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Abstract

This study discusses quantile regression methodology and its usefulness in education
and social science research. First, quantile regression is defined and its advantages
vis-à-vis vis ordinary least squares regression are illustrated. Second, specific compar-
isons are made between ordinary least squares and quantile regression methods.
Third, the applicability of quantile regression to empirical work to estimate interven-
tion effects is demonstrated using education data from a large-scale experiment. The
estimation of quantile treatment effects at various quantiles in the presence of drop-
outs is also discussed. Quantile regression is especially suitable in examining predic-
tor effects at various locations of the outcome distribution (e.g., lower and upper
tails).
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Empirical quantitative analyses in education, psychology and the social sciences typi-

cally use linear statistical models such as ordinary least squares (OLS) regression,

analysis of variance or covariance, or weighted linear models (e.g., multilevel) to

compute either average estimates of associations between a dependent and an
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independent variable or group differences in the dependent variable controlling for

the other independent variables included in the model. The regression coefficients

produced by such linear modeling approaches are mean estimates adjusted usually by

the effects of the covariates that are present in the model, especially when observa-

tional or quasi-experimental data are analyzed. For example, in OLS regression, one

of the most commonly used modeling approaches in the social sciences, a regression

coefficient indicates the ‘‘effect’’ of an independent variable x on the mean of the

dependent variable y given the effects of the remaining independent variables (also

called predictors) in the model. This statistical approach is often known as

conditional-mean modeling (see Hao & Naiman, 2007).

Consider the following example from education. Suppose a researcher is inter-

ested in whether teacher certification has an impact on student mathematics perfor-

mance. In a simple regression model, one would regress mathematics scores on

teacher certification which for simplicity can be coded as a binary indicator variable

taking the value of 1 if a teacher is certified and the value of 0 if the teacher is not

certified. The regression estimate in this case is the mean difference in mathematics

scores between students who have certified teachers and students who have not. A

positive and significant mean difference would suggest that students who have certi-

fied teachers have a significantly higher mean in mathematics than students who

have noncertified teachers. If covariates or statistical controls such as student back-

ground, prior student ability, as well as other teacher and school characteristics were

to be included in the regression model the regression estimate of the teacher certifi-

cation variable would be modified to a degree, unless teacher certification was by

design orthogonal to covariates (in a randomized experiment).

Although the mean is the most widely computed measure of central tendency/

location of a distribution of scores it is sensitive to outliers and can be influenced by

imbalances of extreme scores in the upper or lower tails of a distribution of scores.

When the distribution of scores is considerably skewed the mean is typically pooled

toward the tail with the most extreme scores. That is, in a highly skewed distribution

the mean value will be affected by the extreme outliers either in the upper or the

lower tails of the distribution. In such cases, the mean is not an accurate measure of

the central location. For that reason, the estimation of the median, a more robust

index of central tendency, has also been proposed in the literature in cases where the

normality assumption of the distribution of scores does not hold. With regard to lin-

ear modeling the median regression can be used instead of a mean regression to pro-

vide robust estimates of central tendency/location of an outcome y (Hao & Naiman,

2007).

To illustrate the sensitivity of the mean to extreme outliers consider an example

from education. Suppose an education researcher is interested in the average effect of

a school resource such as class size on mathematics achievement in the third grade.

For simplicity, suppose class size is coded as a binary indicator variable which takes

the value of 1 if a student is in a small class and 0 otherwise. Suppose also that the

outcome is standardized. One can then run a simple OLS regression where
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mathematics scores are regressed on the class size dummy variable to estimate the

regression estimate of the class size variable. Empirically, the mean difference

between small and regular size classes in mathematics is estimated to be 0.11 stan-

dard deviations (SDs) favoring students in small classes. Similarly, one can run a

median regression to compute the median difference between small and regular size

classes. The median parameter estimate is, in this example also, 0.11 SDs. These

results indicate that the distribution of the dependent variable is most likely not

skewed. Now, suppose one were to substitute the three largest mathematics scores of

students in large classes (3.00, 3.70, and 3.70) with three extreme values (60) and

rerun the OLS and the median regressions. The results indicate that the mean and the

median estimates are no longer similar. The parameter estimate of the median

remained the same (0.11 SD), but the mean parameter estimate changed dramatically

and is now 0.01 SD. This shows that the three extreme outliers in the large class

reduced the mean difference in mathematics between small and regular classes to

essentially 0. In this example, the standard errors (SEs) of the estimates were as large

as the estimates, and thus, statistical significance was not achieved in either model.

In addition, the mean estimates produced by typical regression models do not pro-

vide any information about the effect of an independent variable at different points of

the outcome distribution of scores. That is, the typical regression model is unable to

provide estimates for noncentral locations in the distribution of scores. However, in

many occasions in education research investigators are interested in estimate teacher

and school effects for different groups of students (e.g., low- vs. middle-achievers)

and reduce the achievement gap.

Specifically, many education researchers study educational inequality. Suppose the

main research question of interest is whether teacher certification effects vary by the

level of student achievement. In this example, the researcher is interested in determin-

ing whether the teacher certification effects are consistent across the distribution of

scores or whether they differ for low-, median-, or high-achievers. Suppose that teacher

certification signals higher levels of teacher quality or effectiveness and is hypothesized

to improve student learning. One hypothesis would be that certified teachers focus on

improving learning especially for students who struggle at school (i.e., lower-achieving

students). If that hypothesis were true, one would expect a larger potential benefit (i.e.,

a larger regression coefficient) for students in the lower end of the achievement distri-

bution (e.g., at the 25th or 10th percentiles) than for other students. In contrast, if higher

achieving students were to take advantage of this school resource (teacher certification)

to a higher degree than other students, then one would expect a larger benefit for stu-

dents in the upper tail of the achievement distribution (e.g., 75th or 90th percentile)

than for other students. Another hypothesis would be that teacher certification effects

are larger for middle-achievers than for lower-or higher-achievers.

These three scenarios suggest that a school resource or treatment could have vary-

ing effects at different levels of achievement either by design or by happenstance

(e.g., a byproduct of the treatment implementation in classrooms). A fourth note-

worthy scenario is that the effect of certified teachers on student achievement is
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uniform or consistent across the distribution of achievement scores. If that were true,

then the potential benefit would be similar for lower-, middle-, or higher-achieving

students (i.e., the regression estimates across the achievement distribution would be

similar in magnitude). There are of course many variations to these four hypotheses.

Although these four hypotheses may not capture all possible effects, they demonstrate

that the effects of a school resource or treatment could differ by achievement level by

design, hidden mechanisms, or circumstances in the classrooms. The typical linear

modeling approach that estimates means would not be able to capture this potential

inconsistency of the effects throughout the entire distribution of scores.

Quantile regression was introduced nearly 30 years ago in the econometric litera-

ture as a method that is an extension of the typical regression model and addresses

the caveats of the typical regression model because it allows the analyst to conduct

conditional estimation at various points (called quantiles) in a distribution of scores

(Koenker & Bassett, 1978). In that sense, the median regression is a special case of

the quantile regression model because the median is the 0.50 quantile (or the 50th

percentile). Quantile regression is an appropriate method to estimate effects at differ-

ent quantiles including points in the upper and lower tails of the achievement distri-

bution (Porter, 2015). For instance, a researcher who focuses on lower achievers can

estimate teacher and school effects at the 25th, 20th, 10th, or 5th percentiles sepa-

rately. In the same vein, quantile-specific estimates for multiple predictors can be

obtained in the upper tail of the distribution at the 75th, 80th, 90th, or 95th percen-

tiles separately. Nowadays statistical software (e.g., STATA) allows the analyst to

conduct conditional estimation at predetermined quantiles or equally spaced quan-

tiles (e.g., 10% increments) throughout the entire distribution of scores. These esti-

mates paint a more comprehensive portrait of the effects independent variables can

have on the outcome distribution of scores. Quantiles are very similar to percentiles

and percentile ranks and can be interpreted as such. For example, the 0.25 quantile is

at the 25th percentile and indicates that 25% of the scores are below that point in the

distribution of scores.

The quantiles are specific values or points at various locations of an ordered array

of population values of a variable y. For a specific cumulative distribution function

(CDF) of a certain variable the qth quantile of this particular distribution is the value

of the inverse of the CDF at that quantile q. For instance, suppose we work with the

standard normal distribution and the quantile of interest is 0.75 (the third quartile).

Then, the value of the inverse of the standard normal CDF at the 0.75 quantile is a z-

score of 0.67. The proportion of the population with z-values less than 0.67 is 0.75 or

that 75% of the values are less than 0.67. It follows that the proportion of the popula-

tion with z-values greater than 0.67 is 0.25 or that 25% of the values are greater than

0.67.

Quantile regression not only yields robust estimates of independent variables in

the presence of extreme outliers (in the dependent variable) at different points (quan-

tiles) of the outcome distribution and at the same time allows researchers to compute

regression estimates of multiple predictors at various quantiles separately, it also
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relaxes the homoscedasticity assumption about the residuals of y. Specifically, the

OLS regression model assumes that the residuals of y are distributed identically with

a constant population variance (e.g., s2). However, there may be occasions where

some residuals or different groups of residuals have different variances. In such

cases, the residual variance is nonconstant and the error term is heteroscedastic.

Heteroscedasticity does not affect the estimation of the regression coefficients. It

affects however, the SEs of the regression coefficients which are a function of the

residual variance. Specifically, the SEs of the regression estimates are not correct

and are typically underestimated. That means, the precision with which a regression

coefficient is estimated is affected upward (i.e., the precision is inflated and thus

erroneous). As a result, the likelihood of committing a Type I error is increased

because due to an underestimated SE the test statistic (the ratio of the regression esti-

mate to its SE) of the regression estimate will be larger than it should have been had

residual heteroscedasticity been taken into account.

When heteroscedasticity is evident the SEs of the regression estimates produced

from the OLS regression are biased downward. To address this caveat of OLS regres-

sion, some statistical software packages (e.g., STATA) offer a post hoc solution that

corrects the SEs of the regression estimates. For instance, STATA can compute robust

or Huber–White SEs (White, 1980) that are a function of the variability among the

predictors in the model as well as the variance matrix of the residuals with diagonal

elements that can differ for each residual or for groups of residuals.

In quantile regression the analyst can compute SEs of the regression estimates that

are robust to heteroscedasticity using a resampling approach (Angrist & Pischke,

2009; Hao & Naiman, 2007). Specifically, the bootstrap approach introduced by

Efron (1979) can be modified to compute robust SEs of quantile regression estimates.

This is an iterative sampling approach of a large number of samples of size n with

replacement from the actual data at hand. Suppose the data represent the dependent

variable y. In each bootstrap sample one can compute the value of the quantile of

interest (e.g., q = 0.20) in the outcome y. Suppose we repeat this sampling approach

100 times and compute each time the value of the quantile of interest. Then, eventu-

ally we have a sample of 100 values of the specific quantile and as a result we can

compute the SD of these estimates, which is the SE of the estimate of the quantile

(Angrist & Pischke, 2009). In quantile regression this iterative approach is slightly

modified. For instance, for a certain quantile (e.g., q = 0.10) one can draw samples of

size n with replacement from pairs of the dependent variable (y) and one independent

variable (e.g., x1) for each observation i to estimate the parameter estimate between y

and x1 (e.g., bb0:10
1 ) (Angrist & Pischke, 2009; Hao & Naiman, 2007). Suppose 100

parameter estimates are computed from 100 bootstrap samples. Then, the SE of bb0:10
1

is the SD of the 100 estimates at the 0.10 quantile (Porter, 2015). This procedure is

repeated for each predictor at the 0.10 quantile, and then for each of the quantiles of

interest and for the predictors in the model. Notice that this approach takes into

account the variability of the parameter estimate of each predictor at each quantile.

The bootstrapped SEs make no assumptions about the outcome distribution and as
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result they are preferable (Hao & Naiman, 2007). Previous work has shown that boot-

strap SEs are robust to heteroscedasticity (Hahn, 1995).

OLS and Quantile Regression

Consider a simple population regression model for individual i

yi = b0 + b1xi + ei, ð1Þ

where y is the dependent variable, x is the independent variable, e is the residual of y,

and the bs are the mean regression parameters. The estimation involves the minimi-

zation of the sum of squared residuals with respect to the bs, namely,

min
XN

i = 1

yi � byið Þ2, ð2Þ

where byi = b0 + bxi is the fitted value, and the estimate of the parameter b1 is com-

puted from the data at hand (i.e., y and x) using a formula that is a direct function of

the covariation between the two variables, namely

bb1 =

PN
i = 1

xi � xð Þ yi � yð Þ

PN
i = 1

xi � xð Þ2
: ð3Þ

In multiple regression the fitted value is byi = x
0
ib where x is a vector of values of

multiple predictors for observation i and b is a vector of regression estimates of these

predictors. The corresponding solution of regression estimates for multiple predictors

is

bb = X 0Xð Þ�1
Xy, ð4Þ

where X is the design matrix of the predictor variables and y is the dependent variable

vector.

The quantile regression model that corresponds to the simple linear regression

model in Equation (1) for quantile q is

yi = b
q
0 + b

q
1xi + ei, ð5Þ

where q indicates the specific quantile and 0 \ q \ 1 (Hao & Naiman, 2007;

Koenker & Bassett, 1978). The estimation in this case involves the minimization of

the weighted sum of the absolute values of the residuals for quantile q, namely,
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min q
XN

i = 1

jyi � byq
i j+ 1� qð Þ

XN

i = 1

jyi � byq
i j

" #
, ð6Þ

where byq
i = b

q
0 + b

q
1xi, and q and (1 2q) are the weights. In particular, q is the weight

assigned to positive residuals (i.e., yi � byq
i ) and (1 2q) is the weight assigned to neg-

ative residuals (i.e., yi\byq
i ). It follows that for the median (q = 0.5) the estimation

involves the minimization

min
XN

i = 1

jyi � by0:5
i j ð7Þ

because at the median q = 1 2q, and as a result

q
PN
i = 1

jyi � byq
i j = 1� qð Þ

PN
i = 1

jyi � byq
i j, and thus, the weighted sum of the absolute val-

ues of the residuals creates Equation (7). To illustrate the mechanism suppose we

want to estimate the quantile regression coefficients at the 0.25 quantile (first quar-

tile). Then, the weights are q = 0.25 for the positive residuals and (1 2q) = 0.75 for

the negative residuals. In other words, in this example the data points of y that are

above the regression line are given a weight 0.25 and the data points below the

regression line are given the weight 0.75 (see Hao & Naiman, 2007; Porter, 2015).

That means the estimation of the regression coefficients at any quantile q involves

weighting the data of the entire sample accordingly (Hao & Naiman, 2007).

When multiple predictors are used in the quantile regression model the fitted value

is byi = x0ib
q where x is a vector of values of multiple predictors for observation i and

b is a vector of regression estimates of these predictors at quantile q. That is, at any

quantile q the regression estimates computed are as many as the independent vari-

ables or predictors in the model. For example, if there are five predictors used in the

model at quantile q there will be also five corresponding regression estimates at quan-

tile q. It is prudent to use the same predictors at each quantile to facilitate compari-

sons across various quantiles.

A slightly modified version of Equation (6) is usually reported in published arti-

cles. Specifically, the quantile regression estimates are estimated by minimizing the

function

arg min
XN

i = 1

rt yi � byq
ið Þ

" #
, ð8Þ

where rt is called the check function and t is a certain quantile (Angrist & Pischke,

2009). The check function weighs positive and negative residuals using different

weights, that is, t is the weight assigned to positive residuals (i.e., yi � byq
i ) and (1 –

t) is the weight assigned to negative residuals (i.e., yi\byq
i ). Because differentiation is

not possible to estimate the quantile regression coefficients an optimization method

called linear programming is used instead to minimize Equation (8) and produce

quantile regression estimates (Angrist & Pischke, 2009; Porter, 2015).
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Using Quantile Regression to Estimate Intervention
Effects in Education

To demonstrate the usefulness of quantile regression in estimating treatment effects

we analyzed education data from a large-scale randomized experiment. Specifically,

we used quantile regression to estimate treatment effects of interim assessments

across the achievement distribution.

Background

High-stakes accountability ordinances introduced more than a decade ago created

systems across states that required reports of school annual performances.

Consequently, data-driven school assessment programs were instigated in multiple

states to improve classroom instruction and ultimately student performance (Bracey,

2005; Sawchuk, 2009). One type of these assessment-based solutions is standardized

assessments that are administered several times throughout the school year, known

as diagnostic or interim assessments (Perie, Marion, Gong, & Wurtzel, 2007).

Teachers in turn receive training to analyze these assessment-based data to evaluate

students’ progress accurately. Once the evaluation is completed teachers modify their

instruction accordingly to match students’ learning needs and help them increase

their performance.

The underlying hypothesis is that as student performance data become available

more frequently, teachers with adequate training should be able to analyze these data

to diagnose the level of learning for each student and then fine-tune their instructional

practices accordingly to improve student learning. Within this framework, teachers

use recurrent evidence of student performance to better monitor student learning and

through targeted instructional practices aspire to increase student performance.

An important component of interim assessments is targeted differentiated instruc-

tion that meets student ability and knowledge closely (Tomlinson, 2000).

Differentiated instruction maximizes each student’s probability of individual success

by recognizing students’ individual knowledge sets and needs. Through an iterative

series of assessments, teachers use assessment-based data to diagnose students’

weaknesses and strengths and modify instruction to match students’ abilities, knowl-

edge, and learning needs. The objective is that teachers identify and enact the most

effective personalized instructional practice for each student to boost his or her learn-

ing trajectory.

Although interim assessments should equip teachers with tools that enable learn-

ing and lead to improvements in student achievement for all students at various levels

of achievement, it is possible that these assessments could be especially helpful for

students at different achievement levels. For example, recent work has reported that

assessment programs sometimes focus on struggling students (Datnow & Hubbard,

2015). Through interim assessment processes teachers may be able to identify with

higher accuracy low-achievers’ learning needs and differentiate instruction to help
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them improve further. Hence, it is possible that struggling students may benefit more

from interim assessments than average- or high-achievers.

To test this hypothesis, we examine the effects of interim assessments across the

mathematics and reading distributions of scores. The primary research question is

whether the effects are consistent or vary by achievement level. First, we estimate the

effects of interim assessments for low-, median- and high-achievers and then compare

the differences between these effects to determine potential changes in the achieve-

ment gap between lower- and higher-achievers. To accomplish this goal, we use

quantile regression that produces estimates in the middle as well as in the lower and

upper tails of the achievement distribution. We use data from a large-scale experi-

ment conducted in Indiana during the 2010-2011 school year.

Review of the Literature

Although the literature has provided some evidence about the average effects of

interim assessments on student achievement (e.g., Konstantopoulos, Miller, & van

der Ploeg, 2013; Slavin, Cheung, Holmes, Madden, & Chamberlain, 2013) little is

known about the effects of interim assessments on the achievement gap between

lower and higher achievers. The main evidence in the literature is about the effects of

formative assessments on low-achievers (e.g., Black & Wiliam, 1998). However, the

achievement gap between low- and high-achievers continues to be an important issue

in educational research and practice. School interventions such as interim assess-

ments may have the potential to reduce achievement differences between lower and

higher achievers via differentiated instruction. For example, in order to respond suc-

cessfully to information garnered from interim assessments that identify students’

weaknesses in learning the material, teachers may reteach important concepts and

skills. Reteaching could have a larger benefit for students who did not grasp the

material well the first time, who are likely to be lower achieving students. Although

interim assessments are hypothesized to improve student achievement for all stu-

dents, it is unclear whether the effects of these assessment systems are the same for

all students at various achievement levels, or whether they vary by achievement

level.

The literature thus far has not documented well the consistency or variability of

the effects of interim assessments on student achievement across the achievement

distribution. Prior reviews have reported some evidence that formative assessments

may produce additional benefits for lower-achieving students compared with other

students (Black & Wiliam, 1998). More recent evidence about the effects of interim

assessments across the achievement distribution has indicated beneficial effects in

Grades 3 to 8 in mathematics (Konstantopoulos, Li, Miller, & van der Ploeg, 2016).

These effects were by and large uniform across the achievement distribution and did

not vary by achievement level. In this study, we report additional evidence about the

effects of interim assessments on various levels of student achievement using data

from a large-scale experiment conducted in 2010-2011 in Indiana.
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Two conditions seem plausible with respect to the consistency or variability of

the effects of interim assessments on student performance. First, if differentiated

instruction has a uniform effect across the achievement distribution one would expect

comparable potential benefits for students at different achievement levels (i.e., low-,

median-, or high-achievers). If this hypothesis were true, the treatment effect would

not vary by achievement level and would have no effect on the achievement gap

between higher-, median-, or lower-achievers because lower and higher scoring stu-

dents would benefit equally from differentiated instruction.

Second, if differentiated instruction varies by student achievement level (e.g.,

additional benefit for low- or high-achievers) one would expect more pronounced

effects of interim assessments at different parts of the achievement distribution.

Under this condition, two scenarios seem plausible. First, if differentiated instruction

benefits low-achievers more than other students, one would expect a more pro-

nounced treatment effect in the lower tail of the achievement distribution than in the

middle or in the upper tail. If this hypothesis were true, the treatment effect would

vary by achievement level and would reduce the achievement gap between lower-

and higher-achievers because low-achievers would benefit more from differentiated

instruction. Second, if differentiated instruction benefits high-achievers more than

others one would expect a more pronounced treatment effect in the upper tail of the

achievement distribution than in the middle or the lower tail. If this hypothesis were

true, the treatment effect would again vary by achievement level and would increase

the achievement gap between higher- and lower-achievers because higher scoring

students would benefit more from differentiated instruction.

Method

Data

Indiana’s assessment program incorporated two commercial products: in Grades K to

2, Wireless Generation’s mCLASS and in Grades 3 to 8, CTB/McGraw-Hill’s Acuity

(Indiana State Board of Education, 2006). Vendors worked with Indiana staff and

teachers to align their assessments, instructional resources, and training curricula to

Indiana’s content standards and instructional scope. Students throughout Indiana took

the same assessments and were tested at the same time points during the school year

statewide.

We conducted a randomized experiment in Indiana during the 2010-2011 school

year and included K-8 public schools that had volunteered to be part of the interven-

tion in the spring of 2010. We used a cluster randomized design (see Boruch,

Weisburd, & Berk, 2010) where schools were randomly assigned to a treatment or a

control condition. The sample was drawn from a list of 157 schools that had volun-

teered in the spring of 2010 to participate in the interim assessments program in

Indiana during the 2010-2011 school year. A priori statistical power analysis had

suggested that nearly 55 schools would be required to detect the average treatment

effect with a probability higher than .80.
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We anticipated approximately a 20% attrition rate and, as a result, we first selected

randomly a sample of 70 schools from the list. Second, we assigned randomly these

70 schools to a treatment or a control condition aiming for a balanced design. Thirty-

six schools were assigned to the treatment condition and 34 schools were assigned to

the control condition. The actual attrition rate was nearly 20% and as a result, the

sample of schools that participated in the experiment was reduced to 55 with 28

schools in the treatment condition and 27 schools in the control condition. Nearly

20,000 students participated in the study during the 2010-2011 school year. The

schools in the treatment condition received mCLASS or Acuity, and the training asso-

ciated with each product. The control schools did not receive access to these assess-

ments and their associated trainings, operating under business-as-usual conditions.

Measures

In Grades 3 to 8, the outcomes were mathematics and reading scores of ISTEP +

which is Indiana’s standardized state-wide accountability test. Indiana’s ISTEP + , like

most state tests, does not extend below the third grade. As a result, in Grades K to 2,

the outcomes were Terra Nova scores in mathematics and reading. The Terra Nova

test is frequently used in early grades and was administered by the research team.

Terra Nova is developed and maintained by CTB/McGraw-Hill’s educational assess-

ment unit, which also develops and maintains the ISTEP + . Domain and conceptual

overlap between the two assessment batteries is considerable. To simplify interpreta-

tion of estimates, we standardized the achievement scores (i.e., mean = 0 and SD = 1).

The main independent variable indicated school assignment to the treatment (i.e.,

mCLASS or Acuity) or not. The treatment variable was coded as a binary indicator

taking the value of 1 for treatment schools who received mCLASS or Acuity and 0

otherwise. The coefficient of the treatment is a standardized mean difference

between treatment and control groups. The student-level covariates included gender

(a binary indicator for female students—male students being the reference category),

age (in months), race (multiple binary indicators for Black, Latino, and other race

students—White students being the reference category), low socioeconomic status

that represents economic disadvantage (a binary indicator for free or reduced price

lunch eligibility—no eligibility being the reference category), special education sta-

tus (a binary indicator for special education students—no special education status

being the reference category) and limited English proficiency status (a binary indica-

tor for students with limited English proficiency—English proficiency being the ref-

erence category). The school-level covariates were percent of female, minority,

lower socioeconomic status, special education and limited English proficiency stu-

dents, as well as school urbanization categories (binary indicators for rural, suburban,

and small town—urban being the reference category).

Statistical Analysis

To estimate the effects of interim assessments at different levels of achievement, we

used quantile regression (Buchinsky, 1998; Hao & Naiman, 2007; Koenker &
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Bassett, 1978). Specifically, we examined treatment effects in the lower tail (i.e.,

0.10 and 0.25 quantiles), the middle (0.50 quantile), and the upper tail (i.e., 0.75 and

0.90 quantiles) of the achievement distribution. We conducted analyses across differ-

ent groups of grades (i.e., K-2, 3-8, and K-8).

At each quantile the empirical model for student i was

yi = b0 + b1Tj + STiB2 + SCjB3 + GiB4 + ei, ð9Þ

where y is the outcome variable (mathematics or reading scores), b0 is the constant

term, b1 is the estimate of the treatment effect, Tj is a binary indicator of being in a

treatment or a control group, ST represents student predictors, B2 is a column vector

of regression estimates of student predictors, SC represents school predictors, B3 is a

column vector of regression estimates of school predictors, G represents differences

across grades (i.e., grade fixed effects—dummies), B4 is a column vector of grade

fixed effects estimates, and e is a student error. The estimator at tth quantile is

defined as

(bt
0, bt

1, Bt
2, Bt

3, Bt
4) = argmin

X
i

rt � ½yi � (b0 + b1Tj + ST iB2 + SCjB3 + GiB4)�, ð10Þ

where rt is the check function that weighs positive and negative residuals differently

(see Koenker & Bassett, 1978). Because we were interested in including in the model

specification multiple covariates as Equation (9) indicates we ran conditional quantile

regression models.

Seven control schools and eight treatment schools did not participate in the

experiment but provided student and school data. To deal with the potential nonran-

dom dropout and address the potential threat to the internal validity of the treatment

estimates, we used an instrumental variables (IV) approach coupled with quantile

regression (see Abadie, Angrist, & Imbens, 2002). This approach is based on the

framework developed by Imbens and Angrist (1994) that creates four latent groups

of units in an experiment according to their compliance behavior: never-takers, com-

pliers, defiers, and always-takers.

In particular, the never-takers are the units that would not participate in the interim

assessment program regardless of their initial assignment. The never-takers in the

specific data set were the 15 schools that did not participate in the experiment. The

compliers are the units that would comply according to their initial assignment (i.e.,

receive treatment if assigned to the treatment group and not receive treatment if

assigned to the control group). The compliers in the specific data set were the 55

schools that participated in the experiment according to their assignment. In the treat-

ment group, the compliers were 28 schools. The defiers are the units that would

receive the opposite treatment from the one they were originally assigned to (i.e.,

units switch from the control to the treatment group and vice versa). There were no

defier schools in the data set. The always-takers are the units that would receive the

treatment regardless of their initial assignment. There were no always-takers in the

data set. Imbens and Angrist (1994) showed that under the monotonicity assumption
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(i.e., the nonexistence of defiers), the IV approach can provide valid estimates of the

average causal treatment effect for the compliers in the treatment group.

We used random assignment in the original sample (i.e., the 70 schools) as the

instrumental variable. This approach involves two steps. The first step uses a logistic

regression model where the outcome is binary (i.e., 1 for the 28 schools assigned to

the treatment that actually received the treatment and 0 for the 32 remaining schools).

The predictors include random assignment (1 for schools assigned randomly to treat-

ment and 0 otherwise) which served as the instrument, and student and school predic-

tors (as described in the variables section). Specifically, in the first stage the logistic

model for student i was

ln
p

1� p

� �
= b0 + b1Tj + ST iB2 + SCjB3 + GiB4, ð11Þ

where p is the probability of complying with the initial assignment of receiving the

treatment. The predicted values from the logistic model above are then used to con-

struct weights that account for the propensity of schools in the treatment group that

complied with random assignment. Since complier is a latent compliance type that

cannot be observed directly, Abadie et al. (2002) proposed a way of identifying the

probability that a participating unit is a complier (i.e., schools assigned to the treat-

ment condition that received the treatment). Specifically, the authors proposed con-

structing weights to identify compliers, namely,

W AAI
i = 1� Tj(1� Zj)

1� P(Z = 1jSTi, SCj, Gi)
� (1� Tj)Zj

P(Z = 1jSTi, SCj, Gi)
, ð12Þ

where Zj is the instrument (random assignment in the initial sample of 70 schools),

and P(Z = 1jSTi, SCj, Gi) is estimated through a logistic regression model in the first

stage.

Once the weights W AAI
i are computed, they are used in the second-stage estima-

tion. The intuition is that in the second-stage weighted estimation the treatment

schools that complied with initial random assignment would receive different weights

than other schools. In particular, Abadie et al. (2002) showed that the treatment

effects at the tth quantile can be consistently estimated through a weighted quantile

regression with W AAI
i as the weight, namely,

(bt
0, IV , bt

1, IV , Bt
2, IV , Bt

3, IV , Bt
4, IV )

= argmin
X

i

W AAI
i � rt � ½yi � (b0 + b1Tj + ST iB2 + SC jB3 + GiB4)�: ð13Þ

The weights account for the propensity of schools (and students) that complied

with random assignment and these treatment schools (and students) have a higher

weight than other schools. The unit of analysis in the first and second stages is the

student. We used the ivqte command in STATA to conduct the IV quantile
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regression analysis (see, Frolich & Melly, 2010). The IV method analyzed data from

the full sample of students (nearly 30,000 students).

We computed cluster bootstrap SEs that take into account the two-stage procedure

and potential clustering effects. Specifically, in the IV analysis, the cluster bootstrap

approach resampled schools (instead of students) 400 times (replications). The clus-

ter bootstrap SE was the SD of the 400 treatment effects estimates obtained from the

400 replications. Cameron and Trivedi (2010) suggest that cluster bootstrap SEs are

robust to heteroscedasticity and account for clustering effects.

We also conducted analyses to estimate the effect of the intention to treat (ITT)

using the initial sample of schools used in random assignment (i.e., 70 schools and

nearly 30,000 students). The ITT analysis provides estimates of the treatment effect

for schools that were assigned randomly to the treatment condition as opposed to the

control condition. The data are analyzed as was intended by initial random assign-

ment regardless of whether schools participated in the study. Fifteen of the 70 schools

(7 control schools and 8 treatment schools) did not participate in the experiment but

were part of the initial random assignment and provided student and school data, and

thus, were included in the ITT analyses. These schools and their students were

included in the analyses under the assumption that they had participated in the study.

Finally, we also conducted analysis to estimate the effect of the treatment on the

treated (TOT) using the sample of schools that participated in the experiment (i.e., 55

schools and nearly 20,000 students). The treatment effect in this case captures the dif-

ference in student achievement between schools that were assigned randomly to the

treatment group and actually received the treatment and schools that were assigned

randomly to the control group and remained in the experiment in that group. Fifteen

of the 70 schools dropped out of the experiment after random assignment and if this

attrition were nonrandom and differential (i.e., treatment schools that dropped out of

the experiment are different on average than control schools that also dropped out of

the experiment), the treatment and control schools that stayed in the experiment may

not be equivalent on average. This is a potential caveat of the TOT estimates. The

quantile regression models used in the ITT and TOT analyses are described in

Equation (9).

For the ITT and TOT analyses, we used the qreg2 routine in STATA. To account

for potentially clustering effects (i.e., students nested in schools) we computed clus-

ter robust SEs in the ITT and the TOT analyses (see, Parente & Santos Silva, 2016).

According to Parente and Santos Silva (2016), the cluster robust SEs take into

account heteroscedasticity and potential clustering effects. We conducted analyses

using data across all grades (i.e., K through 8) to estimate treatment effects for both

mCLASS and Acuity. We also conducted analyses using either K to 2 data or 3 to 8

data to estimate mCLASS or Acuity effects separately. Prior ISTEP + scores were

available in Grades 4 to 8 and thus we also ran models that included or omitted prior

student achievement as a covariate to determine the stability of the results.

Finally, we constructed tests to determine potential differences in treatment effects

between pairs of quantiles. Specifically, we used t-tests to compare differences in
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estimates of pairs of quantiles across the achievement distribution (e.g., 10th vs. 90th

quantiles, or 25th vs. 75th quantiles, and so forth). We used a bootstrap procedure to

compute the SEs of the mean differences (see Kolenikov, 2010).

Results

The initial task was to conduct analyses that examine whether random assignment

was successful as intended by design using pretest scores. We inspected baseline

equivalence in prior scores between treatment and control groups at various quan-

tiles. Only ISTEP + prior scores were available in Grades 4 to 8. We used quantile

regression pooling data across Grades 4 to 8 and conducted analyses in mathematics

and reading. We estimated baseline differences from the 0.05 to the 0.95 quantiles in

five-percentile increments (i.e., 0.05, 0.10, 0.15, . . ., 0.85, 0.90, and 0.95). Prior

scores were standardized to have a mean of 0 and an SD of 1. The unit of analysis

was the student. We computed cluster robust SEs for all quantile estimates (Parente

& Santos Silva, 2016). We used both a graphical device and a table to report the

results of this analysis (Bitler, Domina, Penner, & Hoynes, 2015). Specifically, the

results are illustrated in Figures 1 and 2 and in Table 1.

Figure 1 shows baseline differences in prior mathematics scores across various

quantiles in Grades 4 to 8. The quantile estimates were all very close to 0 and the

upper and lower bounds of the 95% confidence interval always included 0. This

graph indicates that the treatment is balanced in baseline mathematics achievement.

