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 Sloppy, But Acceptable, Control of Biological Movement: 
Algorithm-Based Stabilization of Subspaces in Abundant Spaces 

by 
Vladimir M. Akulin1,2,3, Frederic Carlier1, Stanislaw Solnik4,5, Mark L. Latash6,7 

In this paper, we develop an algorithm-based approach to the problem of stability of salient performance 
variables during motor actions. This problem is reformulated as stabilizing subspaces within high-dimensional spaces of 
elemental variables. Our main idea is that the central nervous system does not solve such problems precisely, but uses 
simple rules that achieve success with sufficiently high probability. Such rules can be applied even if the central nervous 
system has no knowledge of the mapping between small changes in elemental variables and changes in performance. We 
start with a rule ”Act on the most nimble” (the AMN-rule), when changes in the local feedback-based loops occur for 
the most unstable variable first. This rule is implemented in a task-specific coordinate system that facilitates local 
control. Further, we develop and supplement the AMN-rule to improve the success rate. Predictions of implementation 
of such algorithms are compared with the results of experiments performed on the human hand with both visual and 
mechanical perturbations. We conclude that physical, including neural, processes associated with everyday motor 
actions can be adequately represented with a set of simple algorithms leading to sloppy, but satisfactory, solutions. 
Finally, we discuss implications of this scheme for motor learning and motor disorders. 

Key words: algorithm, stability, reference frame, human movement, finger action. 
 
Introduction 

Many functions of the central nervous 
system (CNS) can be described as combining 
numerous elements (we will refer to their output as 
elemental variables) into relatively low-dimensional 
sets related to such functions as cognition, 
perception, and action. The existence of such low-
dimensional sets ensures stability of percepts, 
thoughts, and actions despite the variable 
contributions from the elements (sensory receptors, 
neurons, motor units, etc.) and changes in the 
environment (reviewed in Latash, 2017, 2018). Here, 
we try to offer a mathematical description of 
processes that could bring about such stability  
 

 
using, as an example, the production of voluntary 
movements by redundant (Bernstein, 1967) (or 
abundant, Gelfand and Latash, 1998; Latash, 2012) 
sets of elements. Our approach is based on an 
intuitive, simple, algorithmic principle.  

Consider the following example as an 
illustration of our goal and approach. Imagine a 
walking person who suddenly steps on a slippery 
surface. The slip is typically followed by a very 
complex pattern of movements of all body parts 
resulting in restoring balance in a large percentage 
of cases. Each time a slip occurs the movement 
pattern looks unique. We assume here that such  
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highly variable patterns emerge as a result of a 
relatively simple algorithm applied to cases with 
varying initial conditions at the slip.  

Our approach may be seen as an extension 
of the idea that biological systems are reasonably 
sloppy (Latash, 2008; Loeb, 2012; Maszczyk, 2018). 
This means that biological systems do not solve 
problems exactly, but rather use simple rules that 
produce solutions that are good enough (e.g., 
successful most of the time). We start with a 
requirement that the algorithm should rely, as much 
as possible, on local actions, that is, on actions that 
change a neural variable xi based on the actual and 
previous values xi (t < tactual) of this very variable, 
whereas other variables do not affect the decision. If 
such a purely local algorithm is incapable of 
providing good stability properties, our second 
principle is that the number of nonlocal 
interventions should be kept at a minimum. In this 
study, we start with a rule ”Act on the most nimble” 
(the AMN-rule), when changes in the local variables 
occur for the most unstable variable first.  

In the simplest mathematical setting, the 
equilibrium control problem can be seen as a linear 
requirement 𝑌௝ = ∑ 𝛼௝,௜ே௜ୀଵ 𝑥௜ imposed on N elemental 
variables xi (with i running from 1 to N) describing 
states of a redundant set of effectors; the desired 
state of the object is defined by Yj (with j running 
from 1 to M). The task is to find a proper feedback 
matrix βi,j, which via the equation 

 𝑥ሶ௜ = ∑ 𝛽௝,௜ெ௝ୀଵ (𝑦௝ − 𝑌௝) (1) 
 
links time derivatives 𝑥ሶ௜ and deviations δy௝ = (𝑦௝ −𝑌௝) of the instantaneous coordinates yj of the 
controlled object from their desired values Yj. The 
goal is to construct a simple algorithm producing 
such a feedback matrix βi,j for an arbitrary task 
matrix αi,j. Formally this implies that the spectrum 
{ωm} of the eigenvalues of the matrix 𝜔௝௝ᇱ =∑ 𝛼௝,௜ே௜ୀଵ 𝛽௜,௝ᇱ ultimately becomes stable (with 
negative real parts) even when the task matrix αi,j 
experiences perturbations δαj,i. 

Related issues have been addressed in the 
fields of control theory, in particular, optimal 
control (e.g., Diedrichsen et al., 2010; Todorov and 
Jordan, 2002). We would like to emphasize a few 
major differences:  

First, our approach is not based on 
computing a value of a cost function, but on a  
 

 
simple rule; 

Second, we focus on stability of action 
rather than on purposeful transitions to another 
state as in most earlier studies; and 

Third, we expect the CNS to solve unknown 
motor tasks with unknown random Jacobian (J) matrices 
mapping elemental variables onto performance 
variables. This is in contrast to more traditional 
approaches where the CNS is assumed to know J. 
This is arguably the most important difference from 
earlier approaches. It is intuitively attractive: when 
we learn to use new tools, from a tennis racket to a 
car, we develop sets of rules leading to success 
without trying to compute all the new 
transformations from muscle action to motion of the 
racket or the car in space. 

At this stage, we try to introduce and 
develop concepts and functional principles that may 
be realized by the CNS without an attempt to map 
them on specific neural processes. We assume, 
however, that these principles reflect physical 
(including physiological) processes within the body, 
and the mathematical descriptions developed in the 
paper are reflections of those processes. We do not 
assume that any of such computations actually take 
place within the body.  

The paper takes the reader through a 
sequence of steps from simple versions of control to 
a version able to solve the problem of stabilizing 
subspaces in spaces of any dimensionality. We start 
by discussing the mathematical complexity of the 
problem, and specific requirements for solving this 
problem by an analog computer, which we see as a 
continuous dynamical system subject to a specific 
control - a model for the CNS at this stage. At this 
step, we introduce local algorithms and a new basis 
of neural variables where such local algorithms can 
be implemented. We present these algorithms in an 
order, showing that putting some structure in the 
matrix β improves the success rate. We start with 
the simplest algorithms and then refine them and 
explore how much improvement in the success rate 
is gained.  

We show that a random choice of the 
feedback has extremely low chances of yielding the 
required stabilization. We next show that using the 
AMN-rule can increase the chances of stabilization 
considerably. The results are further improved 
when the feedback matrix is not random, but is 
tailored in a specific way with elemental variables 
organized into ”generations” including variables  
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with velocities of the same order of magnitude. 
Further, we introduce the possibility of non-local 
actions, where each next generation is allowed to 
inhibit activity of previous generations. This is 
followed by analysis of the case where nimbleness 
of each generation is a tunable parameter. This 
allows finding a solution for a system of any 
dimensionality.  

The next topic we discuss is the relations 
between noise and stability, since experimentally 
observed noise covariation allows revealing the 
structure of eigenvectors and their change in search 
for stability. For the purposes of the current study, 
we use ”noise” to imply spontaneous variance in 
physiological signals that is not related to the 
explicit task and is not induced by an identifiable 
external perturbation. We understand that this 
definition may attribute to noise physiologically 
meaningful processes. We conclude the theoretical 
part by considering a realization of the control 
algorithm in a hierarchical system, showing the 
importance of the feedback damping, and 
proposing a model of self-adjusting damping, which 
yields time dependencies of the state variables 
resembling ones observed experimentally. At the 
end, we present results of two experiments 
illustrating feasibility of our approach. 

Control Complexity and Reference 
Frames 

Finding a solution of M linear equations 𝑌௝ = ∑ 𝛼௝,௜ே௜ୀଵ 𝑥௜ for N>M variables is a problem of 

polynomial complexity M2. It is sufficient to take 
the first M columns of the M × N matrix αi,j and 
invert the resulting M × M square matrix, provided 
it is not degenerate. Solutions of the problem for the 
first M variables {x1. . . xM} form an M-dimensional 
subspace SM in the entire N-dimensional space, 
parametrized by the remaining (N–M) variables 
{xM+1. . . xN}. Construction of the inverse matrix 𝛼௜,௝–ଵ 
based on the sequential i,j finding of its line vectors 
complemented by orthonormalization of these 
vectors with those found earlier indeed implies the 
number of operations on the order of M2.  

To solve this problem, one should construct 
and implement a dynamic process that has the M-
dimensional subspace SM as a stable stationary 
manifold, as suggested by Eq.1. Here, we are going 
to propose several strategies of constructing 
heuristic algorithms that result in the dynamic  
 

 
stabilization of subspaces defined by systems of M 
equations for N>M variables.  

The most general, Kolmogorov, complexity 
relies on the number of operations required to reach 
an objective. However, sometimes, e.g. in quantum 
informatics, different basic operations may have 
different complexity and, therefore, they can be 
ranked in a certain way. For example, a local 
operation, which involves just one variable, and 
produces a change in the contribution of the 
variable to the overall dynamics based only on the 
history of evolution of that very variable, is 
considered as the simplest one, while non-local 
operations producing a change in a variable 
depending on the history of other variables, are 
considered as complex. Our notion of simplicity 
implies locality, although at a later stage one can 
construct a corresponding cost function, if needed.  

