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Abstract

Researchers frequently use machine-learning methods in many fields. In the area of
detecting fraud in testing, there have been relatively few studies that have used these
methods to identify potential testing fraud. In this study, a technical review of a
recently developed state-of-the-art algorithm, Extreme Gradient Boosting
(XGBoost), is provided and the utility of XGBoost in detecting examinees with
potential item preknowledge is investigated using a real data set that includes exami-
nees who engaged in fraudulent testing behavior, such as illegally obtaining live test
content before the exam. Four different XGBoost models were trained using differ-
ent sets of input features based on (a) only dichotomous item responses, (b) only
nominal item responses, (c) both dichotomous item responses and response times,
and (d) both nominal item responses and response times. The predictive perfor-
mance of each model was evaluated using the area under the receiving operating
characteristic curve and several classification measures such as the false-positive rate,
true-positive rate, and precision. For comparison purposes, the results from two
person-fit statistics on the same data set were also provided. The results indicated
that XGBoost successfully classified the honest test takers and fraudulent test takers
with item preknowledge. Particularly, the classification performance of XGBoost was
reasonably good when the response time information and item responses were both
taken into account.
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The interest in utilizing statistical tools to identify fraud in testing has a long history

and can be traced back to as early as the 1920s (Bird, 1927). Numerous methods

focused on identifying unusual response similarity among examinees, particularly in

the context of paper-and-pencil testing (e.g., Angoff, 1974; Bay, 1995; Belov, 2011;

Holland, 1996; Maynes, 2005; Saupe, 1960; Sotaridona & Meijer, 2002, 2003; van

der Linden & Sotaridona, 2006; Wollack, 1997). However, the response similarity

indices may not be useful in dealing with different types of test security issues such

as advance knowledge of the items administered in a testing program. Item preknow-

ledge and item compromise have become significant concerns for many testing pro-

grams that deliver test content in online and computer-based platforms. Examinees

with item preknowledge may have similar response patterns if they all have access to

the same set of items and respond consistently with what they have accessed. In such

a scenario, one can expect that the response similarity indices will identify some

pairs of test takers in this group, and Wollack and Maynes (2017) present an applica-

tion. However, item preknowledge may be more complicated in reality. Different

people may have access to different sets of items, and they may not remember or

may misremember what they have seen. In such a case, response similarity indices

will be less successful at identifying these people due to lesser degrees of similarity

because the response similarity indices are not explicitly designed for detecting item

preknowledge. Additionally, response similarity indices do not take into account

response time data, which may be a significant source of information in detecting

item preknowledge.

Because of the limitations of response similarity indices in identifying item pre-

knowledge, there has been an increasing number of methods specifically developed

and proposed in the past decade for identifying examinees with item preknowledge,

and Eckerly (2017) provides a detailed review of these methods. Some of these meth-

ods use only raw item responses (e.g., Belov, 2014, 2016; Eckerly, Babcock, &

Wollack, 2015; McLeod, Lewis, & Thissen, 2003; O’Leary & Smith, 2017; Shu,

Henson, & Luecht, 2013; Sinharay, 2017; Wang, Liu, & Hambleton, 2017), while

some others use only response time data (e.g., Boughton, Smith, & Ren, 2017; Lee,

2018; Qian, Staniewska, Reckase, & Woo, 2016; van der Linden & Guo, 2008; van

der Linden & Krimpen-Stoop, 2003), and a few combine the information from both

response time and item response data (e.g., Wang, Xu, Shang, & Kuncel, 2018). A

common characteristic of these proposed methods is that they all use traditional psy-

chometric and statistical models to identify individuals with item preknowledge. The

goal of the current study is to contribute to this growing literature by exploring the

utility of a recently developed state-of-the-art machine-learning algorithm, Extreme

Gradient Boosting (XGBoost; Chen & Guestrin, 2016), in identifying examinees with
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item preknowledge using a real data set. Researchers frequently use machine-learning

algorithms in many fields. In the area of test security, there has been relatively few

studies that have utilized these methods to identify potential testing fraud (Kim, Woo,

& Dickison, 2017; Man, Sinharay, & Harring, 2018; Sotaridona, 2003). In the very

first attempt, Sotaridona (2003) explored the performance of Backpropagation, a

supervised learning algorithm, in detecting examinees with item preknowledge in a

small simulation study. Later, Kim et al. (2017) used another supervised learning

algorithm, Market Basket Analysis, for identifying aberrant response patterns. More

recently, Man et al. (2018) compared the performance of several data mining algo-

rithms in detecting test fraud. In the current article, XGBoost, a highly effective gra-

dient tree-boosting algorithm as has been demonstrated in many data science

competitions, is investigated. Since its development and introduction in 2014,

XGBoost became a de facto method for many data science competitions and won a

majority of these competitions at the Kaggle platform. In the following section, a

technical introduction of how XGBoost performs classification is first provided, and

this is followed by a small-scale conceptual illustration. The purpose of this concep-

tual illustration is to provide readers with a better understanding of how XGBoost

actually works. Then, the XGBoost algorithm is applied to a larger data set that was

made publicly available by Cizek and Wollack (2017) to assess how XGBoost per-

forms when identifying test takers flagged for potential item preknowledge in this

data set. For comparison purposes, the results from two person-fit statistics proposed

in the literature (de la Torre & Deng, 2008; Sinharay, 2018) are also provided.

Finally, some issues to consider while working with these machine-learning algo-

rithms are discussed, particularly in detecting testing fraud.

Extreme Gradient Boosting

Let xi = xi1, xi2, . . . , xij

� �
denote a vector of observed values for the ith observation

on j features, where i 2 1, 2, 3, . . . , If g and j 2 f1, 2, 3, . . . , J ), and yi is the value of

the target outcome for the ith observation. A tree ensemble model is specified to pre-

dict the outcome using additive functions as

ŷi =F xið Þ=
XT

t = 1

ft xið Þ, ð1Þ

where T is the number of trees, and ft is the corresponding tree structure. Each tree is

defined by a function q that maps an observation to the lth leaf, where

l 2 f1, 2, 3, . . . , L), and a weight (w) on each leaf is defined as

f xð Þ= wq xð Þ, w 2 R
L, q : RJ ! L: ð2Þ

Once the tree structure is developed and the weights are estimated, a predicted out-

come can be obtained by first assigning an observation to a leaf on each tree based
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on the values of the feature set and then summing the weights on the corresponding

leaves.