Figure 1. Quantile treatment estimates (QTEs) of Acuity interim assessment on baseline
mathematics scores.
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Figure 2 portrays the results in prior reading scores. The quantile estimates were all

close to 0 and the upper and lower bounds of the 95% confidence interval always

included 0. The graph indicates that the treatment is also balanced in baseline read-

ing achievement. The estimates in Table 1 provide additional support about baseline

equivalence in mathematics and reading scores. All quantile estimates were statisti-

cally nonsignificant and close to 0. These results indicate that random assignment

was successful as expected by the research design.

Table 2 reports sample sizes, means, and SDs of outcomes and predictor variables

used in the analyses for treatment and control groups and the full sample. The first

four rows in Table 2 report descriptive statistics for the outcome variables (i.e., postt-

est mathematics and reading scores) in Grades K to 2 (Terra Nova) and 3 to 8

(ISTEP + ). All posttest scores were standardized to have a mean of 0 and an SD of

1. The Terra Nova mathematics and reading mean scores were higher in the control

group than in the treatment group. These mean differences were found to be statisti-

cally significant in the quantile regression analyses (see Table 3). Approximately

6,000 students in Grades K to 2 had Terra Nova scores. The ISTEP + mathematics

and reading mean scores were only slightly higher in the control group than in the

treatment group. These mean differences were found to be statistically nonsignificant

in the quantile regression analyses (see Table 3). Nearly 25,000 students in Grades 3

to 8 had ISTEP + scores. The average student age was 10.75 years (129 months) and

was similar in treatment and control groups. Fifty percent of the students in the con-

trol group were females as opposed to 48% in the treatment group. Overall, 53% of

Figure 2. Quantile treatment estimates (QTEs) of Acuity interim assessment on baseline
reading scores.
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the students were White, while in the treatment group the percentage was slightly

higher (55%). Nearly 27% of the students were Blacks, while almost twice as many

Latino students were in the control group than in the treatment group (15% vs. 8%).

The rate of economically disadvantaged students (i.e., eligible for free or reduced-

price lunch) was about 57%.

The main results of the analyses are reported in Table 3. The treatment effect esti-

mates indicate differences in SDs between treatment and control groups at various

quantiles. Positive estimates indicate a positive treatment effect, while negative esti-

mates indicate a negative effect. OLS mean estimates are also reported next to the

median estimates. Table 3 reports first IV estimates at various quantiles in mathe-

matics and reading, then reports ITT estimates at various quantiles in mathematics

and reading, and finally reports TOT estimates at various quantiles in mathematics

and reading.

The results produced from the IV quantile regression analyses indicated that in

Grades K to 8 all treatment effect estimates, in mathematics and reading, were close

to 0 and statistically nonsignificant. That is, the effects of interim assessments

(mCLASS or Acuity) at various quantiles were not statistically different from 0. The

effects were uniform across the achievement distribution, that is, students across dif-

ferent achievement levels did not benefit from these assessment programs.

The IV estimates in Grades 3 to 8 were similar to those reported in Grades K to 8.

The estimates were small, statistically nonsignificant and uniform across the achieve-

ment distribution. The mathematics and reading estimates obtained from the Grades

K to 2 analysis, however, were all negative and almost 0.20 SDs on average (i.e.,

one fifth of an SD). In Grades K to 2, 50% of the IV estimates were statistically sig-

nificant mainly in the upper tail in mathematics and in the lower tail in reading. The

median estimates were not significant, however. The IV estimates were overall uni-

form across the achievement distributions and did not appear to vary by achievement

level. The K to 2 results indicate that mCLASS had a negative impact on mathematics

and reading scores regardless of achievement level. Along the same lines the, Grades

3 to 8 results suggest that Acuity did not have any impact on mathematics and read-

ing scores regardless of achievement level.

The ITT quantile regression estimates in Grades K to 8 were close to 0, typically

smaller than their SEs and hence, statistically nonsignificant in the middle and in the

tails of the achievement distributions. These results were similar to the results of the

IV analyses. However, the results varied by interim assessment program. The Grade

K to 2 analyses produced negative and statistically significant estimates that were

approximately as large as 0.20 SDs on average (i.e., one fifth of an SD) across the

achievement distribution. The median estimate in mathematics was close to 0.20 SDs

while the estimate in reading was slightly smaller. The estimates in the 0.10 and the

0.90 quantiles were much larger and nearly one quarter of an SD or larger. The effects

were overall uniform across the achievement distributions and did not appear to vary

by achievement level. In contrast, the ITT estimates in Grades 3 to 8, both in mathe-

matics and reading, were very similar to those reported in Grades K to 8. The

Konstantopoulos et al. 903



estimates were small, statistically nonsignificant and similar in magnitude across the

achievement distribution. The ITT estimates were overall similar to the IV estimates

and suggest that mCLASS negatively affected student achievement across different

achievement levels, while Acuity did not have any impact on mathematics and read-

ing scores regardless of achievement level.

The TOT results in Grades K to 8 followed similar patterns as the IV and the ITT

results. All treatment effect estimates both in mathematics and reading were close to

0, statistically nonsignificant, and uniform across the achievement distributions. The

results by interim assessment program also followed a similar pattern as the IV and

ITT estimates. The effects were virtually 0 in Grades 3 to 8 and negative, statistically

significant, and nearly 0.20 SDs on average (i.e., one fifth of an SD) in Grades K to

2 across various quantiles. The effects were overall uniform across the achievement

distributions and did not vary by achievement level.

The OLS regression means were similar in magnitude to the median regression

estimates across all three analyses. These results suggest by and large that interim

assessment programs had uniform effects across achievement levels and neither

reduced nor increased the achievement gap.

In Grades 4 to 8, we were able to conduct sensitivity analyses by including or

excluding prior achievement ISTEP + scores as covariates in the regression models.