We will use terms ”local” and “bi-local” to 
address situations when a prescribed action on one 
chosen element depends only on the state of either 
that element or on another chosen element, 
respectively. Nonlinearity of the analog computer 
generated by such a local and/or bi-local algorithm 
may not result in universal stability of the 
dynamics. In other words, for some initial 
conditions the system may reach a stationary 
solution, while for other initial conditions it 
becomes unstable. In such situations, we will use 
the success rate R(N, M) of the algorithm as its 
quality characteristic.  

Within this paper, we distinguish three 
types of bases. First, there is a measurement basis 
formed by experimentally accessible variables, for 
example positions, forces, or muscle activations. 
Second, there is another, task-dependent, basis 
formed by so-called modes, that are linear 
combinations of the former variables independently 
fluctuating under the action of noise and coinciding 
with the eigenvectors of the aforementioned matrix 
ωj,j′ (cf. Danion et al., 2003). The third basis is the 
reference system relying on the variables xi 
responsible for the control over the body state. To 
our knowledge, this coordinate system has not been 
defined previously. Each of the coordinates of the 
third system represents combinations of modes that 
are task specific and relatively quickly adjustable to 
changes in the external conditions of task execution, 
for example to changes in stability requirements 
(e.g. Asaka et al., 2008). This basis comprises the 
variables that experience local control.  
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The Control Structure 

In the first approximation, we formulate the 
problem in terms of linear algebra: to solve the 
problem of subspace stabilization one takes an 
arbitrary M × N matrix αෝ that imposes conditions of 
Eq. (1) with Yi = 0 defining the required subspace SM 
= {yi = 0}. The task is to find a N × M linear feedback 
matrix β෠  that prescribes modifications of {xi} leading 
towards SM by determining the derivatives 

 ௗௗ௧ 𝑥௜ = ∑ 𝛽௜,௝ெ௝ୀଵ 𝑦௝   (2) 
 As  y௝ = ∑ 𝛼௝,௞௞ 𝑥௞, dynamics of the system 
is described by the equation ௗௗ௧ 𝑥௜ = ∑ ∑ 𝛽௜,௝ெ௞ୀଵ 𝛼௝,௞ே௝ୀଵ 𝑥௞  (3) 
 
and a stable M-dimensional subspace SM exists if all 
the non-zero eigenvalues of the degenerate square 
N × N matrix Ω෡ =  𝛽መ𝛼ො of the rank M have negative 
real parts. The probability to satisfy this 
requirement for randomly chosen either αෝ or both αෝ 
and β෠  is low, and in order to stabilize SM with a high 
enough success rate R(N,M) for a chosen αෝ, a 
randomly or systematically chosen linear feedback 
matrix β෠(଴) may need to be modified β෠(଴)  →  β෠(௡). A 
sequence of such modifications can be continued 
according to a certain algorithm until stability is 
achieved. 

Each elementary act of the modification 
algorithm relies on three main factors: (i) the 
variable xi ; (ii) the history of its dynamics, which is 
described by a nonlinear functional zi({xi (t)}) that 
governs the action on the target variable xi(t) and/or 
another variable xf(t); and (iii) type of the action 
itself β෠(௡) = 𝑮෡ β෠(௡ାଵ), implementing the modification β෠(௡)  →  β෠(௡ାଵ) specified by a matrix 𝑮෡ (൛𝑥௙ൟ, {𝑥௜}). 
Once the source and the target variables coincide, 
we encounter a so-called local algorithm when the 
matrix 𝑮෡ becomes diagonal.  

Note a major difference between the 
proposed procedure for the stability search and 
typical approaches from the control theory toward 
stabilization of object dynamics. Successful control 
over an object implies that a random deviation of its 
trajectory in the configuration space from the 
prescribed one is corrected by feedbacks based on a 
properly constructed monodromy matrix governing 
the dynamics in the vicinity of the trajectory; the 
motion is stable once all eigenvalues of this matrix 
have negative real parts. Our stability search  
 

 
algorithm does not require that all eigenvalues of 
the monodromy matrix, which in our case is Ω෡ = β෠ αෝ, always have negative real parts, but Ω෡ may 
acquire this property as a result of sequential 
changes β෠(௡) = 𝑮෡ β෠(௡ିଵ). Moreover, in contrast to the 
well-designed control over an object, the proposed 
stability search algorithm does not always succeed 
to find the required Ω෡.  
No algorithm 

For the sake of presentation simplicity, 
assume that the desired subspace SM corresponds to 
zero values of all the variables y௜∈{ଵ,ெ}. Non-zero 
values of these variables will thus be employed as 
entries into the feedback loop given by a rectangular 
N × M matrix β௜,௝, such that Eq. (2) holds, while Eq. 
(3) describes the system dynamics. For a generic 
rectangular randomly chosen matrix α௜,௝ and the 
randomly chosen feedback matrix β௜,௞ the success 
rate R(N,M) found numerically scales 
approximately as 2–M, which is consistent with the 
assumption that all non-zero eigenvalues of the 
matrix 𝛀෡  may have both negative and positive real 
parts with equal probability and, roughly speaking, 
different eigenvalues are statistically independent 
one each other.  
Local algorithm for random feedback 
 We begin with the simplest case of a local 
algorithm assuming that the feedback sign for a 
given xi changes when a positive quantity 
 𝑧௜(𝑡) = ׬ (ௗ௫೔ௗ௧ )ଶ𝑑𝑡௧଴   (4) 
 
exceeds a threshold value Z. This represents an 
example of the AMN control where, as a first guess, 
we consider the integral of the rates squared as a 
reflection of nimbleness. Further, we consider other 
strictly positive functions (see Eqs. 27 and 28). 
Formally, local control implies that Eq. (3) is 
modified by the presence of a sign function: 
 ௗௗ௧ 𝑥௜ = 𝐺௜௜ ∑ ∑ 𝛽௜,௞ெ௞ୀଵ 𝛼௞,௝ே௝ୀଵ 𝑥௝ (5) 𝐺௜௜ = 𝑠𝑖𝑔𝑛(𝑍 − 𝑧௜(𝑡))  (6) 
  

This strategy yields the 100% success rate 
for the case of M = 1, that is the case when matrix 𝛽መ𝛼ො 
has the rank 1. In this case the dynamic equation 

 ௗௗ௧ 𝑦ଵ = ∑ 𝛼ଵ,௜ே௜ୀଵ 𝐺௜௜𝛽௜,ଵ𝑦ଵ  (7) 
 
for the variable 𝑦ଵ = ∑ 𝛼ଵ,௜ே௜ୀଵ 𝑥௜ determines time  
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dependencies of all the other variables 𝑥௜ = 𝛽௜,ଵ𝑦ଵ. 
Indeed, if the quantity 𝜔 = ∑ 𝛼ଵ,௜ே௜ୀଵ 𝛽௜,ଵ is positive, 
y1 exponentially increases in time. This means that 
the variable xi corresponding to the largest |βi,1| 
produces the highest zi(t) and at some moment of 
time, when this quantity exceeds the threshold 
value Z, the sign of sign(Z – zi(t))βi,1 changes. For a 
positive α1,i, this results in a decrease of ω and 
slowing-down of the instability. For a random 
matrix αෝ, however, the matrix element α1,i can 
equally be negative or positive; in the latter case, the 
change of the sign results in the instability 
speeding-up. In this case, the exponential growth of 
the variables xi continues, and after a while, the next 
biggest |βi,1| leads to a change of the corresponding 
feedback sign. Changes of the signs continue till ω 
becomes negative, and the dynamic process 
becomes stable. This will definitely occur for the 
matrix β෠  of the rank 1, but not necessarily for higher 
ranks. Numerical search shows that the success rate 
Rlocal drops with increasing rank M. The results of 
the numerical simulation are shown in Table 1. 
Compared to the random feedback (Rrandom), the 
success rate is higher for all M and N. It drops 
rather quickly with M while being relatively less 
sensitive to N (compare the R values for M = 4 and 
N = 15, 40, and 60). In the simulation, each element 
of αk,j was taken as independently distributed with 
zero mean and dispersion equal to unity. The βi,k 
matrix had the same statistics of its elements. We 
also checked that displacement of the Gaussian 
distribution for the elements of βi,k did not have a 
significant effect as long as it was on the order of 
unity. The number of trials varied with the 
dimensionality of the dynamical system such that 
the statistical error was less than 5%. 
Tailored linear feedback in the local algorithm 
 Within the general case of Eq. (5), we 
replace the random feedback matrix βi,j with another 
one, constructed to augment the success rate for 
higher M: 
 

𝛽መ =  ⎝⎜
⎛ 𝑣⃗    0    0   …     00   𝑞𝑣⃗   0   …    00   0   𝑞ଶ𝑣⃗  …    0… … … … … …0  0  0 …  𝑞ெ–ଵ𝑣⃗⎠⎟

⎞
  (8) 

 
where 𝑣⃗ is a column vector of the size of the ratio 
N/M, which we assume integer. Here q is a small 
parameter, which suggests that at each time scale  ~𝑞ି௡ one has to deal with a subspace of rank 1  
 

 
using the same algorithm as for the case M = 1; the 
subspaces corresponding to larger matrix elements  ~𝑞ି௞ழ௡ are assumed to have been stabilized earlier. 
Tailored linear feedback, generations, and non-local 
algorithm 

The idea of bi-local control allows excluding 
undesired changes in the feedback sign determined 
at an earlier stage of control that may be induced at 
a later stage. In the feedback matrix Eq. (8), we 
identify parts that belong to different generations, 
corresponding to different orders of the parameter 
q. The first generation corresponds to q0, and the 
last, the most recent, generation to qM-1. Each 
generation accounts for the feedback at the 
corresponding time scale. The idea of the control 
algorithm is that changing the sign of a variable 
belonging to a generation blocks changes of the 
signs of the variables belonging to all former 
generations. The term generation means that some of 
variables are faster than others, such that, at each 
time scale, the control occurs mainly in a subspace 
of a smaller dimension (close to one).  

Formally, the bi-local control implies that 
the set of Eqs. (4, 5) is modified by the presence of 
step factors Θ(Z − zi) at the derivatives for the 
variables zi corresponding to ”generations” that 
happened after that of i, and reads  

 ௗௗ௧ 𝑧௜(𝑡) = ൣ∏ Θ൫𝑍 − 𝑧௥(𝑡)൯௥ழ௜ ൧ (ௗ௫೔ௗ௧ )ଶ  (9) 𝑑𝑑𝑡 𝑥௜ = 𝐺௜௜ ෍ ෍ 𝛽௜,௞ே
௝ୀଵ

ே
௝ୀଵ 𝛼௞,௝𝑥௝ 𝐺௜௜ = 𝑠𝑖𝑔𝑛(𝑍 − 𝑧௜ (𝑡)) 

 
where Θ(x) is the step function. The first equation 
shows that the functionals zi(t) defining the 
feedback signs are no longer local, since dynamic 
equations ruling these quantities depend not only 
on the corresponding local squared velocities, but 
also on the values of the functionals for other 
variables. This construction further improves the 
success rate. The results of the numerical 
simulations for the success rate Rgenerations are shown 
in the last line of Table 1 for q = 0.07-0.1. Figure 1 
presents an example of the time dependent 
deviations y1…4(t) for successful control with N = 4, 
M = 40, and q = 0.4, where the abrupt changes of the 
dependencies reflect changes of the feedback sign.  
Feedback strength exploring algorithm  

Simple local algorithms discussed above 
solve the problem with some probability, which is 
less than unity for more than one dimension. We  
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have identified an algorithm, though of higher 
complexity, which solves the multi-dimensional 
problem with the probability one. The bi-local 
algorithm can be modified to gain the 100% success 
rate if instead of the fixed power factors qn entering 
Eq. (8) one allows sequential choosing of these 
feedback strength parameters for each next 
generation. In a sense, this algorithm implies 
learning, that is, given a task αෝ, it modifies the 
feedback matrix β෠  once the sign-changing algorithm 
does not lead to subspace stabilization. More 
specifically, given q < 1, similar to Eq. (8), in  

 

𝛽መ =  ⎝⎜
⎛ 𝑣⃗    0    0   …     00   𝑞௣భ𝑣⃗   0   …    00   0     𝑞௣మ𝑣⃗  …    0… … … … … …0  0  0 …  𝑞௣ಾషభ𝑣⃗⎠⎟

⎞
 (10) 

 
the power parameters p1 ≤ p2 ≤ pM-1 have to be chosen 
such that the subspace {yi = 0} is stable.  

One begins with all pi = ∞, that is, with a 
one-dimensional subspace, which can always be 
made stable by proper choice of signs. Next, one 
sets p1 to zero, and starts to implement the sign 
changing algorithm in the subspace of the second 
diagonal cell of Eq. (10). If this algorithm does not 
lead to a stable subspace of the dimension 2, one 
increases p1 by unity, and implements the sign-
changing algorithm for the second cell once again. 
Repeating this procedure leads to finding p1 such 
that the two-dimensional space becomes stable. 
Next, one turns to the third cell of the matrix in Eq. 
(10), puts p2 = p1, and implements the sign-changing 
algorithm complemented by augmentation of p2 by 
unity, if needed, until the third dimension gets 
stable. The procedure is sequentially applied to all 
the cells of Eq. (10) and yields a feedback matrix β෠  
stabilizing the required subspace of the dimension 
M for the chosen αෝ.  

Figure 2 shows the average eigenvalues and 
their mean absolute value deviation from the 
average calculated with the help of this algorithm. 
Both these quantities are exponentially decreasing 
with the eigenvalue number. These results are not 
shown in Table 1, since all the entries are unities. 

This result means that, theoretically, the 
local control based on changing the feedback sign 
for the most nimble variable (the AMN-rule) 
combined with a simple non-local control solves the 
feedback search problem for any dimension M. We 
think, however, that this solution may be too  
 

 
complex. Besides, based on everyday experience 
that shows failures at motor tasks, we believe that 
algorithms used for stabilization of actions are 
imperfect (leading to success in less than 100% of 
cases), similar to the ones described above based on 
the AMN-rule. 

Feedback Structure and Susceptibility to 
Noise 

We now address the question: what 
happens in the presence of noise with the 
convergence towards the stabilized subspace 
ensured by the feedback matrix  

 Ω௜,௝ = 𝑠𝑖𝑔𝑛௜(𝑡 → ∞) ∑ 𝛽௜,௞ெ௞ୀଵ 𝛼௞,௝  (11) 
 

Here 𝑠𝑖𝑔𝑛௜(𝑡 → ∞) denotes successful 
implementation of the control algorithm. To 
remind, in this context, ”noise” implies external 
task-independent actions that can be of various 
origin. More specifically, the question is: how far 
from the average positions xi(t) satisfying the 
dynamic equations can the actual variables Xi(t) = 
xi(t) + δxi(t) deviate in the presence of a time-
dependent noise ƒi(t)? This question can be 
immediately answered on the basis of the 
eigenvectors 𝒳ሬሬ⃗ ௜ of Ω௜,௝ where 𝑥⃗௜ = ∑ 𝑥௜(𝑡)௜ 𝒳ሬሬ⃗ ௜. 

Consider the dynamic equations 
 ௗௗ௧ 𝛿𝑥௜(𝑡) = 𝒮௜𝛿𝑥௜(𝑡) + 𝑓௜(𝑡) (12) 

for the deviations 𝛿𝑥௜(𝑡), where 𝒮௜ denotes 
eigenvalues of Ω෡. The solution  𝛿𝑥௜(𝑡) = ׬ 𝑒𝒮೔(௧ିఛ)𝑓௜(𝜏)𝑑𝜏௧଴  (13) 
 
of these equations in the Fourier representation 𝛿𝑥௜(𝜔) = ଵ𝒮೔ି௜ఠ 𝑓௜(𝜔) (14) 

 
suggests that the spectral noise intensity |𝑥௜(𝜔)|ଶ of 
the coefficients xi(t) is related to the spectral noise 
intensity |𝑓௜(𝜔)|ଶof ƒi(t) via the relation 
 |𝑥௜(𝜔)|ଶ = ଵ|𝒮೔ି௜ఠ|మ |𝑓௜(𝜔)|ଶ (15) 

which corresponds to the susceptibility |𝒮௜ − 𝑖𝜔|ିଶ.  
The simplest model includes random static 

forces ƒi acting on the relevant variables during a 
time interval T. In successive time intervals, these 
forces show random values. This yields: 

 |𝑓௜(𝜔)|ଶ = (௦௜௡ഘ೅మఠ் )ଶ |𝑓௜|ଶ (16) 
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Noise analysis may serve as a powerful tool 

of revealing the eigenvectors of the matrix Ωi,j in Eq. 
(11), which, via Eqs. (15, 16), also allows estimating 
the magnitudes of the corresponding eigenvalues. 
One needs to calculate the noise covariance matrix 
Cij from the experimentally observed deviations of 
the time-varying measured values from their 
average values in the stationary regime. 
Eigenvectors 𝒳ሬሬ⃗ ௜ of this matrix should coincide with 
those of Ω෡(t) = G෡(t → ∞)β෠αෝ. Assume that 
physical/physiological processes can be adequately 
expressed with an algorithm similar to the one 
described in the paper. In that case, the noise 
analysis may connect those physical/physiological 
processes with algorithm modeling processes. Note 
that for N > M, the non-zero eigenvalues of the N × 
N matrix Ω෡ = G෡β෠αෝ coincide with M eigenvalues of 
the M × M matrix ωෝ = αෝG෡β෠. The remaining (N – M) 
eigenvalues are zeros, unless an additional 
requirement is imposed on the matrix Ω෡.  

Given a task matrix and a feedback matrix, 
there exist two subspaces in the space of the 
variables xi, the so-called uncontrolled manifold 
(UCM) (Scholz and Schöner, 1999) and its 
orthogonal complement (ORT). The ORT is the task-
specific subspace expected to show high stability, 
which implies that variance in the ORT is expected 
to be small. In the UCM, variance is generally 
expected to be large, unless there are other factors, 
outside the explicit task formulation, that keep it 
within a certain range. Not all possible 
combinations of the involved elemental variables 
are used across repetitive attempts. Such self-
imposed additional constraints may be addressed as 
perfectionism; they may reflect optimization with 
respect to a cost function (e.g., Terekhov et al., 
2010). Figure 3 illustrates the task x1 + x2 = C for 
different values of C. While all points on the slanted 
dashed lines correspond to perfect task 
performance, actual behavior shows much more 
constrained clouds of solutions that show larger 
deviations along the solution space (the UCM) 
compared to deviations along the ORT. Note that if 
the task is learned for a particular value of C, the 
solutions show robustness for other values of C.  

