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ABSTRACT: This paper proposes a novel molecular simulation method,
called tree search molecular dynamics (TS-MD), to accelerate the sampling of
conformational transition pathways, which require considerable computation.
In TS-MD, a tree search algorithm, called upper confidence bounds for trees,
which is a type of reinforcement learning algorithm, is applied to sample the
transition pathway. By learning from the results of the previous simulations, TS-
MD efficiently searches conformational space and avoids being trapped in local
stable structures. TS-MD exhibits better performance than parallel cascade
selection molecular dynamics, which is one of the state-of-the-art methods, for
the folding of miniproteins, Chignolin and Trp-cage, in explicit water.

1. INTRODUCTION

In general, biomolecular systems are complex and have many
degrees of freedom.1 Their biological time scales exceed the
current capability of atomistic simulations, which is usually
more than a microsecond. Among the various biomolecular
simulation methods, molecular dynamics (MD) simulation is a
powerful approach for characterizing structural information as
a time series of atomic-level trajectories with femto-second
resolution.2 To solve the time-scale problem, many enhanced
sampling methods have been proposed to overcome the time-
scale limitation. These methods can be divided into biasing
and nonbiasing methods, which are listed here: conformational
flooding,3 hyperdynamic,4 metadynamics,5,6 multicanonical
MD (McMD),7 replica-exchange MD,8 string method,9 mile-
stoning,10 adaptive biased force (ABF),11 accelerated MD,12

weighted ensemble,13 WExplore,14 parallel cascade selection
MD (PaCS-MD)15 and its variants,16−19 outlier flooding
method,20 and more.
Among the unbiased, enhanced sampling methods, PaCS-

MD, which was previously developed by some of the authors
of this study, tends to sample the conformational transition
pathway between an initial structure and a given target

structure. PaCS-MD comprises multiple cycles of parallel
simulations (replicas) with selections of MD snapshots from
the predecessor cycle to be the initial configuration of the
successor cycle.15,21 It has been found that the number of
replicas considerably affects the sampling efficiency22 (i.e., the
larger the number of replicas is, the fewer the number of traps
in the local minima in the conformational space is). In
addition, resampling from the top 1.0 to 2.0% of the highly
ranked conformations is assumed to provide better sampling
performance.23 Therefore, a smarter selection scheme of initial
configurations of replicas is needed to improve the perform-
ance of not only PaCS-MD, but also of other unbiased,
enhanced sampling methods.
In this study, we introduce a new method, called tree search

MD (TS-MD), by applying a tree search algorithm, upper
confidence bounds for trees (UCT),24 to biomolecular
sampling. UCT is a type of reinforcement learning algorithm25

and has been used to solve search problems in the field of
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artificial intelligence for games, including AlphaGo Zero.26−29

In addition, UCT-based approaches have proven to be
effective for solving real world problems such as de novo
molecular design and retrosynthesis.30−32 In these search
problems, the exploration-exploitation dilemma,33,34 (i.e., the
trade-off between obtaining new knowledge: exploration, and
using the obtained knowledge: exploitation) becomes an issue
that needs to be solved. UCT is one of the frameworks that
solve this dilemma.
In this paper, we show that sampling the conformation

transition pathway from the initial structure to the targeted one
can be regarded as a tree search problem by considering a
structure (snapshot) as a node in the tree and a short
simulation from the structure as an edge between nodes.
Furthermore, we demonstrate that MD-based pathway
sampling can be performed by applying the UCT algorithm
to the tree search problem using the folding of mini-proteins,
Chignolin and Trp-cage, in explicit water as examples. We
show that effective sampling can be realized from their
simulation results by using the UCT approach, thereby quickly
escaping from the local traps. Our implementation is available
on GitHub at https://github.com/tsudalab/TSMD/.

2. MATERIALS AND METHODS
2.1. TS-MD Procedure. TS-MD comprises multiple

hierarchical short MD simulations in predefined orders and
metrics, which connect the given initial structure (reactant) to
a target structure (product). Figure 1a presents an illustration

of one TS-MD cycle that includes three steps: selection,
expansion, and back-propagation. In the TS-MD tree, the
conformational microstates (snapshots) of a protein and
simulated trajectories between them are represented by
nodes (circles) and edges, respectively. We employ the UCT
approach24 to realize an effective transition pathway search by
growing the tree by repeating the TS-MD cycle. The advantage
of the UCT search is that it realizes a pathway search by
growing the search tree, maintaining the balance between
exploration and exploitation. Even if a search is trapped in a
local stable structure, TS-MD is expected to eventually find
another pathway by growing other branches by maintaining the
balance.