The objective was to determine whether controlling for prior scores would change

the results considerably (i.e., a robustness check). The OLS, IV, and ITT estimates

of this analysis are summarized in Table 4. By and large, the coefficients were statis-

tically nonsignificant, which suggests that including or excluding prior achievement

in the model did not influence the estimates (i.e., the estimates were robust). The

OLS means were similar in magnitude to the median estimates. Overall, the pattern

of these results was similar to that in Table 3. There were two exceptions, however.

The 0.10 and 0.25 quantile estimates in reading that had been obtained from the ITT

analyses that included prior scores as covariates were negative and statistically sig-

nificant. The SEs of the estimates in the analyses that included prior scores as covari-

ates were overall smaller. That is, the estimation was more precise as one would

expect when prior scores are controlled for in regression models. Overall, the effects

reported in Table 4 were consistent across the achievement distribution, and thus, the

treatment did not seem to have an impact on the achievement gap between lower-

and higher-achievers.

Finally, we investigated potential differences between any two quantile-specific

estimates across the entire achievement distribution of scores using t tests. To con-

struct the numerator of the t-test we subtracted the estimated treatment effect in one

quantile from the estimated treatment effect in a different quantile (e.g., the estimate

at the 0.90 quantile minus the estimate at the 0.10 quantile). In this example, a posi-

tive difference would indicate that high-achievers benefited more from the treatment

than low-achievers. That is, a positive difference would indicate an increase in the

achievement gap between high- and low-achievers. In contrast, a negative difference

would indicate a decrease in the achievement gap between high- and low-achievers.
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The SEs computed for each mean difference took into account the dependency of the

estimates. These mean differences and their SEs are reported in Table 5. The results

suggest that the mean differences between quantile treatment effects at any two quan-

tiles are generally not different from 0. Only 6 of the 180 t tests were statistically sig-

nificant at the .05 level (4 in mathematics and 2 in reading). It appears therefore that

the treatment effects were consistent across the achievement distribution and did not

have any systematic impact on the achievement gap. This finding is consistent with

results reported from a recent study (Konstantopoulos et al., 2016).

In sum, the effects obtained from the various analyses appeared to be uniform

across the achievement distributions. The t tests between any two quantile estimates

were generally statistically nonsignificant. Thus, mCLASS and Acuity effects had

consistent effects in various quantiles and did not vary by achievement level. This

indicates that these two products do not seem to affect the achievement gap between

lower- and higher-achievers. Thus, the hypothesis that interim assessments may ben-

efit some groups of students more than others was not supported with these data. The

findings indicate that interim assessments do neither decrease nor increase the

achievement gap.

The internal validity of the estimates produced from the IV and ITT analyses is

high. The field experiment was conducted without problems and thus the IV and ITT

analyses should produce causal estimates. Baseline equivalence of observed school

variables was established at various levels of achievement and suggested that random

assignment was successful. As a result, it is reasonable to assume unbiased estima-

tion of the treatment effects. The fact that the TOT estimates were very similar to the

IV and ITT estimates also suggests that attrition did not compromise the treatment

effect estimates.

The external validity of the estimates may be somewhat limited. The sample was

drawn from a subset of Indiana public schools that volunteered in the spring of 2010

to implement Indiana’s assessment program in 2010-2011. It is unclear what moti-

vated these schools to volunteer to participate in the experiment that year. Schools’

motivations may differ from year to year and schools that were part of this study may

be different from schools that volunteered for the assessment programs in the previous

or the following years. Hence, these results should be generalizable to schools that

aspired to use technology-supported interim assessments in Indiana in 2010-2011. The

generality of the findings beyond that specific group of schools, however, is debatable.

Conclusion

This study demonstrated the utility of quantile regression in point estimation across

the entire outcome distribution of scores beyond measures of central location such as

the mean. OLS regression and analysis of variance–type models are used recurrently

in education, psychology, and the social sciences to estimate average associations of

interest or differences among group means. However, one of the caveats of these pop-

ular statistical models is that they are not as robust to considerable skewness in the

906 Educational and Psychological Measurement 79(5)
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outcome distributions. As a result, typical regression mean estimates may be biased

in the presence of extreme outliers located mainly in one of the tails of a distribution

of scores. Median regression is a good alternative to typical regression models when

asymmetry in a distribution is sizeable, because the median is a more robust index of

central tendency. Median regression is a special case of quantile regression, a statisti-

cal tool that provides researchers with the opportunity to estimate predictor ‘‘effects’’

at various points in the outcome distribution. In many occasions mean estimation is

not enough and does not capture the associations between the predictors and the out-

come at various locations of the outcome distribution.

In the field of education, many researchers are interested in identifying school

resources and instructional practices that potentially reduce the achievement gap.

Quantile regression can be used to examine such research questions. For example,

the effects of class size, teacher professional development, or a new mathematics

curriculum vis-à-vis a traditional curriculum can be estimated across the achievement

distribution of scores using quantile regression. The effects of school resources are

estimated in the middle and the lower and upper tails of the achievement distribution

and researchers can determine which groups of students (e.g., low-, middle- or high-

achievers) benefit more from these resources.

A potential limitation of quantile regression modeling is that the analyses generate

many more estimates than the typical regression model. For example, a regression

model with five predictors would produce five corresponding regression estimates. In

contrast, a quantile regression model that estimates the associations between the five

predictors and the outcome at five different quantiles (e.g., 0.10, 0.25, 0.50, 0.75,

0.90) will produce 25 corresponding regression estimates. Nonetheless, as the figures

and tables in this study show, a carefully selected representation of the generated out-

put can be summarized efficiently.

In sum, quantile regression is an additional, valuable statistical tool that research-

ers can use to obtain robust estimates of associations or group differences at different

locations in the outcome distribution of scores. It is a good alternative to regression

and ANOVA models especially when researchers are interested in examining effects

in the lower and upper tails of the outcome distribution of scores.
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