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ABSTRACT: Enzyme immobilization is an essential pre-
requisite for biocatalysis. In this context, emulsion provides an
excellent template for assembling enzymes at the oil−water
interface. A microfluidic approach has been adopted to
produce oil-in-water-type emulsions stabilized by gold nano-
particle−catalase conjugates. In situ ring-opening polymer-
ization of the oil phase produces solid core enzyme-
immobilized microcapsules (MCs). These resultant MCs
exhibited a Km value of 42 mM and shows 1.1-fold higher
activity compared to free enzymes. Finally, the robust MCs
showed excellent recyclability, which can meet the demand of
industrial biotechnological applications.

1. INTRODUCTION

Exploration for suitable catalysts has been expanded
significantly from the last few decades because of the increasing
demand of environmental friendly production in the industry.
In this quest, biocatalysts have much to offer because of their
ease of production, substrate specificity, and green chemistry.
Progress in biotechnology has paved the way for the
widespread application of biocatalysis in industrial organic
synthesis.1−3 An example includes the production of high-
fructose corn syrup by xylose isomerase that catalyzes the
isomerization of D-glucose to D-fructose.4 In another instance,
peroxidases are used to catalyze the synthesis of phenolic resins
and replaced the use of conventional phenol formaldehydes.5

Despite the great potential of enzymes, their industrial
applications have been restricted because of long-term
stability; for example, denaturation or inactivation of enzymes
by heat, proteolysis, or action of organic solvents. Furthermore,
the recovery of enzymes and difficulty in reusability limit their
application in the industry.6

To overcome these limitations, enzymes have been
immobilized on various solid supports. Immobilization
provides certain benefits(i) storage and operational stability,
(ii) easy and safer handling of enzymes, (iii) easy recovery, and
(iv) reusability. In many instances, immobilization of enzymes
also improves activity, selectivity, specificity, and resistance to
inhibitors.7−11 Various methods have been developed in past
decades to immobilize enzymes and can be summarized into
following categoriessupport binding,12,13 cross-linking,14 and
entrapment.15 In the case of carrier binding, it is important to
have optimum interactions of enzymes with the support
materials. Strong binding prevents enzyme leaching from

carrier surfaces, but often times, it irreversibly deactivates the
enzymes. On the other hand, weak binding cannot prevent
enzyme leaching from the support materials during the
operational process, thus hampering the reusability.16 An
optimum binding can be achieved by self-assembly between
enzymes and carriers through noncovalent interactions.17 To
date, a variety of synthetic scaffolds have been used for enzyme
immobilization through noncovalent interactions including
nanoparticles,18 gels,19 macromolecules,20,21 and nanoreac-
tors.22 In this context, emulsion is an attractive candidate for
enzyme immobilization because of its ease of preparation and
large-scale production. Recent studies by Rotello et al. have
shown that emulsions can be used as a template for enzyme
immobilization at the oil−water interface.23 A thin layer of
enzyme−nanoparticle conjugates was assembled on the
emulsion droplets, and the resulting microcapsules (MCs)
showed high enzymatic activity. In their next approach,
solidification of the core was achieved by cross-linking the
oil phase to attain reusability.24 In both cases, synthesis of
polydisperse emulsions limits their practical applications
because many important properties such as enzyme kinetics,
rheology, interparticle interactions, and shelf life largely
depend on the size of the emulsions.
We address the limitation using a microfluidic device which

can produce monodisperse emulsion in a simple way with high
frequency. Herein, we report one-step fabrication of enzyme-
immobilized polymeric MCs on a microfluidic platform. The
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micron-size oil-in-water emulsions were stabilized by gold
nanoparticle−catalase conjugates, and simultaneously, the
solidification of the oil core was achieved by the polymer-
ization reaction using the Grubbs catalyst and dicyclopenta-
diene (DCPD) monomer. Later, we have demonstrated that
the solidified scaffold retained high enzymatic activity as well as
provided excellent recyclability. To the best of our knowledge,
this is the first microfluidic synthesis of enzyme−nanoparticle-
stabilized solid core MCs.

2. EXPERIMENTAL SECTION

2.1. Materials. Gold(III) chloride trihydrate (≥99.9% trace
metal basis), catalase from bovine liver (lyophilized powder,
2000−5000 units/mg protein), Grubbs catalyst, DCPD, and
1,2,4-trichlorobenzene (TCB) were purchased from Sigma-
Aldrich. Hydrogen peroxide (H2O2, 30%) was purchased from
RANKEM. Millipore water (18.2 MΩ·cm at 25 °C) was used
in all experiments. SU-8 2035 photoresist and developer
solution were purchased from MicroChem for fabricating the
silica master with designed microchannels. The polydimethyl-
siloxane (PDMS; SYLGARD 184) package was purchased
from Dow corning corporation and used for fabricating the
microfluidic chip.
2.2. Synthesis of Trimethylammonium Tetraethylene

Glycol-Functionalized Au Nanoparticles. Cationic Au
nanoparticles were prepared through a two-step process
reported earlier.25 In brief, 100 mg of thiol ligand, that is,
HS-C11-tetra(ethylene glycol)lyated trimethylammonium bro-
mide, in 3 mL of dichloromethane was added to 20 mg of
hydrophobic Au nanoparticles dispersed in 15 mL of
dichloromethane. The resulting mixture was stirred in an oil
bath at 35 °C for 2 days forming black precipitation. The black
precipitate was then washed three times with dichloromethane
and finally dissolved in Millipore water.
2.3. Microfluidic Device Fabrication. Microfluidic

devices were fabricated using soft lithography.26 First, the
master template was designed using AutoCAD software. Then,
a negative photoresist SU-8 2035 was spin-coated onto a 4 × 4
silicon wafer, and the design was transferred on the wafers
using maskless photolithography (X-pert SF100, Intelligent

Instruments). The next step involves dipping the surface in the
propylene glycol monomethyl ether acetate developer and
rinsing by 2-propanol. Finally, the patterned surface was baked
for 2 min to stabilize the structure. Figure S1a represents the
structure of the master on silicon wafers. Next, PDMS 184
SYLGARD with a curing agent in a ratio of 10:1(w/w) was
poured onto the wafer and degassed in a vacuum desiccator
until the trapped air bubbles disappeared. The unit was placed
in an oven at 60 °C for 1 h. Once cured, the microchannels
imprinted on the PDMS mold were peeled from the wafer and
punched with a biopsy punch with a diameter of 2.5 mm.
PDMS was then plasma-bonded to a glass slide with oxygen
plasma treatment in a radio frequency plasma cleaner system
for 60 s. Finally, the device was placed in a 70 °C oven for 5 h
and cooled to room temperature for further use.

2.4. Preparation of Polymerized Core Catalytic MCs.
MCs were produced in a flow focusing microchannel device
with one horizontal-Y inlet and one vertical-Y inlet channel.
The channel dimension was 100 μm in depth and 200 μm in
width with an aqueous solution flow rate of 200 μL/min and
an oil-phase flow rate of 50 μL/min, respectively. Figure S1b
represents a typical microfluidic channel used for this
experiment. The aqueous phases consisted of the solution of
cationic Au NPs (2 μM) and catalase (2 μM) in phosphate-
buffered saline (PBS) buffer (pH 7.4). The oil phase
comprised a Grubbs catalyst in toluene (1 mg/mL) and
DCPD in TCB (2:3 v/v). The flow was controlled by syringe
infusion pumps (Harvard Apparatus, catalog no. 703009) and
was connected to the device by silicone tubing (inner diameter,
0.8 mm). Figure S2 represents the size distribution of enzyme-
immobilized MCs.

2.5. Activity Assay. The enzymatic activity of the MCs
was determined spectrophotometrically by using the hydrogen
peroxide decomposition assay. In brief, 900 μL of hydrogen
peroxide (10 mM) was added to solid core MCs, and
decomposition was monitored for 80 s at 240 nm. The same
experiment was also performed with the free enzyme. The
assays were implemented in triplicates, and averages were
reported.