The algorithm optimizes the following objective function to develop a number of

trees:

L Fð Þ=
X

i

‘ yi, ŷið Þ+
X

t

O ftð Þ, ð3Þ

where ‘ is a differentiable loss function to measure the distance between the observed

and predicted outcomes, and O is a regularization term to control the complexity of

the model in order to avoid overfitting. In the context of a classification problem with

two outcomes as in this study, ‘ can be defined as a logistic loss function:

‘ yi, ŷið Þ= yiln 1 + e�ŷi

� �
+ 1� yið Þln 1 + eŷi

� �
: ð4Þ

Regularization term in Equation (3) is defined as

O ftð Þ= gL +
1

2
l k wk2, ð5Þ

where L is the number of leaves in the tree structure, and g and l are the parameters

to penalize the complexity of the tree. The term l||w||2 in the equation represents a

form of L2 regularization on the leaf weights.1

The objective function in Equation (3) is optimized in an additive manner. This

procedure starts with a constant prediction, and a new tree that minimizes the loss

function is searched and added at each iteration as the following:

ŷ
0ð Þ

i = 0

ŷ
1ð Þ

i = ŷ
0ð Þ

i + f1 xið Þ
ŷ

2ð Þ
i = ŷ

1ð Þ
i + f2 xið Þ

..

.

ŷ
tð Þ

i = ŷ
t�1ð Þ

i + ft xið Þ

Therefore, the objective function at the iteration t can be written as

L tð Þ =
X

i

‘ yi, ŷ
t�1ð Þ

i + ft xið Þ
� �

+O ftð Þ: ð6Þ

Chen and Guestrin (2016) used a second-order Taylor approximation to quickly opti-

mize this objective function. The second-order Taylor approximation of L tð Þ is

L tð Þ ’
X

i

‘ yi, ŷ
t�1ð Þ

i

� �
+ gift xið Þ+

1

2
hif

2
t xið Þ

� 	
+O ftð Þ, ð7Þ
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where gi and hi are, respectively, the first- and second-order gradient statistics on the

loss function with respect to the predicted value in the previous step, ŷ
t�1ð Þ

i , and they

can be computed as

g
tð Þ

i =
∂‘ yi, ŷ

t�1ð Þ
i

� �

∂ŷ
t�1ð Þ

i

= � yi � 1ð Þeŷ
t�1ð Þ

i + yi

eŷ
t�1ð Þ

i + 1
ð8Þ

h
tð Þ

i =
∂2‘ yi, ŷ

t�1ð Þ
i

� �

∂ ŷ
t�1ð Þ

i

� �2
=

eŷ
t�1ð Þ

i

eŷ
t�1ð Þ

i + 1
� �2

: ð9Þ

For a fixed tree structure at iteration t, Chen and Guestrin (2016) showed that the

optimal weight on the lth leaf could be computed by

wl = �
P

i2Sl
giP

i2Sl
hi + l

, ð10Þ

and whether or not a particular tree structure improves the prediction can be checked

by computing a gain score using the equation

Gain =
XL

l = 1

P
i2Sl

gi

� �2

P
i2Sl

hi + l
�
P

i gi

� �2

P
i hi + l

2
64

3
75� g, ð11Þ

where Sl represents a set of observations assigned to the lth leaf.

Equation (11) is used to evaluate every potential split when developing trees and

adding new branches to the trees. The XGBoost algorithm starts from a single leaf

for each structure and keeps adding branches as long as a split with a positive gain is

found. In the next section, a detailed numerical illustration is provided to present a

better conceptual understanding of how XGBoost grows the tree structures and per-

forms classification using a small data set.

A Numerical Illustration of the XGBoost Algorithm

A small data set is available in Table 1 for 30 subjects with two feature variables

(RT1 and RT2) and one target variable (y). The feature variables represent the

response time of each subject for two test items, and the target variable represents

whether or not the subject had item preknowledge (0 = No, 1 = Yes). The goal is to

develop a tree structure for predicting the target outcome from the two feature vari-

ables. These are all the inputs that a user needs to provide to the XGBoost algorithm.

For the sake of demonstration, the values of l = 1.5 and g = 1 are used as the regu-

larization parameters for this illustration. The rest of the columns in Table 1 will be

explained in the remaining of this section.
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ŷ