We explain the three steps of a TS-MD cycle. The details of
the process of them are illustrated as a pseudocode in
Algorithm 1. Each node has its score X that is obtained from
MD simulation results and called the “reward,” and the
number of visited times n. The reward and the visited number
are updated during the TS-MD cycles. During the selection
step of TS-MD, the tree is traversed from the root to a leaf by
recursively choosing the maximum upper confidence bound
(UCB) child at each branch. Note that UCB is different from
UCT. The details of UCB, which is calculated from the
rewards, are explained in the next paragraph. If multiple child
nodes obtain the same maximal value, one of them is selected
by randomization. During the expansion step, a short MD
simulation with re-randomized velocities in the system is
performed from the selected node and the snapshot with a
minimum root-mean-square deviation (RMSD) is added as a
child if the child RMSD is smaller than the parent RMSD. In
the field of games, the possible moves (actions) are predefined
in most cases. However, the next moves from a node
(structure) are not trivial in conformational sampling. Thus,
we prepare some sample pathways using MD simulations with
different initial velocities and treat each pathway (edge) as a
move in the field of games (reinforcement learning). Finally,
during the back-propagation step, the visit counts ni of all the
selected branches are incremented and the reward Xi is
updated to the smallest achieved RMSD. The TS-MD cycle is
terminated when the minimum RMSD obtained during the
search becomes equal to or less than the reference value
(RMSDmin).
The UCB of the i-th child node can be calculated via the

following equation.

X C
N

n
UCB

2 log
i i

i
= +

(1)

where Xi is the reward of the i-th child calculated from MD
simulations, N is the number of times the parent node has
been visited, ni is the number of times the i-th child has been
visited, and C is the constant used to balance the first and
second terms. In this study, for the reward Xi, we take
advantage of the backbone atom RMSD after least-squares-
fitting of the backbone atoms to evaluate the structural
similarity to the product. The negative of the minimum RMSD
of the downstream nodes is used as the reward Xi for
minimizing the similarity between the simulated and target
conformations. Note that we use the negative of the minimum
RMSD because of the maximum node with UCB during the
selection step. Whenever a node is visited by the simulation (ni
increases), the second term of eq 1 decreases, while the UCBs
of other child nodes increase upon visiting their parent node
(N increases). To maintain the balance between exploitation
and exploration, the parameter C needs to be tuned according
to the complexity of the target system and the simulation
length.
The key point in rare event sampling is to explore new

microstates, which should be low in appearance frequency.35

Within this scope, we add a penalty term in the algorithm to
promote sampling in the rare region of the conformational
space, to prevent traps from the local minima of a free energy
landscape, or to sample in the same conformational space
between branches. The penalized reward of the i-th node, X′, is
calculated as follows.

Figure 1. Illustration of (a) TS-MD and (b) PaCS-MD. Conforma-
tional microstates (snapshots) of a protein and simulated trajectories
between them are represented by nodes (circles) and edges,
respectively.

ACS Omega Article

DOI: 10.1021/acsomega.9b01480
ACS Omega 2019, 4, 13853−13862

13854

https://github.com/tsudalab/TSMD/
http://dx.doi.org/10.1021/acsomega.9b01480


X Xi
N

i
simα′ = (2)

where α is the penalty parameter and Nsim is the number of
similar structures. To calculate Nsim, all the structures of the
nodes in the search tree are considered. Snapshots of similar
structures and dissimilar structures are distinguished by their
pair-wise RMSDs being lesser and greater than 1.0 Å,
respectively.
From the viewpoint of reinforcement learning, the penalized

reward can be regarded as a way to solve the problem of UCT-
based search in continuous space (i.e., excessive search of
similar states or structures). In general, if the search space is
discrete in the UCT search, such a penalty term is not
required. However, if the search space is continuous, such a
penalty is effective in the field of UCT search36−38 because the
search space is too large. Similarly, we introduce the penalized
reward, giving a larger penalty in relation to the number of
similar structures that exist.
To compare the performance of TS-MD with that of an

existing method, PaCS-MD15 is also demonstrated in this
study. Figure 1b illustrates the PaCS-MD procedure. PaCS-
MD repeats a cycle of multiple independent MD (MIMD)
simulations to obtain a transition pathway between the two
structures. In each cycle, short MIMDs with randomized initial
velocities of the system are performed and the top snapshots
are selected from the trajectories as the initial structures of the
next cycle.

2.2. