcher’s ability to detect pairwise interaction effects can be greatly

altered by choosing to center variables when three or more predictors (and their inter-

actions) are under consideration.

Appendix

To show that Cov(Xc, XcZc) = Cov(X , XZ)� E(Z)Var(X )� E(X )Cov(X , Z) one

merely needs to rely on the definition of covariance Cov(X , Z) =E½(X � E(X ))

(Z � E(Z))� and expand the terms as necessary. Please notice that, by definition,

E(Xc) =E(Zc) = 0.

Cov(Xc, XcZc) =E(X 2
c Zc) =E½(X � E(X ))2(Z � E(Z))�

=E(X 2Z)� 2E(X )E(XZ) +E(X )2
E(Z)� E(X 2)E(Z) + 2E(X )2

E(Z)� E(X )2
E(Z)

=E(X 2Z)� 2E(X )E(XZ)� E(Z)½(X 2)� 2E(X )2�
=E(X 2Z)� 2E(X )E(XZ)� E(Z)Var(X ) +E(Z)E(X )2

=E(X 2Z)� E(Z)Var(X )� E(X )½E(XZ) +E(XZ)� E(X )E(Z)�
=E(X 2Z)� E(Z)Var(X )� E(X )E(XZ)� E(X )Cov(X , Z)

= Cov(X , XZ) +E(XZ)E(X )� E(Z)Var(X )� E(X )E(XZ)� E(X )Cov(X , Z)

= Cov(X , XZ)� E(Z)Var(X )� E(X )Cov(X , Z):
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