3ð
Þ

P
r

1
1
1
4

3
6

1
0

2
0
.5

0
.2

5
2

0
.1

5
2

0
.1

5
2

0
.5

4
0
.2

5
2

0
.3

0
2

0
.4

5
2

0
.6

1
0
.2

4
0
.3

1
2

0
.1

4
.4

6
2

9
2

1
2
1

1
0

2
0
.5

0
.2

5
2

1
.0

4
2

1
.0

4
2

0
.7

4
0
.1

9
2

0
.3

0
2

1
.3

4
2

0
.7

9
0
.1

6
2

0
.4

3
2

1
.7

6
.1

5
3

4
9

2
4

1
0

2
0
.5

0
.2

5
0
.8

0
0
.8

0
2

0
.3

1
0
.2

1
2

0
.3

0
0
.5

0
2

0
.3

8
0
.2

3
0
.3

1
0
.8

1
.6

9
4

5
8

3
0

1
0

2
0
.5

0
.2

5
2

0
.1

5
2

0
.1

5
2

0
.5

4
0
.2

5
2

0
.3

0
2

0
.4

5
2

0
.6

1
0
.2

4
0
.3

1
2

0
.1

4
.4

6
5

4
0

1
7

1
0

2
0
.5

0
.2

5
0
.8

0
0
.8

0
2

0
.3

1
0
.2

1
2

0
.3

0
0
.5

0
2

0
.3

8
0
.2

3
0
.3

1
0
.8

1
.6

9
6

6
7

6
6

1
0

2
0
.5

0
.2

5
2

1
.0

4
2

1
.0

4
2

0
.7

4
0
.1

9
2

0
.3

0
2

1
.3

4
2

0
.7

9
0
.1

6
0
.3

1
2

1
.0

3
.2

6
7

3
0

7
9

1
0

2
0
.5

0
.2

5
2

1
.0

4
2

1
.0

4
2

0
.7

4
0
.1

9
0
.4

7
2

0
.5

7
2

0
.6

4
0
.2

3
0
.3

1
2

0
.2

6
.4

4
8

1
9

1
4

1
0

2
0
.5

0
.2

5
0
.8

0
0
.8

0
2

0
.3

1
0
.2

1
0
.4

7
1
.2

7
2

0
.2

2
0
.1

7
0
.3

1
1
.5

8
.8

3
9

3
3

8
1

0
2

0
.5

0
.2

5
0
.8

0
0
.8

0
2

0
.3

1
0
.2

1
0
.4

7
1
.2

7
2

0
.2

2
0
.1

7
0
.3

1
1
.5

8
.8

3
1
0

1
7
2

3
8

1
0

2
0
.5

0
.2

5
2

0
.1

5
2

0
.1

5
2

0
.5

4
0
.2

5
2

0
.3

0
2

0
.4

5
2

0
.6

1
0
.2

4
0
.3

1
2

0
.1

4
.4

6
1
1

5
5

3
7

0
0

0
.5

0
.2

5
2

0
.1

5
2

0
.1

5
0
.4

6
0
.2

5
2

0
.3

0
2

0
.4

5
0
.3

9
0
.2

4
0
.3

1
2

0
.1

4
.4

6
1
2

1
0
3

7
9

0
0

0
.5

0
.2

5
2

1
.0

4
2

1
.0

4
0
.2

6
0
.1

9
2

0
.3

0
2

1
.3

4
0
.2

1
0
.1

6
0
.3

1
2

1
.0

3
.2

6
1
3

6
8

1
1
7

0
0

0
.5

0
.2

5
2

1
.0

4
2

1
.0

4
0
.2

6
0
.1

9
2

0
.3

0
2

1
.3

4
0
.2

1
0
.1

6
2

0
.4

3
2

1
.7

6
.1

5
1
4

1
9
4

1
7

0
0

0
.5

0
.2

5
2

0
.1

5
2

0
.1

5
0
.4

6
0
.2

5
2

0
.3

0
2

0
.4

5
0
.3

9
0
.2

4
0
.3

1
2

0
.1

4
.4

6
1
5

6
8

8
4

0
0

0
.5

0
.2

5
2

1
.0

4
2

1
.0

4
0
.2

6
0
.1

9
2

0
.3

0
2

1
.3

4
0
.2

1
0
.1

6
2

0
.4

3
2

1
.7

6
.1

5
1
6

4
8

1
2
7

0
0

0
.5

0
.2

5
2

1
.0

4
2

1
.0

4
0
.2

6
0
.1

9
2

0
.3

0
2

1
.3

4
0
.2

1
0
.1

6
2

0
.4

3
2

1
.7

6
.1

5
1
7

4
8

2
0
0

0
0

0
.5

0
.2

5
2

1
.0

4
2

1
.0

4
0
.2

6
0
.1

9
2

0
.3

0
2

1
.3

4
0
.2

1
0
.1

6
2

0
.4

3
2

1
.7

6
.1

5
1
8

6
1

4
7

0
0

0
.5

0
.2

5
2

1
.0

4
2

1
.0

4
0
.2

6
0
.1

9
2

0
.3

0
2

1
.3

4
0
.2

1
0
.1

6
0
.3

1
2

1
.0

3
.2

6
1
9

3
7

1
5
5

0
0

0
.5

0
.2

5
2

1
.0

4
2

1
.0

4
0
.2

6
0
.1

9
2

0
.3

0
2

1
.3

4
0
.2

1
0
.1

6
2

0
.4

3
2

1
.7

6
.1

5
2
0

5
8

8
4

0
0

0
.5

0
.2

5
2

1
.0

4
2

1
.0

4
0
.2

6
0
.1

9
2

0
.3

0
2

1
.3

4
0
.2

1
0
.1

6
2

0
.4

3
2

1
.7

6
.1

5

(c
on

tin
ue

d)

936



T
a
b

le
1
.
(c

o
n
ti
n
u
ed

)

It
er

at
io

n
1

(T
re

e
1
)

It
er

at
io

n
2

(T
re

e
2
)

It
er

at
io

n
3

(T
re

e
3
)

RT
1

RT
2

y
ŷ
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First, the algorithm starts with an initial guess (ŷð0Þ). To develop the first tree, the

algorithm computes the first- and second-order gradient statistics (g(1) and h(1)) based

on Equations (8) and (9) given y and ŷð0Þ. Then, the algorithm searches for the best

split among all possible splits based on these two features. For instance, Figure 1 pro-

vides two possible splits of observations based on RT1 and RT2 with their respective

gain scores and leaf weights computed using Equations (10) and (11). The gain score

for the first split is negative, thus indicating that this split would not improve our pre-

diction. On the other hand, the gain score for the second split is positive, thus indicat-

ing that this split would improve our prediction. The algorithm computes the gain

score for each possible split, and then finds the best one. Figure 2 provides the gain

score for all potential splits. The best split was based on the threshold value of 38.5

on the RT2 feature, yielding a gain score of 3.512. Therefore, the first step to develop

the first tree is to divide the observations into two leaves, observations with the RT2

values larger than 38.5 and observations with the RT2 values smaller than 38.5. Then,

for the observations on each leaf, the algorithm again computes a gain score for all

potential splits based on RT1 and RT2 to see if there is a new branch that can be

added with a positive gain. Figure 3 provides the gain scores for all possible splits

Figure 1. Two sample splits of observations based on the RT1 and RT2 features and their
respective leaf weights and gain scores.
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based on RT1 and RT2 using the observations on both leaves of the first split. As it

can be seen, there is only one split that actually provides a positive gain. This is a split

based on the threshold value of 49.5 on the RT1 feature on the second leaf (RT2 \
38.5), and it yields a gain score of 0.148. If the depth of the tree is limited by two

and the algorithm stops here, our resulting structure for the first tree is presented in

Figure 4. The depth of the tree can be increased, and the algorithm can be forced to

Figure 2. Gain scores of all potential first splits in Tree 1 based on RT1 and RT2 features.

Figure 3. Gain scores for all possible splits on the first and second leaves of the first split in
Tree 1.
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search additional branches. The greater the depth is, the higher the level of interac-

tions between features can be accounted for. However, the algorithm is stopped here

for the sake of simplicity. Based on the first tree structure in Figure 4, there are three

leaves and the weight for each leaf is also computed based on Equation (10). Once

these weights are estimated, the assigned weight for each observation can be added to

our initial prediction (ŷð0Þ) and the new prediction (ŷð1Þ) at the end of Iteration 1 can

be obtained. At the bottom of Table 1, the value obtained from the loss function is

also reported for these new predictions. As seen, the loss function value for our con-

stant predictions was 20.79, but now it decreased to 15.15.

This process continues until a certain predetermined number of trees is developed

or until no tree structure with a positive gain score is found. Additional columns in

Figure 4. Tree structures developed after three iterations as a result of the XGBoost
algorithm.
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Table 1 provide the new gradient statistics (g(2) and h(2)) based on ŷð1Þ as Iteration 2

starts. Following a similar process, the algorithm again computes the gain scores for

all possible splits based on RT1 and RT2 using g(2) and h(2). The best split is now

based on the threshold value of 33.5 on the RT1 feature, yielding a gain score of

0.009. Therefore, in the second tree, the observations are divided into two leaves,

observations with the RT1 values larger than 33.5 and observations with the RT1 val-

ues smaller than 33.5. None of the further splits on the leaves of the first split in the

second tree yielded a positive gain, and so the algorithm stops and computes the

weights for the leaves of the first split in the second tree. Then, the assigned weight

for each observation to our predictions from the first iteration (ŷð1Þ) can be added and

the new prediction (ŷð2Þ) at the end of Iteration 2 can be obtained. The loss function

value now decreased to 14.34 at Iteration 2. In Iteration 3, the new gradient statistics

are computed (g(3) and h(3)) and the best split is found to be based on the threshold

value of 79.5 on the RT2 feature, yielding a gain score of 0.115. None of the further

splits on the leaves of the first split on the third tree yielded a positive gain, and

Iteration 3 ended. The new weights for each observation were added to the predic-

tions from Iteration 2 and the new predictions (ŷð3Þ) were obtained. The loss function

value at the end of Iteration 3 is 13.56. The whole search process ended at Iteration 3

because no further split in Iteration 4 provided a positive gain. The whole developed

tree structure can be seen in Figure 4. In the last column of Table 1, the predicted

probabilities for the observations in the training data set were also provided after

transforming ŷð3Þ from logit to probability.

If a new observation comes with a different set of values on RT1 and RT2, the

probability can be predicted using this developed tree structure. For instance, sup-

pose a student’s response times on the first item (RT1) and second item (RT2) are 80

and 40, respectively. This student would be in Leaf 1 on Tree 1 (w = 21.04), in Leaf

1 on Tree 2 (w = 20.30), and in Leaf 2 on Tree 3 (w = 0.31). Therefore, the sum of

the corresponding leaf weights is equal to 21.03 on the logit scale, yielding a value

of 0.26 after transformation, which is the probability that a student with an RT1 equal

to 80 and an RT2 equal to 40 has item preknowledge. Conversely, suppose a stu-

dent’s values for RT1 and RT2 are 25 and 15, respectively. This student would be in

Leaf 2 on Tree 1 (w = 0.80), in Leaf 2 on Tree 2 (w = 0.47), and in Leaf 2 on Tree 3

(w = 0.31). The sum of the corresponding leaf weights for this student is equal to

1.58, yielding a probability of 0.83 for item preknowledge. Notice that the smaller

the response time that a student has, the higher the probability of item preknowledge

that the tree ensemble model predicts.

As one can imagine, this search process becomes exhaustive and computationally

very demanding when the number of features and sample size increase. XGBoost

applies a number of novel techniques to make this search process manageable, such

as an approximate exact greedy algorithm, a weighted quantile sketch, sparsity-aware

split finding, the use of parallel computing, cache optimization, and distributed com-

puting. A more comprehensive treatment of the technical details can be found in

Chen and Guestrin (2016), Mehta et al. (2018), and Nielsen (2016).
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A Practical Guide to Identify Examinees With Item
Preknowledge Using XGBoost

Description of the Real Data Sets

The data set used in the current study comes from Cizek and Wollack (2017) and

includes two test forms with sample sizes of 1,636 and 1,644 from a single year of

testing for a computer-based program. Each test form contains 170 operational test

items, and there are 87 common items between the two test forms. The unique char-

acteristic of this data set is that it is known to include examinees who engaged in

fraudulent test behavior, such as illegally obtaining live test content before the exam.

There are 94 candidates for both forms who were flagged by the testing company as

likely cheaters. To maximize the information used by the XGBoost model, these two

data sets were merged into a single big data set with 3,280 examinees and 253 opera-

tional items. In this combined data set, each examinee responded to 170 items, while

the responses were missing to the remaining form-specific 83 items. Out of 3,280

examinees, 94 candidates were flagged as likely cheaters, while the remaining candi-

dates were treated as honest examinees. The whole data set is first randomly divided

into two subsets: a training data set and a test data set. The training data set included

2,624 candidates (80%), and the test data set included 656 candidates (20%). Table 2

provides a summary of the frequencies for the test and training data sets regarding

the flagged and nonflagged individuals.

Both data sets included the dichotomous responses (correct/incorrect), nominal

responses (A, B, C, and D), and response time information on each item for each

examinee. To explore the relative contribution of using different types of information

on the predictive power of the XGBoost model, both the training and test data sets

were structured in four different ways using (a) only dichotomous item responses,

(b) only nominal item responses, (c) both dichotomous item responses and response

times, and (d) both nominal item responses and response times. The nominal

responses are categorical and, therefore, are recoded using a procedure known as one

hot encoding before model training. For instance, if the nominal response vector for

an examinee to three hypothetical items is {A,D,C}, then this response vector is

transformed into a numerical vector as {1,0,0,0,0,0,0,1,0,0,1,0}. The first four ele-

ments of the transformed vector {1,0,0,0} correspond to nominal response A for the

first item. The second four elements of the transformed vector {0,0,0,1} correspond

Table 2. The Number of Flagged and Nonflagged Individuals for the Training and Test Data
Sets.

Flagged individuals Nonflagged individuals Total

Training data set 77 2,547 2,624
Test data set 17 639 656
Total 94 3,186 3,280
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to nominal response D for the second item, and the last four elements of the trans-

formed vector {0,0,1,0} correspond to nominal response C for the third item. The

four different types of data sets that are used to train the four different XGBoost

models in the current study are shown in Table 3 for a hypothetical three-item test.

Model Training

In the context of the item preknowledge that is addressed in this article, the problem

for the XGBoost model should be categorized as a classification problem. Assuming

that a training data set is available with item responses and response times as input

features and with a target variable for each examinee (flagged or nonflagged),

XGBoost models can be trained to map the patterns in the input features to the target

variable. In this case, it could be assumed that obtaining the test content prior to

exam and possibly studying and memorizing these items gave an advantage to the

flagged individuals such that they are more likely to give a correct response to the

items they had accessed with a much shorter response time. Therefore, the data pat-

terns for these individuals on the items they had access before should be different

from the data patterns for items they had not seen. In the model training phase,

XGBoost can learn from these different patterns using the information in the training

data set. Once the model is trained and a tree ensemble model is developed, the

model can be used to predict the probability of outcome based on the same input fea-

tures for individuals in the test data set or for any future observation.

Training an XGBoost model is a complicated process due to the large number of

parameters that one can control during the optimization process, and there are no

straightforward guidelines. Here, some essential parameters to consider and the

approach used for the current study are briefly introduced.

� h is a learning rate parameter representing the degree of shrinkage for the leaf

weights. It can take values from 0 to 1. In the above numerical illustration, it

is assumed that h = 1. Instead, one could multiply the weights by a smaller

constant when updating the predictions at each iteration, thus yielding a

smaller improvement in the model fit rather than full optimization. This typi-

cally helps prevent overfitting.
� g is a regularization parameter functioning as a kind of Lagrangian multiplier

that controls the complexity. The higher the value is, the higher the regulariza-

tion. It can take values from 0 to N, where 0 indicates no regularization.
� a and l are the L1 and L2 regularization terms for the leaf weights, respec-

tively. These two terms function as penalization terms for the complexity of

the model.
� T is the maximum number of trees (iterations) that the algorithm continues to

develop.
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� Maximum depth is the maximum depth of a tree. The higher the value is, the

more complex the model and the higher order of interactions the model can

capture.
� hmin is the minimum sum of the second-order gradient statistics on a leaf. If

the sum of the second-order gradient statistics on a leaf becomes less than

this, the algorithm stops further partitioning. This parameter is also used to

control overfitting, and higher values prevent a model from learning relations

that might be highly specific to a particular sample.
� Maximum d step is particularly useful for classification problems when the

categories are highly imbalanced, and setting this to a finite number (e.g., 1)

helps convergence if the goal is to predict the true probability instead of rank

ordering the prediction.
� Scaling positive weights is also a parameter to help the convergence by con-

trolling the balance of positive and negative weights for unbalanced classes.

A typical suggestion is to use a value obtained by dividing the sum of the neg-

ative cases (nonflagged individuals) by the sum of the positive cases (flagged

individuals).

A typical application in machine-learning algorithms is known as ‘‘parameter tun-

ing,’’ which is a mysterious art in machine-learning practice. Each of these para-

meters can take an infinite number of values, and one can run an extensive grid

search to find the optimal combination of values for all the parameters in an ideal

world with a supercomputer. However, this is not realistic, particularly if the size of

the training data set is very large. Instead, the size of the search can be significantly

reduced and made manageable when these parameters are tuned one by one or in

pairs. Although this approach may not give the best solution, all one needs to do is

to find a combination that is good enough. This tuning procedure is implemented in

the training data set with cross-validation (e.g., 10-fold). Once the parameters are

tuned to give the best performance for the training data using cross-validation, the

final model is calibrated using the optimized values for all parameters. In the current

study, a gradual step-by-step approach is applied when tuning the parameters. At

each step, a particular parameter or a pair of parameters were tuned while fixing all

other parameters at their default values or their tuned values in a previous step. I

adopted this approach after reading suggestions on several posts written by people

who successfully used the XGBoost in practice (e.g., see Jain, 2016; Lemagnen,

2018; Zhang, 2015). The steps that were used in the parameter tuning procedure are

summarized in Table 4, and the values that were used in the final calibration of the

XGBoost models are given in Table 5.

There are two important parameters that are not considered in the current study:

sampling by rows and sampling by columns. Both parameters can take values from 0

to 1 and indicate the proportion of the data that should be used for growing trees dur-

ing the optimization process. For instance, setting both parameters to 0.7 would

mean that the algorithm will randomly select 70% of the observations (rows) and
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70% of the features (columns) in the data set at each iteration to use in order to

reduce the chance of overfitting by introducing randomness in the learning proce-

dure. However, the values for both parameters in the current study were set to 1, thus

indicating that no subsampling occurs for rows and columns and that all data are

used. This is to ensure the reproducibility of the results presented in the current arti-

cle. By tuning these two parameters, the given results in the current study could be

improved while not necessarily being able to be precisely replicated by anyone else

due to the random nature of the sampling for both the columns and rows during

model training. Therefore, these two parameters were set to 1 and not optimized. I

used the available xgboost package in R (Chen et al., 2018) for all analyses.

Results From the XGBoost Analysis

Each of the four different XGBoost models are trained using different data sets with

different sets of features, as described in Table 3. Once they are calibrated using the

tuned parameters on the training data sets, these models are used to predict the out-

come for examinees in the test data set. Since the problem in the current study is a

classification problem (0 = honest, 1 = cheater), when the XGBoost model is used to

predict the outcomes in the test data set, it computes and assigns a probability-like

score between 0 and 1 for each individual based on the pattern of input features of

these examinees. The higher this probability-like score is, the more likely the pre-

dicted outcome is 1 (the individual is flagged as a cheater). Since the assigned labels

in the test data are known for individuals, the probability-like scores can be compared

with the actual assigned binary labels to evaluate the performance of these models.

While examining the performance of these four models, the following outcome mea-

sures were used: the area under the receiver operating characteristic curve (AUROC),

the true-positive rates (power), and the positive predictive value (precision) at a cer-

tain threshold level that is determined based on a fixed level of false-positive rates.

Table 5. Parameters Used in the Final Calibration Model After the Tuning Procedure for
Each Different Data Set.

No. of

iterations (T)

Parameters

h hmin max_depth g

Max d

step l a

Scale positive

weight

Dichotomous responses 10,000 0.01 0.25 5 0 1.5 1.0 0.0 1

Nominal responses 10,000 0.01 0.60 7 0 1.0 1.0 0.0 1

Dichotomous responses +

Response time

10,000 0.01 0.00 5 0 1.0 1.5 0.0 1

Nominal responses +

Response time

10,000 0.05 1.20 3 0 0.5 0.6 0.3 1
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Table 6 shows the overall performance of these models based on AUROC. The

AUROC is conceptually a measure of how well the two classes (flagged and non-

flagged individuals in the test data) are separated based on the estimated probability-

like scores. Not surprisingly, the model that makes the use of only nominal responses

is more powerful than the model that uses only dichotomous responses. The addi-

tional contribution of the response time information to the predictive power of the

model for both dichotomous and nominal responses is very obvious and important.

When the response time information is included in the model to predict whether an

examinee in the test data set had item preknowledge, the AUROC exceeded .9, which

indicates reasonably good predictive power.

Another way to evaluate the performance of these models is to look at their true-

positive rates at certain levels of false-positive rates. As mentioned before, once the

final calibrated XGBoost models are used to predict the outcomes for the individuals

in the test data set, it computes and assigns a predicted probability-like score between

0 and 1 for each examinee. To predict the designated class, users have to decide the

cutoff score to be used. For instance, Figure 5 shows the predicted probability-like

scores for all candidates in the test data set (N = 656) for one of these models and

three hypothetical cutoff scores (horizontal lines in the plot). The true-positive rate

would be the number of black triangles above the horizontal line divided by 17,

which is the total number of candidates flagged by the testing agency in the test data

set (assumed to be the fraudulent test takers). The false-positive rate would be the

number of gray circles above the horizontal line divided by 656, which is the number

of candidates not flagged by the testing agency (assumed to be the honest test takers)

in the test data set. The cutoff score choice depends on how conservative one would

prefer to be to avoid falsely identified honest examinees, while identifying as many

as possible as true fraudulent test takers. In most of the studies in the test security lit-

erature, researchers considered false-positive rates of 0.01 and 0.05 while evaluating

the performance of traditional statistical indices. Therefore, the cutoff levels such

that the false-positive rate would be as close to 0.01 and 0.05 were identified for each

model and then the outcome measures were computed at these cutoff scores to com-

pare the four different XGBoost models. These numbers are presented in Table 7.

The XGBoost model that uses the nominal responses and response time information

successfully identified 10 and 13 candidates out of the 17 candidates previously

Table 6. The Predictive Performance of Four XGBoost Models on the Test Data Set Based
on Area Under the Receiver Operating Characteristic Curve (AUROC).

AUROC

Dichotomous responses 0.636
Nominal responses 0.785
Dichotomous responses + Response time 0.914
Nominal responses + Response time 0.930
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flagged by the testing agency when the false-positive rate is 0.011 and 0.05, respec-

tively. Another measure reported in Table 7 is precision. Precision is computed as

the proportion of the number of truly identified examinees to the number of all iden-

tified individuals. Precision is important as it measures the degree of accuracy among

all identified individuals. As can be seen from Table 7, the precision was equal to

58.8% at the false-positive rate of 0.01, a level very likely to be used in practice.

Interpretation of the XGBoost Predictions

A common concern of using methods such as XGBoost in practice is their black-box

nature. The results of these tree ensemble models can be easily explained and inter-

preted when the model has a small number of trees and each tree has a small depth,

such as the one used for the numerical illustration in this article. However, as the

number of trees and/or the depth of trees increases, the model becomes so complex

that it is very difficult to explain why a certain outcome is produced as a result of the

input features. This black-box nature of these models can bring many challenges with

regard to describing the outcome of these models to people who are affected or to

legal entities. That being said, the readers should keep in mind that there are some

efforts to make the results of these models more interpretable (Foster, 2017), and

there may be more tools made available for practitioners in the future. In this section,

I provide some examples of how to visualize the results from XGBoost to get a better

understanding of its predictions using the xgboostExplainer package in R.

Table 7. True-Positive Rates of Four XGBoost Models on the Test Data Set at Two Different
Levels of False-Positive Rates (0.01 and 0.05).

Model
Cutoff
score

No. of
falsely identified

examinees
(false-positive rate)

No. of
truly identified

examinees
(true-positive rate) Precision

False-positive rate of 0.01
Dichotomous responses 0.053 7 (1.1%) 4 (23.5%) 36.3%
Nominal responses 0.052 7 (1.1%) 6 (35.3%) 46.1%
Dichotomous responses +
Response time

0.043 7 (1.1%) 7 (41.1%) 50.0%

Nominal responses +
Response time

0.078 7 (1.1%) 10 (58.8%) 58.8%

False-positive rate of 0.05
Dichotomous responses 0.010 32 (5.0%) 5 (29.4%) 13.5%
Nominal responses 0.021 32 (5.0%) 8 (47.0%) 20.0%
Dichotomous responses +
Response time

0.014 32 (5.0%) 12 (70.5%) 35.3%

Nominal responses +
Response time

0.032 32 (5.0%) 13 (76.5%) 28.8%
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After fitting an XGBoost model, the first thing one can look at is the relative

importance of features in the predictive model. Suppose one considers the most suc-

cessful model that used both response time and nominal item responses as predictive

features. Note that there were 1,265 features in this model as a result of one hot

encoding of 253 items with four nominal categories and a response time variable for

each of 253 items. Figure 6 provides the most important 15 features in this model.

On the x-axis of Figure 6, importance score indicates how valuable a feature is in the

construction of boosted trees within the model. The importance score is calculated

for a single tree by the amount that each attribute split point improves the perfor-

mance (as measured by gain weighted by the number of observations in each leaf)

and then averaged across all trees within the model. On the y-axis, there are labels

for features. For instance, the most important feature turns out to be the response

time for Item 58 in Form B (B58.RT), and the second most important feature is the

response time for Item 30 in Form A (A30.RT). This plot is important as it helps

contextualize why a certain individual’s predicted probability is high. For instance,

the model predicted a probability of 0.804 for Examinee 84 to have item preknow-

ledge. Suppose one wants to understand why Examinee 84 has a high probability of

item preknowledge. Figure 7 provides a breakdown of this prediction into the impact

of each individual feature on the logit scale. The first bar is the intercept displaying

the logit value of 23.71 with a corresponding probability of 0.024. The second bar

indicates that the base prediction changes by 1.28 based on the response time of

Examinee 84 on Item 58 in Form B and the new prediction is now 22.43 with a

Figure 5. The predicted probability-like score from an XGBoost model for candidates
flagged and nonflagged by the testing agency.
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corresponding probability of 0.081. Similarly, the third bar indicates that the predic-

tion changes by 0.6 based on the response time of Examinee 84 on Item 145 in Form

A and the new prediction becomes 21.83 with a corresponding probability of 0.138.

This continues until each feature makes a negative or positive contribution to the pre-

diction based on Examinee 84’s response data, and the final prediction for Examinee

84 is 1.41 corresponding to a probability of 0.804.

Notice that the short response time on Items 4, 58, and 96 in Form B and Items

67, 81, 145, and 159 in Form A makes a positive contribution that increases the prob-

ability, while long response time on Items 14 and 22 in Form B and Item 114 in

Form A makes a negative contribution that decreases the probability. It is no coinci-

dence that most of these features can actually be seen in Figure 6 among the most

important 15 features. Only features with an absolute impact larger than .2 are dis-

played in Figure 7 for the sake of simplicity. The collective contribution of all other

features is displayed as ‘‘other’’ on the x-axis. In addition, one can even show how a

certain value of a feature affects the logit as shown in Figure 8 for Item 58 in Form

B. Each point in Figure 8 is an examinee in the test data set. The x-axis represents

the response time of the examinees in the test data set for Item 58 in Form B and the

y-axis represents how much the predicted logit changes for each data point. This kind

Figure 6. The most important 15 features from the predictive model that used both
response time and nominal item responses as features.
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Figure 7. Breakdown of model prediction for Examinee 84 into the impact of each
individual feature on the logit scale.

Figure 8. The relationship between the response time for Item 58 in Form B and the
change in logit.
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of plotting can help better understand how the model works in general and how and

why a certain predicted value is computed for a particular examinee.

Results From Alternative Methods

In this section, the results from more traditional person-fit statistics were provided to

identify the individuals with potential item preknowledge in the test data set.

Particularly, two item response theory (IRT)–based person-fit indices were consid-

ered, one based on the response time (Sinharay, 2018) and the other based on the

item responses (de la Torre & Deng, 2008). Sinharay (2018) recently proposed a

new person-fit statistic based on van der Linden’s (2006) lognormal response time

model. In this model, it is assumed that the conditional distribution of the log of

response times is normal.

ln Tij

� �
jti;N bj � ti,

1

aj


 �
, ð12Þ

where ti is the latent working speed parameter of the ith person, and bj and aj are

the time intensity and time discrimination parameters for the jth item, respectively.

Given the known item parameters, van der Linden (2006) showed that the maximum

likelihood estimate of ti can be obtained by

t̂i =

P
j a2

j bj � ln(Tij)
� �
P

j a2
j

: ð13Þ

Sinharay (2018) derived and showed that the sum of the residuals,
P

j

r2
ij, has a chi-

squared distribution with J 2 1 degrees of freedom, where the residual term for the

ith person on the jth item is defined as

rij = aj ln(Tij)� bj + ti

� �
: ð14Þ

To compute this statistic for the individuals in the test data set, the response time

model in Equation (12) was first fit to the training data set, and time intensity and

time discrimination parameters were estimated using Stan (Stan Development Team,

2018). Then, the maximum likelihood estimates for all individuals in the test data set

were estimated based on Equation (13) given the estimated item parameters and the

sum of the squared residuals were computed for each individual.

A procedure to imitate supervised learning was used for the person-fit index to

make a fair comparison with XGBoost. In this procedure, a threshold value for the

sum of the squared residuals was identified such that the proportion of false posi-

tives (Type I error rate) is equal to 0.01. This threshold value was computed as

195.2. There were eight individuals out of 656 in the test data set above this thresh-

old, and only one of them was flagged by the testing agency. These results yielded

Zopluoglu 953



a false-positive rate of 0.011, a true-positive rate of 0.059, and a precision of

0.125.

Another popular person-fit statistic is the standardized log likelihood of a response

vector (lz; Drasgow, Levine, & Williams, 1985) for the IRT models. The lz statistic is

computed as

lz =
l0 � E(l0)

s(l0)
, ð15Þ

where l0 is the observed log likelihood of a response vector, and E(l0) and s(l0)are its

expected value and standard error, respectively. These elements are equal to

l0 = l(X ju) =
XK

k = 1

Xk lnPk(u) + (1� Xk)ln(1� Pk(u)ð Þ, ð16Þ

E(l0) = l(X ju) =
XK

k = 1

Pk(u)lnPk(u) + (1� Pk(u))ln(1� Pk(u)ð Þ, ð17Þ

and

s2(l0) = l(X ju) =
XK

k = 1

Pk(u) 1� Pk(u)ð Þ ln
Pk(u)

1� Pk(u)


 �2

, ð18Þ

respectively, where Xk is the observed response for the kth item for an examinee, and

Pk(u) is the probability of a correct response for the kth item for the examinee with

ability u. The true ability u is typically replaced by its estimate (û) in these calcula-

tions. de la Torre and Deng (2008) proposed a modified procedure by correcting û

for unreliability and adjusting the corresponding reference distribution by construct-

ing an empirical null distribution through simulation. Although this modified proce-

dure seems to be computationally laborious, the results indicated better control of the

Type I error rates and improved power when the modified lz (lz
*) was used for detect-

ing cheaters. The item parameters were first estimated by fitting the one-parameter

logistic IRT model to the training data set, and then the modified lz statistic and its

associated p value were computed for each individual in the test data set using the

procedure described by de la Torre and Deng (2008). A similar procedure to imitate

a supervised learning was used to make a fair comparison with XGBoost. First, a cut-

off p value was computed such that the proportion of false positives is equal to 0.01.