Figure 1. (a) Chemical structure of (i) trimethylammonium tetraethyleneglycol-functionalized Au nanoparticles, (ii) catalase from bovine liver,
(iii) first-generation Grubbs catalyst, and (iv) DCPD monomer. (b) Schematic illustration for one-step synthesis of enzyme−nanoparticle-
immobilized MCs using a microfluidic device. (c) Cross-sectional view of polymer core oil-in-water emulsions stabilized by enzyme−nanoparticle
conjugates at the interface.
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3. RESULTS AND DISCUSSION

The enzyme-immobilized MCs were consisted of enzymes,
nanoparticles, and a polymerized oil core. Catalase from bovine
liver was used as an enzyme component with a negative zeta
potential of −6.1 ± 0.24 at pH 7.4 (pI = 5.4). The
trimethylammonium tetraethyleneglycol-functionalized Au
nanoparticles (Figure 1a) of approx. 4 nm of diameter with a
positive zeta potential of 50.86 ± 3.20 were synthesized in
order to bind with enzymes as well as to minimize the
denaturation of enzymes upon binding.27 The solidified oil
core was prepared via ring-opening metathesis polymerization
by mixing the DCPD monomer with the first-generation
Grubbs catalyst in TCB oil. To stabilize the oil-in-water
emulsions, formation of low-valent enzyme−nanoparticle
conjugates is highly desired.23 The reduction in interfacial
tension by low-valent conjugates was evaluated using pendant
drop tensiometry, with TCB as the major phase and water as
the minor phase (Figure 2a). In a typical experiment, a drop of
aqueous phase was introduced in TCB solution using a J-
shaped needle and the interfacial tension between two fluids
was measured for 1200 s.28 The interfacial tension of the
water−TCB biphasic system was 49 mN/m. A small reduction
in interfacial tension was observed when Au NPs (39 mN/m)
were used as a surfactant to stabilize the emulsions. The lowest
interfacial tension (12.4 mN/m) was observed for enzymes
because of their low surface charges and their ability to form a
viscoelastic film around the emulsion, providing stability to the
droplets. Unlike NPs, the enzyme−NP conjugates exhibited a
very low interfacial tension of 16.7 mN/m because of the
formation of low-valent conjugates.
In the current study, the enzyme−nanoparticle complex was

formed inside the microchannel of a microfluidic device. The
double Y-shaped microfluidic channel was fabricated in PDMS
following a traditional soft lithography technique. The width
and depth of the microchannel are 200 and 100 μm,
respectively. It consisted of a horizontal-Y-shaped inlet, a
vertical-Y-shaped inlet, and an outlet channel. The aqueous
solution of Au NPs and enzyme (PBS buffer, pH 7.4) was
passed through two arms of the horizontal-Y inlet channel with
a flow rate of 200 μL/min. Simultaneously, TCB oil was passed
through both arms of the vertical-Y inlet channel with a flow
rate of 50 μL/min. We hypothesized that upon injection of
nanoparticles and the enzyme through the horizontal-Y
channel, low-valent complexes were formed through electro-
static interaction.29 As the oil phase sheared off the aqueous
phase, the oil droplets were formed and concomitantly the low-

valent complexes migrated to the oil−water interface,
providing stabilization to the MCs.
The freshly prepared MCs exhibited a high level of

monodispersity when examined under an optical microscope),
as indicated by the narrow size distribution with a mean
diameter of 742 ± 3.0 μm (Figure 2b). No MCs were formed
when only NPs were passed through the horizontal Y-inlet
channel. It proves that the formation of the low-valent
enzyme−nanoparticle complex is the key for stabilization of
emulsions. Figure 2c shows Nile red (oil soluble)-encapsulated
fluorescent MCs which confirm the formation of oil-in-water-
type emulsions. To investigate the nanoscopic structure, the
emulsions were drop-cast on a transmission electron
microscopy (TEM) grid, and the low-resolution TEM image
(Figure 2d) showed the formation of a wrinkle upon drying of
MCs. It revealed a membrane-like structure which was possibly
formed because of extended cross-linking of nanoparticle−
enzyme conjugates at the oil−water interface. The high-
resolution TEM image in Figure 2e confirmed that the
membrane is composed of closely packed Au nanoparticles.
After establishing the protocol, the next step was to

synthesize the oil-in-water emulsions with a polymerized oil
core. It was achieved by a co-flowing Grubbs catalyst and
DCPD monomer in two different arms of the vertical-Y-shaped
channel simultaneously. Upon mixing, polymerization occurred
within 5 min, and polymerized MCs were collected in the
Eppendorf tube for further characterization. The optical
microscopy (OM) image in Figure 3a represented the

Figure 2. (a) Pendant drop tensiometry measurement of interfacial tension of the aqueous droplet in TCB. The interfacial assembly of Au NPs,
enzymes, and enzyme−NP conjugates reduced the surface tension. Microscopy images of emulsions. (b) OM image of enzyme−NP-stabilized oil-
in-water emulsion, (c) fluorescence microscopy image of Nile dye-encapsulated oil-in-water emulsion, (d) low-resolution TEM image of the
emulsion, and (e) high-resolution TEM image of the emulsion shell.

Figure 3. (a) OM image of the MCs with a polymerized core. (b)
Fluorescence microscopy image of MCs. (c) Scanning electron
microscopy (SEM) image of dried polymerized core MCs. (d) Cross-
sectional SEM image of polymerized MCs.
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formation of monodisperse MCs with an average diameter of
580 ± 10.0 μm (see the Supporting Information, Figure S2). It
is clearly evident that the size of the polymerized MCs was
reduced upon polymerization of the liquid core compared to
nonpolymerized MCs. The fluorescence microscopy image
(Figure 3b) showed the encapsulation of Nile red dye inside
the solid core. The polymerized MCs were also examined
under a scanning electron microscope, and the representative
image in Figure 3c demonstrated the uniform size particles
with an average diameter of 562 ± 12 μm. When a single MC
was sectioned into pieces and examined under a scanning
electron microscope, it clearly revealed the formation of a solid
core upon polymerization (Figure 3d). The polymerization
was further confirmed by IR spectroscopy as shown in Figure
4. The peak at 1570 and 1613 cm−1 is attributed to the CC

stretching frequency of the monomer, but a new broad peak
appeared at 1700 cm−1 corresponded to the CC stretching
frequency of the ring-opened product. Similarly, the C−H
stretching frequency shifted from 939 to 971 cm−1 in the
polymerized product.
Next, the assessment of catalytic activity of enzyme-

immobilized polymerized MCs was carried out using a
standard protocol. The immobilization of catalase on MCs
was quantified by the Coomassie (Bradford) protein assay, and
the amount of residual enzymes in the supernatant solution
was measured after the formation of MCs. The catalytic
performance of catalase immobilized on MCs was determined
by the decomposition of hydrogen peroxide in an aqueous
medium.30 The activity of immobilized catalase was 1.1-fold
higher compared to free enzymes in solution, with no
detectable autodegradation of hydrogen peroxide (Figure

5a,b). This observation clearly demonstrated that the polymer-
ization of the oil core has no adverse effect on catalytic activity.
The slight enhancement in enzymatic activity might be due to
the presence of hydrophobic environment.31 We have further
evaluated the decomposition kinetics of H2O2 in the presence
of polymerized MCs. Initial rates of H2O2 decomposition (see
the Supporting Information, Figure S3) were obtained for
various concentrations of H2O2 solution for MCs. Km, that is,
affinity of the enzymes toward the substrate, was found to be
42.39 mM from the Lineweaver−Burk plot (Figure 5c) for the
enzyme-immobilized solid core MCs prepared by the micro-
fluidic device.
The important feature of any heterogeneous catalyst is its

ability to perform catalysis in multiple cycles without much
compromising the activity. The recyclability of the MCs was
examined through repeated identical enzymatic activity assays.
As shown in Figure 6, the microparticles exhibited >95%

retention of activity even after eight reaction cycles. The
polymerization of the oil core trapped by the enzyme−
nanoparticle conjugates at the emulsion interface and prevents
the enzyme leaching during repetitive cycles.

4. CONCLUSIONS
In summary, we have presented a microfluidic approach that
enables one-step fabrication of enzyme-immobilized MCs
through core polymerization of enzyme-nanoparticle-stabilized
emulsions. The resulting monodisperse MCs retained their
activity after multiple catalytic cycles. The extension of this
approach for various biocatalytic applications is currently being
explored.

Figure 4. IR spectrum of DCPD and enzyme-immobilized
polymerized MCs.

Figure 5. (a) Activity assay of enzyme-immobilized MCs and free enzymes in hydrogen peroxide (10 mM). (b) Relative activity of free enzymes vs
immobilized enzymes. (c) Lineweaver−Burk plot of the enzyme-immobilized MC rate as a function of hydrogen peroxide concentration.

Figure 6. Reusability test of the MCs. The activity remains similar
after eight catalytic cycles.
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