More formally, after a feedback matrix β෠  
stabilizing an M-dimensional subspace is found, one 
may impose additional constraints that can either be 
in the form of explicit equations or follow 
minimization of a cost function. Then a subspace is 
stabilized of a dimension M+ exceeding the  
 

 
dimensionality M of the initial task subspace. Such 
perfectionism may be viewed as a secondary task 
decreasing variance in some directions of the UCM.  

Recall the task-specific basis of variables 
along which the control is local. This basis is a 
conceptually new feature affording a simple 
structure of the control algorithm. The relation 
between the basis of modes and the control bases 
may change during the process of stability search: 
application of the local control G෡ leads to a change 
of ωෝ = αෝG෡β෠, that is, the way the task requirement αෝ 
is mapped onto the feedback action. Thereby it may 
affect both the mode basis and the magnitude of the 
corresponding mode susceptibilities. There exists 
such a case, where the mode susceptibilities |𝒮௜ − 𝑖𝜔|ିଶ vary without changing the 
corresponding eigenvectors 𝒳ሬሬ⃗ ௜ of Ω෡ . Then, the 
linear combinations 𝒳ሬሬ⃗ ௜ and 𝒳ሬሬ⃗௝ of the laboratory 
basis variables remain statistically independent, and 
only variance of one mode starts to exceed variance 
of the other. One can call this regime mode crossing, 
similarly to the phenomenon of term crossing in 
Quantum Mechanics (Akulin, 2014). In a general 
case when, along with a change of the 
susceptibilities, the local changes equally result in 
the emergence of an appreciable covariance 
between the modes, one encounters the 
phenomenon of so-called avoid crossing, when 
formerly the larger mode susceptibility, though 
approaching in magnitude the other one, remains 
always larger, while both eigenvectors 𝒳ሬሬ⃗ ௜ and 𝒳ሬሬ⃗௝ 
corresponding to these modes rotate. 

Algorithm for Hierarchical Feedback 
Earlier, we showed that ”tailored” feedback 

improves the ability of the system to find stability 
with the help of the AMN-rule as compared to 
random feedback. How can such a structure of β෠  
appear in nature? One of possible answers is 
hierarchical architecture of the feedback channels 
that we discuss in this section. Hierarchical control 
gives an example of the stabilization search 
algorithm different from that considered earlier. We 
demonstrate that such an algorithm requires only 
local control, whereas the role of nonlocal control 
can be played by another randomly chosen linear 
feedback matrix once the current one does not yield 
stability. The idea of hierarchical control in the 
human body is very old. A comprehensive scheme 
of control with referent configurations has been 
suggested recently to be built on a hierarchical  
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principle, starting with referent coordinates for a 
few task-specific, salient variables, and resulting in 
referent length values for numerous involved 
muscles (Latash, 2010; Feldman, 2015). We also 
explore another modification - the most nimble xi 
experiences not a step change of the sign of its 
contribution, but a smooth change of the feedback 
gain as the cosine of the corresponding functional zi.  
Intrinsic instability of the hierarchical control 

In mathematical terms, the time derivative 
of a vector 𝑥⃗௡ of variables at n-th step depends on 
the variables 𝑥⃗௡ିଵ the previous step, while the 
spatial dimension Nn of each step varies. At each 
step local control may be implemented. For 
example, the corresponding set of the local control 
equations for a three-level hierarchy has the form  

 𝑦⃗ = 𝛼ො𝑥ଷ  ௗௗ௧ 𝑥ଵ௜ = (𝐺෠ଵ)௜௜(𝐴መ𝑦⃗)௜ (17) 𝑑𝑑𝑡 𝑥ଶ௜ = (𝐺෠ଶ)௜௜(𝐵෠𝑥ଵሬሬሬ⃗ )௜ 𝑑𝑑𝑡 𝑥ଷ௜ = (𝐺෠ଷ)௜௜(𝐶መ𝑥ଶሬሬሬሬ⃗ )௜ 
 
based on the diagonal matrix elements (𝐺෠௡)௜௜ =cos [𝑧௡௜(𝑡)] of the local control operators 𝐺෠௡. To 
illustrate the universality of the AMN-rule the 
cosine function is used instead of the sign function. 
If at each level n of the hierarchy, we also include 
diagonal damping matrices 𝛾ො௡ of the dimension 
given by the number Nn of the variables at this level, 
the set of equations (17) can be written as a single 
matrix equation:  
 

⎝⎜
⎛ቀ ௗௗ௧ − 𝛾ොଵቁ xሬ⃗ ଵቀ ௗௗ௧ − 𝛾ොଶቁ xሬ⃗ ଶቀ ௗௗ௧ − 𝛾ොଷቁ xሬ⃗ ଷ⎠⎟

⎞ = ቌ𝐺෠ଵ   0   00   𝐺෠ଶ   00   0   𝐺෠ଷቍ ൭0   0   𝐴መ𝛼ො𝐵෠   0   00   𝐶መ   0 ൱ ቌxሬ⃗ ଵxሬ⃗ ଶxሬ⃗ ଷቍ (18) 

 
Alternatively, the local control operation may be 
applied not to susceptibility of a given variable to 
external factors, but to efficiency with which this 
variable acts on the variables of the next generation. 
In such a case, two operators on the left-hand side of 
Eq. (18) have to be interchanged: 

⎝⎜
⎛ቀ ௗௗ௧ − 𝛾ොଵቁ xሬ⃗ ଵቀ ௗௗ௧ − 𝛾ොଶቁ xሬ⃗ ଶቀ ௗௗ௧ − 𝛾ොଷቁ xሬ⃗ ଷ⎠⎟

⎞ = ൭0   0   𝐴መ𝛼ො𝐵෠   0   00   𝐶መ   0 ൱ ቌ𝐺෠ଵ   0   00   𝐺෠ଶ   00   0   𝐺෠ଷቍ ቌxሬ⃗ ଵxሬ⃗ ଶxሬ⃗ ଷቍ 19) 

 
Though offering a simple way to address 

many variables at once, hierarchical control may 
add instability. Therefore, the intermediate steps  
 

 
have to be damped in contrast to the one-step 
control of Eq. (9). In particular, note that for zero 
damping, 𝛾ො௜ = 0, even the simplest two-level control 
becomes unstable, and this is always the case for a 
higher number of the control levels. The origin of 
this instability is rather simple and can be illustrated 
with an example of a three-level control scheme, 
with just one variable at each level, when Eq. (18) 
takes the form: 

 ௗௗ௧ 𝑥ଵ = 𝐺ଵ𝐴𝛼𝑥ଷ  (20) 𝑑𝑑𝑡 𝑥ଶ = 𝐺ଶ𝐵𝑥ଵ 𝑑𝑑𝑡 𝑥ଷ = 𝐺ଷ𝐶𝑥ଶ 

corresponding to the characteristic equation  𝜆ଷ = 𝐺ଷ𝐶𝐺ଶ𝐵𝐺ଵ𝐴𝛼 (21) 
 
It is evident that, for any non-zero complex 

number on the right-hand side of this equation, the 
phase factors of the three roots of the cubic equation 
are equally distributed on the unit circle in the 
complex plane such that at least one of them has a 
positive real part. The same structure of the root 
distribution persists in a higher-dimensional case 
with l-level control, since the characteristic equation 
in this case has the form 

 Det|λ௟ − G෡௟ … G෡ଷC෠G෡ଶB෡G෡ଵA෡αෝ| = 0 (22) 
 
and hence the roots of the characteristic polynomial 
given by l-th roots of the eigenvalues of the matrix G෡௟ … G෡ଷC෠G෡ଶB෡G෡ଵA෡αෝ are also uniformly distributed on 
the corresponding circles in the complex plane, with 
radii given by the eigenvalues moduli.  

We thus come to a conclusion that damping 
is indispensable for stable hierarchical control. At the 
same time, all 𝛾ො௜ = 0 imply a trivial asymptotic 
situation of completely damped motion at all levels 
for all tasks. Therefore, in order to have a reasonable 
model, we have to assume vanishing of the 
damping rates at only one hierarchical level of 
control. Presumably, this level should have 
maximum dimensionality Nn.  
Action of feedback loops 

Stability can be improved by introducing 
intermediate feedback loops to the net feedback 
loop as shown in Figure 4. Adjusting gain in the 
feedback loops controls stability at each hierarchical 
level. This effect can be modeled when the damping 
parameters γi are taken depending on the local 
parameters zi, increasing, for instance, as 
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 𝛾௜ = Γ௜ + 𝜇௜𝑧௜  (23) 
 
for the variables at each damped level. The 
parameters γi are positive for all, but one, 
hierarchical levels, where they may remain zero, in 
order to avoid the trivial case of complete damping 
of all variables. For the local control of the damping, 
the dependence zi(t) can be given by a differential 
equation relating the positive rate of increase ௗௗ௧ 𝑧௜ 
with an even power ƒ of either the corresponding 
variable 
 ௗௗ௧ 𝑧௜ = 𝜖(𝑥௜)ƒ  (24) 
 
or the corresponding variable velocity,  
 ௗௗ௧ 𝑧௜ = 𝜖 ቀௗ௫೔ௗ௧ ቁƒ

  (25) 
 
where 𝜖 < 1 is a numerical parameter, which may 
depend on the hierarchy level number and the 
variable number. Eq. (25) illustrates that the AMN-
rule does not require a specific functional form of 
the action at the most nimble variable, but describes 
choice of such an action.  

A typical time dependence 𝑦⃗(𝑡) for the 
successfully stabilized subspace is shown in Figure 
5 (the top plot). Due to smoothness of the local 
feedback control, cos(0.1zi) instead of sign(10π − zi), 
the curves do not show cusp-like changes of the 
derivatives, typical of those in Figure 1. An example 
of unsuccessful control is shown in the bottom plot 
in Figure 5.  

The rather high success rate of hierarchical 
local control suggests a strategy, which can replace 
non-local control. Once the current random cast of 
the feedback matrices does not yield stabilization 
during a run, one may take another random cast in 
the course of the same run, and in case of failure, 
repeat the attempt again and again. For example, 
the probability 0.3 implies that just a few (4 − 5) 
such casts during a run are required in order to 
stabilize a 5-dimensional subspace. Changing the 
linear feedback matrices when local control turns 
out to be inefficient may be considered as a 
replacement for non-local control discussed in the 
previous section. Compare this strategy with a 
typical sequence of corrective actions by a person 
slipping on ice. 

Note, that dimensionality at each step of the 
hierarchy does not need to be larger than the  
 

 
dimensionality at the previous step. We illustrate 
this by an example of control over a two-
dimensional space y exerted by a three-level 
hierarchical feedback with locally changing 
parameters. The first-level variables 𝑥⃗ଵ belong to a 
space of the dimension N1 = 4; here the damping 
increases according to Eqs. (23, 25) with ε = 0.2, ƒ = 
2, and μi = 0.1. The next level of the hierarchy 
comprises the variables 𝑥⃗ଶ that belong to a space of 
the dimension N2 = 16 without damping. The last 
level comprises variables 𝑥⃗ଷ in a four-dimensional 
space N3 = 4 with strong constant damping Γi = 5. 
The success rate for these parameters was R ≃ 0.8. 
Examples of unsuccessful and successful search of 
stability are shown in Figure 6 for the components 
of the vectors y, 𝑥⃗ଶ, and 𝑥⃗ଷ. Note that, in cases of 
successful control, the components of the high-
dimensional vectors tend to asymptote with time; in 
contrast, in cases of unsuccessful control, they keep 
changing.  

Experiments with the Human Hand 
Two experiments were performed to 

illustrate one of the central ideas of the suggested 
scheme and check some of its predictions. We used 
the task of accurate force (F) and moment-of-force 
(M) production by the four fingers of the dominant 
hand. Two types of perturbations were used. First, 
we used mechanical perturbations applied to a 
finger that led to actual changes in F and M. Second, 
we modified the visual feedback leading to changes 
in the mapping between the finger forces and the 
feedback shown on the monitor. The experimental 
procedures were approved by the Office for 
Research Protections at the Pennsylvania State 
University.  
 Experiments with mechanical perturbations 

The main goal of the first experiment was to 
provide support for the principle ”act on the most 
nimble one” (AMN). Mechanical perturbations 
(lifting and lowering a finger) were applied during 
the performance of an accurate multi-finger steady-
state task. According to our scheme, quick reactions 
to these perturbations are based on the AMN rule. 
We checked this prediction by comparing the 
directions of changes in the finger force space 
produced by unexpected perturbations of the 
steady-state force patterns (described as a vector ƒ⃗௉,௜) 
with the first identifiable correction produced by the 
subjects (a correction vector, ƒ⃗஼,௜). We expected the 
angle between ƒ⃗஼,௜ and  ƒ⃗௉,௜ to be small, smaller than  
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the angle between  ƒ⃗஼,௜ and  ƒ⃗ா,௜ (the finger mode 
vector defined by enslaving). 

Methods 
The “inverse piano” setup 

Eight young, healthy subjects took part in 
the experiment (four males). They were right-
handed, had no specialized hand training (such as 
playing musical instruments) and no injury to the 
hand. An ”inverse piano” apparatus was used to 
record finger forces and produce perturbations. The 
apparatus had four force sensors placed on posts 
powered by linear motors, which could induce 
motion of the sensors along their vertical axes (for 
details see Martin et al., 2011). Force data were 
collected using PCB model 208C01 single-axis 
piezoelectric force transducers (PCB Piezotronics, 
Depew, NY). The signals from the transducers were 
sent to individual PCB 484B11 signal conditioners – 
one conditioner per sensor – and then digitized at 1 
kHz using a 16-bit National Instruments PCI-6052E 
analog-to-digital card (National Instruments Corp., 
Austin, TX). Each sensor was mounted on a Linmot 
PS01-23x80 linear actuator (Linmot, Spreitenbach, 
Switzerland). Each actuator could be moved 
independently of the others by means of a Linmot 
E400-AT four-channel servo drive. Data collection, 
visual feedback to the subject, and actuator control 
were all managed using a single program running 
in a National Instruments LabView environment. 
Visual feedback was provided by means of a 19” 
monitor placed 0.8 m from the subject. The feedback 
cursor (a white dot) represented F along the vertical 
axis and M in a frontal plane computed with respect 
to a horizontal axis passing through the midpoint 
between the middle and ring fingers along the 
horizontal axis. Pronation efforts led to leftward 
deviation of the cursor. An initial target was placed 
on the screen (a white circle) corresponding to the 
total force of 10 N and zero total moment.  

The experiment involved two parts: 
voluntary force–pulse production and reacting to 
unexpected perturbations. Prior to each trial, the 
subjects placed the fingers on the centers of the 
sensors and relaxed; sensor reading was set to zero. 
As a result, the sensors measured only active 
pressing forces. Then, a verbal command was given 
to the subject and data acquisition started. The 
subject was given 2 s to place the cursor over the 
initial target. During the force–pulse trials, the 
subjects were asked to produce a force pulse from  
 

 
the initial target in less than 1 s by an instructed 
finger (Figure 7A). Each finger performed three 
pulse trials in random order. In perturbation trials, 
one of the sensors unexpectedly moved up by 1 cm 
over 0.5 s. This led to an increase in total force 
(Figure 7B), while changes in the moment of force 
depended on what finger was perturbed. The 
subject was instructed to return to the target 
position as quickly as possible. Each finger was 
perturbed once per trial, with 10-s rest periods 
between each of the three repetitions. Perturbation 
conditions were block–randomized between fingers 
with 1-min rest periods between blocks.  

From the force-pulse trials we identified the 
onsets of the F decrease phase (Figure 7A). From the 
perturbation trials we identified the onsets of two 
time intervals: one corresponding to the 
perturbation-induced F change and the other 
corresponding to the earliest corrective action by the 
subjects. Each time interval contained 200 ms of the 
four–dimensional finger force (I, M, L, and R) data. 
Further, for each time interval, principal component 
analysis (PCA) based on the co-variation matrix was 
used to compute the first eigenvector in the finger 
force space, accounting for most variance across the 
time samples, for each subject and each trial 
separately.  

Therefore, for each perturbation trial we 
obtained two eigenvectors in the finger force space. 
We will refer to these vectors as ƒ⃗௉,௜ (force vector 
during the perturbation applied to the i-th finger), 
and  ƒ⃗஼,௜  (force vector during the earliest correction 
in trials with perturbations applied to the i-th 
finger). For each finger, from the three force–pulses 
trials we computed an average vector ƒ⃗ா,௜ (force 
vector during the downward phase of force change 
in the force-pulse task by the i-th finger). Note that 
this vector reflected the unintentional force 
production by non-task fingers of the hand 
(enslaving; Zatsiorsky et al., 2000).  

Finally, we computed the angles αPE 
between ƒ⃗௉,௜ and  ƒ⃗ா,௜ and αPC between  ƒ⃗௉,௜ and  ƒ⃗஼,௜ for 
each finger and each subject separately (averaged 
across repetitions). The Harrison-Kanji test, which is 
an analog of two-factor ANOVA for circular data, 
was used with FINGER (4 levels: I, M, R, L) and 
ANGLE (2 levels, αPE and αPC) as factors. All data 
analyses were performed in Matlab (MathWorks, 
Inc.) software.  

 
 
 



by Vladimir M. Akulin et al. 59 

© Editorial Committee of Journal of Human Kinetics 

 
Results 
Acting along the most nimble direction 

During the force–pulse trials, forces of all 
four fingers changed in parallel (Figure 7A). There 
was a larger change in the force produced by the 
instructed finger and smaller changes in the other 
finger forces. These patterns are typical of enslaving 
reported in earlier studies (Danion et al., 2003; 
Zatsiorsky et al., 2000). PCA applied to the finger 
force changes produced similar results over the 
phase of force increase and the phase of force drop. 
The first PC accounted for over 95% of the total 
variance in the finger force space in all subjects and 
for each finger as the instructed finger. The loading 
factors at individual finger forces were of the same 
sign.  

In trials with perturbations, lifting a force 
sensor produced a complex pattern of changes in 
the forces produced by all four fingers (as in Martin 
et al., 2011). Typically, the force of the perturbed 
finger increased, while the forces produced by the 
three other fingers dropped (Figure 7B). The total 
force increased. The first PC accounted for over 95% 
of the total variance in the finger force space in all 
subjects and for each finger as the perturbed finger. 
The loading factors at different fingers were of 
different signs; most commonly, the perturbed 
finger loading was of a different sign as compared 
to the loading of the three other fingers.  

Overall, the angle between the vectors of 
perturbation and correction (αPC) was consistently 
lower than the one between the vectors of 
perturbation and voluntary force drop (αPE). Figure 
8 shows averaged (across subjects) values of the two 
angles with standard error bars. The gross average 

of αPE was 15.9 ± 6.6◦, while it was 25.9 ± 10.9◦ for 
αPE. The Harrison-Kanji test confirmed the main 
effect of angle (F[1,56] = 19.17; p < 0.0001) without 
other effects. 

Overall, these results confirm one of the 
predictions of the AMN-rule. Indeed, the first 
reactions to perturbations in the four-dimensional 
finger force space showed relatively small angles 
with the vector reflecting the effects of the 
perturbation on finger forces. We would like to 
emphasize that the first reaction was not along the 
direction of finger force (mode) that was most 
perturbed, but along a multi-dimensional 
eigenvector in the four-dimensional space that 
showed the largest instability. While sensory  
 

 
information may inform on changes in individual 
degrees of freedom (finger forces), there is no 
obvious source of such information on any 
particular eigenvector in the finger force space. 
Hence, this observation is non-trivial and we are 
unaware of feasible alternative interpretations.  
Experiments with visual feedback perturbations 

Four 6-axis force/moment sensors (Nano-17, 
ATI Industrial Automation, USA) mounted on the 
table were used to measure normal forces produced 
by the tips of the index (I), middle (M), ring (R), and 
little (L) fingers. To increase friction between the 
digits and the sensors, 320-grit sandpaper was 
placed on the contact surfaces of the sensors. The 
centers of the sensors were evenly spaced at 30 mm. 
The output signals from the sensors where digitized 
with the 16-bit resolution (PCI-6225, National 
Instrument) at 100 Hz. A LabVIEW program was 
used to provide visual feedback and store the data 
on the computer. Offline processing and analysis 
was done in Matlab.  

At the beginning, the four-dimensional 
space of the finger forces was mapped onto the two-
dimensional space of the screen according to a very 
natural rule: the vertical coordinate showed changes 
in the net resultant finger force (F), while the 
horizontal displacement showed the net moment of 
the finger forces (M). The subject was first requested 
to place the cursor into a position in the middle of 
the screen and, second, to keep it in this position at 
all times. Once this task was accomplished, the law 
according to which the deviation of the finger forces 
from the steady-state finger force values was 
mapped to the deviation of the point from the 
center of the screen was changed without the 
subject’s knowledge. The new law relating the four-
dimensional space of the force deviations with the 
two-dimensional space of the cursor deviations 
from the center point was given by a new, randomly 
chosen, 2 × 4 Jacobian matrix, J. The subjects were 
always encouraged to keep the cursor in the target 
position in the center of the screen. 
Manifestations of the feedback changes 

In some trials, the subjects were unable to 
bring the cursor into the target within 30 s (trial 
duration), while in other trials they succeeded at 
this task. Figure 9 presents an example of the time 
profiles of the finger forces (upper panel) and the 
coordinates of the point on the screen (lower panel) 
recorded during a successful trial. The overall 
stabilization success rate was R ≃ 0.55. Note a  
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qualitative similarity between the dependencies 
depicted in Figure 9 and the corresponding 
calculated dependencies illustrated in Figure 6.  

The sharp spikes and jumps on the 
experimental curves show approximately the 
moments of time when correcting actions took place 
similarly to the simulated curve in Figure 1. Though 
spikes in the simulated curves may be associated 
with the correcting actions of the feedback sign 
change, there is no formal rule allowing to identify 
such moments in the experimental data, and one 
can speak only about intuitive similarity between 
the dependencies. Since we were exploring the 
regime of searching for equilibrium in new, 
formerly unknown, conditions, we could not use 
across-trial statistical analysis, since each new trial 
corresponded to new initial and task conditions. 
Note that multiple sequential repetitions of the 
same experimental setting for the same subject 
would likely involve processes of learning and 
adaptation that are beyond the scope of questions 
addressed here. Information about the moments of 
changes of the feedback matrix can be extracted 
from the analysis of noise, since, as discussed in 
previous sections, the principle axes of the tensor 
susceptibility to noise (so-called, principle 
components) coincide with eigenvectors of the 
dynamic matrix Ω෡, and when directions of these 
axes change, the matrix Ω෡ changes as well, thus 
implying a change of the feedback matrix. 
Moreover, the larger the eigenvalue Ci of Ω෡, the 
smaller the susceptibility of the corresponding 
direction to noise, in accordance with Eq. (16).  
Analysis of the principal components of the noise 
covariance reveals feedback changes 

Human fingers are not independent force 
generators: when a person tries to press with one 
finger, other fingers of the hand show unintentional 
force increases (Kilbreath and Gandevia, 1994; Li et 
al., 1998), addressed as enslaving or lack of 
individuation (Schieber and Santello, 2004; 
Zatsiorsky et al., 2000). Enslaving patterns are 
person-specific and relatively robust; changes in 
enslaving have been reported with specialized 
practice (Slobounov et al., 2002). These patterns may 
be described as eigenvectors ƒ⃗ா,௜ = {ƒ௝}ா,௜ where i = 
{I−index; M−middle, R−ring, and L−little} stands for 
an instructed finger. Directions of ƒ⃗ா,௜ may be 
viewed as preferred directions in the space of finger 
forces when the person is trying to press with 
individual fingers. They are related as:  

 

 ƒ⃗ா,௜ = 𝑈෡ 𝑋⃗௜   (26) 
 
to the forces Xi of the individual fingers i by an 
orthogonal matrix 𝑈෡ representing rotation in the 
four-dimensional space. We assume that these 
directions may change during the search for 
stability and they manifest statistically independent 
fluctuations thus being the eigenvectors 𝜘⃗௜ of the 
deviation covariance matrix. 

Since the task was formulated in a two-
dimensional space, there should be only a two-
dimensional sub-space in the space of the finger 
forces that governs the dynamics of the point on the 
screen. This implies that only two out of four 
eigenvalues of the matrix Ω෡ differ from zero, and the 
other two vanish, unless additional constraints are 
imposed upon the system, as mentioned in previous 
sections. In the latter case, all the eigenvalues differ 
from zero, but they are decreasing exponentially, as 
it was the case for the hierarchy of nimbleness 
shown in Figure 2. This has an important 
consequence: the directions that belong to the two-
dimensional subspace relevant to feedback are less 
susceptible to noise, whereas the noisy directions 
correspond to the null-space and do not contribute 
significantly to the feedback.  

The dependence Xi(n) of the finger forces 
was captured at the sequential time points t = nτ 
separated by time intervals of τ = 10–2 s. The 
covariance matrix was extracted from the data in 
several steps. First, for each Xi(n) an average time 
dependence xi(n) = xi(t) was calculated numerically 
as: 𝑥௜(𝑡) = ∑ ௑೔(௡)௒√గ  exp [– (௧ି௡)మ௒మ ]௡  (27) 
 
where τ is chosen as a time unit, while the 
averaging is performed over a time window ∼Yτ 
with the width Y. Next, the covariance of the finger 
forces  
 𝐶௜,௝(𝑡) = ∑ ఋ௫೔(௡)ఋ௫ೕ(௡)௒√గ  exp [– (௧ି௡)మ௒మ ]௡  (28) 
 
where 𝛿𝑥௜(𝑛) = 𝑋௜(𝑛) − 𝑥௜(𝑛) was found 
numerically with the same Gaussian width Y. 

The eigenvectors of the covariance C (Eq. 
28) must coincide with the eigenvectors of the 
feedback matrix Ω (Eq. 11), and when the latter 
changes as a result of the equilibrium search 
algorithm, C must change as well. As a result of 
such a change, the eigenvectors corresponding to  
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non-zero eigenvalues rotate. Note that the rotation 
rate of an orthogonal matrix (known as the angular 
velocity vector in the 3D space) is an antisymmetric 
n × n real matrix in an n−dimensional space, given 
by the logarithmic derivative of the orthogonal 
matrix. Square root of the trace of the square of this 
matrix gives the absolute value of the angular 
velocity, and the eigenvalues correspond to the 
rotation rates along the directions given by the 
corresponding eigenvectors.  

Indeed, being a real and symmetric matrix, 
Ci,j can be set in a diagonal form by an orthogonal 
transformation given by a rotation matrix Ui,j(t) and 
its inverse matrix 𝑈௜,௝ିଵ (𝑡), such that  

 𝐶௜,௝(𝑡) = ∑  𝑈௜,௞௞ (𝑡)𝐶௞(𝑡)𝑈௞,௝ିଵ(𝑡)  (29) 
 
The eigenvalues Ck(t) provide the principle 

components of noise in the orthogonal directions of 
statistically-independent modes, while the matrix 
Ui,k(t) can be viewed as a row of column 
eigenvectors 𝜘⃗௜, relating these modes to the 
individual finger forces. All these quantities were 
found numerically from the data obtained for Ci,j(t). 
Note that the obtained orthogonal matrix Ui,k(t) 
experiences a time evolution corresponding to 
rotation in the 4-dimensional space of the finger 
forces, while the angular velocity of this rotation can 
be found as the eigenvalues of the left logarithmic 
derivative of Ui,k(t) defined as  

 
 
 

 𝑅෠(𝑡) = ଵ௜ డ௎෡డ௧  𝑈෡ିଵ   (30) 
 

The eigenvalues Ri of 𝑅෠(𝑡) are real and have 
pairwise opposite signs, such that only two real 
numbers characterize rotation in the four-
dimensional space. We calculated these quantities 
by replacing the derivative in Eq. (30) with the finite 
difference between two neighboring integer time 
points. In order to eliminate the so-called shot noise, 
which is an error-inducing influence of such a 
replacement, the calculation must be followed by 
averaging over a time interval shorter than Y. 
Figure 10 shows the results of such processing of the 
data presented in Figure 9.  

One can identify eleven rotations of the 
covariance matrix basis 𝜘⃗௜(𝑡) presumably associated 
with changes of the feedback matrix. Note that the 
highest rotation velocity does not necessarily 
produce a strong effect on the finger forces, since 
the relevant quantity corresponds to the spike area, 
representing the rotation angle. The situation has 
much in common with dynamics of so-called 
adiabatic and diabatic molecular term crossings, 
well-known in Quantum Mechanics (Akulin, 2014). 
The maximum rotation velocity corresponds to the 
time moments when two or several eigenvalues of 
the matrix have a tendency to coincide, thus 
eliminating the difference between the large noise 
typical of the null-space and small noise typical of 
the orthogonal subspace in a stationary regime.  

 
 

 
 

Table 1 
The success rate of various algorithms stabilizing  

the M-dimensional subspace of the N-dimensional space. 
M 1 2 3 4 4 4 5 

N 10 20 30 15 40 60 30 

Rrandom 0.50 0.24 0.14 – 0.06 – – 

Rlocal 1 0.77 0.46 0.17 0.160 0.154 0.06 

Rtailored 1 0.85 0.62 0.32/0.28 0.36 0.31 0.25/0.21 

Rgenerations 1 0.9 0.68 0.42/0.46 0.66 – 0.45/0.31 
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Figure 1 
An example of stabilizing a four-dimensional subspace in a 40-dimensional space. Time 

dependencies of the variables y1…4, that determine the subspace for yi = 0 are shown. The first 
variable y1 (the blue solid line) corresponds to the first generation of the variables x1…x10 

having the strongest coupling. The second variable, y2, (the red dashed line) is coupled to the 
variables x11…x20 with weaker coupling constants, scaled by the factor q = 0.4 with respect to 

the first variable. The third and the fourth generations (the dash-dot and the dotted lines, green 
and black, respectively) have couplings scaled by the factors q2 and q3, respectively. Note seven 
sequential discontinuities of the derivatives of the dependencies related to the sign changes at 

the most nimble variables xi, that first occur in the first generation, then in the second, etc. The 
changes in each of the generations manifest themselves in all dependencies via the matrix 𝛼ො. 

The scales of y(t) and t are arbitrary. 
 

 
 

Figure 2 
The average sorted eigenvalues (solid line) and their average mean absolute value deviation 
(dotted line) obtained for the case N = 143, M = 11 with the help of the feedback strength-

exploring algorithm. The average has been taken over 25 casts of the random matrix 𝛼ො. The 
scales are arbitrary since 𝛼ො and 𝛽መ  have no dimension and 1 ≤ i ≤ M. 
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Figure 3 

Consider a task of producing a constant sum of two variables, e.g., pressing with two fingers 
and producing a constant total force level. The dashed lines show solution spaces (uncontrolled 

manifolds, UCMs) for three different force levels, C1, C2, and C3. Across repetitive trials, 
clouds of data points form ellipses elongated along the corresponding UCM. This shape reflects 

lower stability along the UCM as compared to the orthogonal direction relevant to the task-
imposed constraints. Note that the three data clouds are centered not randomly along the 
UCMs but reflect a certain preferred sharing of the task between the two effectors. This 

preference may reflect an optimization principle. 
 

 
Figure 4 

A scheme of hierarchical control of the hand within the idea of control with referent 
configurations (RCs) of the body. At the top level, a low-dimensional set of referent values for 

salient, task-specific variables is reflected in the RC. A sequence of few-to-many 
transformations results in higher-dimensional RCs at the digit level and muscle level. Local 
feedback loops ensure stability with respect to the variables specified by the input. The global 
feedback loop ensures that the actual body configuration moves towards one of the solutions 
compatible with the task RC. At each level, inputs to a neuronal pool (N1, N2, and N3) are 
combined with afferent feedback (AFF) to produce the output (efferent signals, EFF). At the 

lowest level, elements are alpha-motoneurons and their referent coordinates correspond to the 
thresholds of the tonic stretch reflex (lambda). 
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Figure 5 
Time dependencies for the successfully controlled five-dimensional subspace in the hierarchical 

cascade setting with N1/N2/N3 = 5/50/200 (upper plot). An example of unsuccessful control 
(lower plot). The scales are arbitrary since the evolution equations have no dimension. 

 
 
 
 
 

 
 

Figure 6 
Examples of successful (lower panels) and unsuccessful (upper panels) search for the new 

equilibrium control. We show coordinate variables as functions of time in arbitrary units. First 
column: deviations of two controlled coordinates from their prescribed value – zero. The second 

column: dynamics of the hypothetical elemental variables tend to some asymptotic values for 
successful control. Third column: dynamics of motor variables. One sees the dynamics of 

transition from the old equilibrium position to the new one. The scales are arbitrary since the 
evolution equations have no dimension. 
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Figure 7 

Typical time profiles of the force-pulse trial (A, top panel) and perturbation trial (B, bottom 
panel) performed by a representative subject. The total force profile is shown with the solid 

trace, and individual finger forces are shown with different dashed traces. The intervals used to 
compute the eigenvectors in the force space are shown with the arrows. 
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Figure 8 

The angles between the force vector produced by a quick perturbation applied to a finger and 
the force vector during the downward phase of the force-pulse trial by the same finger (αPE) and 
between the first vector and the vector of the corrective action (αPC). Averaged across subjects 
data are shown with standard error bars. Note that for each finger as the target finger αPE < 

αPC. 
 
 

 
 

Figure 9 
Finger forces in N as functions of time (in 10-2 s, upper panel) and the coordinates of the point 
position on the screen (lower panel). The law relating the forces to the position of the point was 

changed at t = 7 s, and the values of the finger forces at that time were chosen as zero. 
 

 
 

Time

Force
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Figure 10 

The angular velocity R1(t) of rotation of the basis of the covariance matrix eigenvectors as 
function of time (bottom, solid line, arbitrary units). Logarithms of the eigenvalues Ck(t) of the 
covariance matrix (four bold curves above the velocity). The average of the covariance matrix 

was computed over Y = 100 sequential time points with the interval of 10-2 s between the 
points. The switching of the feedback eventually took place in the domains of ”avoid crossings” 

discussed, marked here by arrows, and corresponding to the maxima of the angular velocity. 
On the top of the plots, the finger forces and the cursor coordinates, corresponding to the 
dependencies in Figure 9 averaged over the same time intervals Y = 100, are shown for 

comparison. The ”avoid crossing” of the three eigenvalues occurs for the 4-th, 7-th, and 8-th 
intersections. The strongest contribution comes from the 5-th crossing, which presumably is 

relevant to changing of the direction in the two-dimensional orthogonal subspace. 
 
 
 
 
 

 
Discussion 
The Stability Search Algorithm and Motor Control 
Hypotheses 

The most important axiom in our approach 
is the assumption of task-specific coordinate 
systems organized to allow effective local control. A 
particular implementation has been introduced as  
 

the ”act on the most nimble” (AMN) rule. We have 
shown that this method can solve problems better 
than control with random matrices, but loses 
efficacy with an increase in the task dimensionality, 
not so much with the system dimensionality. 
Further, we considered a number of additional rules 
that improved the outcome. One of them is: if local  
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control does not work, change the coordinate 
system. More specific rules that all improve the 
R(N,M) index include the following: (1) deal with 
one dimension at a time and do not return back to 
any of the previously involved dimensions; (2) 
organize elemental variables into generations by 
their nimbleness, i.e., characteristic rate of change; 
and (3) allow bi-local control to improve the 
performance. 
Systems of coordinates in motor control 
 One of the important features of the 
suggested scheme is the identification of three 
systems of coordinates that can be used to describe 
processes associated with the neural control of 
movement. Most commonly, movement studies 
operate with variables directly measured by the 
available systems, for example kinematic, kinetic, or 
electromyographic variables. Some of these 
variables describe overall performance, for example 
fingertip coordinates during pointing. Other 
variables reflect processes in elements that 
contribute to the task-related performance (e.g., 
joint rotations, digit forces and moments, muscle 
activation, etc.).  

One of the dominant ideas originating from 
the classical studies by Bernstein (1967) has been 
that elements are united by the CNS into relatively 
stable groups to reduce the number of variables 
manipulated at task-related neural levels. Such 
groups have been addressed as ”synergies” 
(D’Avella et al., 2003; Ivanenko et al., 2005; Ting and 
Mcpherson, 2005) or ”modes” (Krishnamoorthy et 
al., 2003). Some studies emphasized the relative 
invariance of the modes across tasks (Ivanenko et 
al., 2005; Torres-Oviedo and Ting, 2007), while other 
studies showed that the modes could change with 
changes in the stability requirements (Asaka et al., 
2008; Danna-dos-Santos et al., 2008).  

Within our scheme, measured variables 
produced by elements (e.g., digit forces, joint 
rotations, and muscle activations) are united into 
modes that are relatively stable across task 
variations. These modes may reflect preferred 
changes in referent body configuration (cf. Feldman, 
2015) based on the person’s experience with 
everyday tasks. Mode composition is reflected in 
the structure of response to a noisy external input 
and can be reconstructed using matrix factorization 
techniques such as principal component analysis, 
factor analysis, and non-negative matrix 
factorization (reviewed in Tresch et al., 2006).  
 

 
Unlike many earlier studies, we do not assume that 
the number of modes (the dimensionality of the 
space where the control process takes place, xi in 
our notation) is smaller than the number of 
measured variables. It may be larger. For example, 
in our experiment, forces of four fingers were 
measured. The dimensionality of xi may be higher 
corresponding, for example, to the number of 
muscles or muscle compartments involved in the 
task.  

According to our main assumption, there is 
another coordinate system that allows ensuring 
stability of performance using local control. We 
suggest using a term ”control coordinates” for this 
system. Unlike modes, control coordinates are 
sensitive to task changes, particularly to changes in 
conditions that affect stability of performance. 
When a person encounters a novel task, he/she 
searches for an adequate set of control coordinates 
that would allow implementing local control.  

Our experiment showed that a quick 
reaction to an unexpected perturbation acted along 
directions in the finger force space that were close to 
the directions of finger force deviations produced 
by the perturbations. In contrast, these reactions 
formed larger angles with vectors reflecting finger 
modes, eigenvectors in the space of finger forces 
that reflected finger force changes when a person 
tried to act with one finger at a time. This result 
corroborates the idea that quick corrective actions 
are organized not along mode directions, but along 
axes of another coordinate system, close to the ones 
along which the system shows the quickest 
deviation in response to the perturbation.  
Relations to the uncontrolled manifold and referent 
configuration hypotheses 

Figure 4 offers a block diagram related to 
the control of the hand based on a few levels. At the 
upper level, the task is shared between the actions 
of the thumb and the opposing fingers represented 
as a single digit (virtual finger, Arbib et al., 1985) 
with the same mechanical effect as the four fingers 
combined. Further, the virtual finger action is 
shared among the actual fingers (our experiments 
analyzed four-finger coordination at that level). 
Even further, action of a finger is shared among a 
redundant set of muscles contributing to that 
finger’s action. At the bottom level, each muscle 
represents a set of motor units united by the tonic 
stretch reflex feedback to stabilize equilibrium states 
of the system ”muscle + reflexes + external load”.  
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Only the last level may be viewed as based on 
relatively well-known neural mechanisms with the 
threshold of the tonic stretch reflex being the control 
variable for each muscle (Feldman, 1986).  

While the scheme in Figure 4 ensures some 
stability of the action, changes in the overall action 
organization (e.g., changes in the RC trajectories) 
may be needed if the task changes or there is a 
major change in the external force field. The general 
principles suggested in this paper offer a solution 
for the problem of stabilizing action in such 
conditions. A few recent studies have shown that, 
when a major change in the external conditions of 
task execution takes place, corrective actions are 
seen in both range (ORT) and self-motion (UCM) 
spaces with respect to salient performance variables 
(Mattos et al., 2011, 2015). Moreover, self-motion 
(addressed as ”motor equivalent” motion) 
commonly dominates, while, by definition, it is 
unable to correct the action. These observations 
suggest that no single economy principle can form 
the foundation for such corrections. They allow 
interpretation within the set of principles suggested 
in this paper. Any perturbation is expected to 
induce large effects in less stable directions (those 
that span the UCM) as compared to more stable 
directions (ORT). According to the AMN-rule, 
corrective action is organized along the most nimble 
of the control coordinates, which projects primarily 
on the UCM. Hence, one can expect the corrective 
action to be primarily directed along the UCM as 
well.  
Reasonably sloppy control may be good enough 

Several recent publications have presented 
arguments in favor of the general idea that the CNS 
may not solve typical problems perfectly, but rather 
use a set of simple rules that lead to acceptable 
solutions for most problems (Latash, 2008; Loeb, 
2012). Such rules may fail to solve specific problems 
and then healthy people make mistakes, fall, 
mishandle objects, spill coffee, etc. We presented a 
particular instantiation of such a set of rules (based 
on the AMN-rule) and showed that these rules were 
able to stabilize action with high probability. The 
experimental demonstration of relatively small 
angles between the vectors of perturbation-induced 
force changes and corrective changes in finger 
forces supports the feasibility of the AMN-rule.  

Selecting a particular point (range) within 
the solution space has been discussed as resulting 
from optimizing the action with respect to some cost  
 

 
function (Prilutsky and Zatsiorsky, 2002). Note that 
only one point on the solution hyper-surface is 
optimal with respect to any given cost function. 
Other points within the UCM violate the optimality 
principle even though they lead to seemingly 
perfect performance. In a sense, large variance 
within the UCM combined with low variance 
within the ORT implies that the person is accurate, 
but sloppy. In the course of practice, when the 
person becomes as accurate as one can possibly be 
with respect to the explicit task, further practice 
may stabilize directions within the UCM to ensure 
that performance remains as close as possible to 
optimal with respect to a selected criterion. This is 
what we call ”perfectionism”. Note that 
perfectionism is never absolute, but the degree of 
sloppiness can be reduced.  
Limitations and future directions 

At the current stage, our approach may be 
seen as very much simplified, ignoring some of the 
well-established features of the system for the 
production of movements. These include, in 
particular, the complex, non-linear properties of 
muscles and time delays in feedback loops from 
sensory receptors. In our experiments, we used a 
rather simple linear system of multi-finger 
force/moment production. Application of this 
approach to more natural, complex tasks is 
definitely non-trivial. In such tasks, the system 
under consideration is so complex that currently 
neither our approach nor any other approach (to 
our knowledge) is able to offer a viable solution that 
would take into account all the features of the 
involved elements. We think, however, that the 
conceptual framework developed in our paper may 
be applicable across tasks and systems resulting in 
“good enough” solutions able to solve typical 
problems with acceptable probability.  

At this stage, we only try to offer a 
conceptual solution for the problem of stabilizing 
relevant sub-spaces within high-dimensional spaces 
of elements involved in all natural actions. We view 
the basic idea as applicable to different plants, but 
this is something that currently remains outside the 
scope of the paper. That is why we compared some 
of the predictions to experiments with isometric 
multi-finger pressing tasks, when muscle length 
changes were minimal. It would require a major 
effort to translate the conceptual lessons from this 
work to the control of actual multi-joint actions. We 
hope to merge our approach with the framework of  
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the equilibrium-point hypothesis and the ideas of 
hierarchical control with referent spatial 
coordinates.  

Concluding comments  
Implications for motor learning and motor disorders 

We view, as the main message of our 
study, the suggestion that ensuring stability of 
action by a multi-element system does not require 
solving complex equations. Instead, it can be 
based on a relatively simple algorithm. Unlike 
most control schemes in the literature, the 
suggested algorithm, the "act on the most nimble" 
(AMN) rule, does not require knowledge by the 
controller about the relations between small 
changes in elemental variables and changes in a 
salient performance variable, e.g., as represented 
by the Jacobian of the system. 
 The theoretical part of our paper shows 
that adding relatively minor modifications to the 
main algorithm can improve significantly the 
ability of the system to find stable solutions (see 
previous sections). In the experiments, we 
observed how subjects searched for an 
appropriate implementation of the AMN-rule in 
an artificial task resembling a computer game 
when natural proprioceptive feedback could be in 
conflict with the visual feedback. These studies 
illustrate the process of searching for adequate 
control variables, sometimes successful and 
sometimes not (e.g., Figures 6, 9, and 10). 

The AMN rule can be discovered, refined, 
and optimized in the process of practice. The 
process of discovering acceptable solutions to the 
task of stabilizing a performance variable 
requires, as the first step, finding a set of adequate 
control coordinates, i.e. a set of variables that 
allow implementing local control (see previous 
sections). This process may be crucial for the 
development of high-level athletic skills, which 
require high stability of salient performance 
variables during frequent and unexpected 
changes in the external forces acting on the body. 
Typical examples include downhill skiing, snow-
boarding, figure skating, gymnastics, and other 
sports characterized by large, quickly-changing  
 

 
forces between the athlete's body and the 
environment. Our current knowledge on what the 
central nervous system of the athletes learns 
during training is all but non-existent. It is feasible 
that the central nervous system discovers 
adequate sets of control coordinates, which likely 
have to switch at different phases of the 
movement. Discovering precise switching times 
may represent another step of learning a complex 
skill. 

The ability to discover adequate sets of 
control coordinates to be used in the main 
algorithm and the ability to switch from one set of 
control coordinates to another can be violated in 
various motor disorders. These processes may 
suffer from inadequate sensory input, for 
example, in patients with large-fiber peripheral 
neuropathy (so-called, "deafferented persons", 
Sainburg et al. 1993; Yousif et al. 2015). This 
condition may not allow forming adequate sets of 
control coordinates and providing sensory 
information on changes in elemental variables to 
be used in implementation of the AMN-rule. It 
may also impair the ability to time changes in the 
control coordinates appropriately. The mentioned 
mechanisms may also suffer from an injury to 
involved neural structures, in particular 
components of neural loops via the basal ganglia 
and the cerebellum to the cortex. Note that loss of 
movement stability and ability to learn stable 
performance in novel conditions is a sign of 
neurological disorders involving the cerebellum 
and the basal ganglia (reviewed in Celnik, 2015; 
Latash and Huang, 2015; Llinas and Welsh, 1993). 

Our current knowledge of neural 
substrates that might be involved in the suggested 
scheme is virtually non-existent. Maybe future 
studies, in particular those involving persons with 
exceptional skills (such as high-level athletes) and 
persons with significantly impaired stability of 
actions (such as neurological patients) could 
provide better insights into the role of specific 
physiological structures in ensuring action 
stability across the repertoire of both functional 
and highly specialized movements. 
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