This cutoff p value was computed as 0.002. There were six individuals out of 656 in

the test data set with a p value below this cutoff, and none of them were flagged by

the testing agency. These results yielded a false-positive rate of 0.009, a true-positive

rate of 0, and a precision of 0.
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Discussion

As the use of computerized (adaptive) testing is increasing, a small group of exami-

nees can take a test at frequent adjacent intervals, and this can cause issues regarding

the security of any testing program. Securing the item bank is crucial to maintaining

the integrity of test scores. Many test programs are likely to take preventive measures

such as controlling the item exposure rate and retiring a certain number of items after

a certain amount of time or exposure. However, regardless of how many preventive

measures are being taken, there may be occasions where there is a need to screen the

item response data for potential test fraud, particularly for item preknowledge. The

current study contributes to the growing literature about statistical methods to iden-

tify the examinees with potential item preknowledge by demonstrating the use of a

recently developed machine-learning algorithm, XGBoost, on a real data set known

to include examinees who engaged in fraudulent test behavior by potentially illegally

obtaining test content before the exam. The results are promising and indicate that

XGBoost can be a successful tool for classifying the honest and fraudulent test

takers with item preknowledge. The classification performance of the XGBoost

models as measured by AUROC is reasonably good ( . .9) for the models where

the response time information is included along with item responses as predictive

features.

A critical feature of the machine-learning algorithms such as XGBoost is that they

can handle a large amount of data in a very effective manner. In the current study,

only the response time and item responses were considered as predictive input fea-

tures when training the model. More quantitative and qualitative information such as

gender, ethnicity, country, test center, age, whether or not an examinee is taking the

test first time, and the number of times an examinee had taken the test before can be

included in these models along with the response time and item responses. Test com-

panies can consider any information that they think is valuable to identify the exami-

nees with item preknowledge, and this information would potentially improve the

performance of these models even more. In the current study, variables other than

item responses and response time were not considered because there has been some

debate about whether these trained machine-learning models may be reflective of

societal bias and human prejudices (e.g., for some discussion of these issues, see

Baer & Kamalnath, 2017; Kh, 2018; Knight, 2017; Rosso, 2018; Stephen, 2018).

Therefore, it would be essential to be cautious before introducing demographic vari-

ables into these models as predictive features.

It should also be noted that the application in the current study might have

restricted use in practice. XGBoost is a supervised learning algorithm that requires

training data with known outcome labels (honest test takers vs. fraudulent test

takers). To train an XGBoost model, a testing company would need a data set includ-

ing examinees known to have item preknowledge and examinees known to be honest

test takers. Then, this XGBoost model can be used to predict a probability-like score

for future examinees who are administered the same set of items or a subset of the

items. However, on many occasions, test companies do not have such a data set. It is
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necessary to think of different ways of obtaining a training data set. One idea may be

to fit the hierarchical IRT model (van der Linden, 2007) to the data set under investi-

gation, simulate a hypothetical data set with item responses and response times based

on the hierarchical IRT model, and then mimic fraudulent response behavior (e.g.,

item preknowledge) for some examinees on some items in this hypothetical data set.

Then, this hypothetical data set with the embedded fraudulent test behavior that is

based on the same item parameters from the data set under investigation can be used

for training a model. However, the success of such a model trained with a hypotheti-

cal data set will be highly dependent on how realistic the simulated fraudulent test

behavior in the hypothetical data set is and how it reflects what may have been hap-

pening in the reality under investigation. Another potential approach may be genera-

tive adversarial networks (GANs) from machine-learning literature. One of the

applications of GANs is realistic data generation especially in fields where real data

are scarce. GANs can learn to mimic any distribution of data and can be used to cre-

ate worlds similar to our own in domains such as images, music, speech, and prose.

Regardless, there is a variety of different ways to continue studying and exploring the

use of XGBoost and other machine-learning algorithms in the field of test security.

Appendix

Training XGBoost model and predicting the outcome for the data set with nominal

responses and response time
# Load the following libraries for the analysis

require(xgboost)
require(pROC)

# Import Train and Test datasets

train\- read.csv(‘‘train.csv’’)
test \- read.csv(‘‘test.csv’’)

for(i in 1:1266) { train[,i] = as.numeric(train[,i])}

for(i in 1:1266) { test[,i] = as.numeric(test[,i])}

dtrain\- xgb.DMatrix(data = data.matrix(train[,1:1265]),label=train$Flagged)
dtest \- xgb.DMatrix(data = data.matrix(test[,1:1265]),label=test$Flagged)

# Train the model

watchlist\- list(train=dtrain, test=dtest)

bst\- xgb.train(data=dtrain,
nround = 10000,
eta = .05,
min_child_weight = 1.2,
max_depth = 3,
gamma = 0,
max_delta_step=.5,
subsample = 1,
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colsample_bytree = 1,
lambda =.6,
alpha =0.3,
scale_pos_weight =1,
num_parallel_tree = 1,
nthread = 1,
watchlist=watchlist,
objective = ‘‘binary:logistic’’,
eval_metric=‘‘rmse’’,predict=TRUE,
early.stop.round = 1000,
seed = 123)

# Predict the outcome on the test dataset

test$prob\- predict(bst,dtest)

# Create the plot for predicted scores
# for flagged and unflagged examinees

plot(test$prob,
pch=ifelse(test$Flagged==0,1,17),
col=ifelse(test$Flagged==0,’’gray’’,’’black’’),
xlab=‘‘‘‘,
ylab=‘‘Predicted Probability-like Score’’,
main = ‘‘‘‘)

legend(‘‘topleft’’,
c(‘‘Flagged by Testing Agency (N=17)’’,’’Not Flagged by Testing Agency (N=639)’’),
pch=c(17,1),

col=c(‘‘black’’,’’gray’’))

# AUC estimate

auc(test$Flagged,test$prob)

# Determine the thresholds for the false positive rates of 0.05 and 0.01

th = quantile(test[test$Flagged==0,]$prob,c(.95,.99))
th

# Compute the True Positive Rates for the cut-off scores

a = table(test$Flagged,test$prob.th[1])
a
a[1,2]/sum(a[1,])
a[2,2]/sum(a[2,])

a = table(test$Flagged,test$prob.th[2])
a
a[1,2]/sum(a[1,])
a[2,2]/sum(a[2,])
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Note

1. Note that the original XGBoost algorithm also uses a form of L1 regularization by adding

the term ajjwjj1 when computing . This is not included here because it was not mentioned

in the original paper by Chen and Guestrin (2016). However, it can be seen in the source

code the algorithm is implemented (https://github.com/dmlc/xgboost/blob/master/src/tree/

param.h, see Line 43-44, Lines 135-138, Lines 295-301).
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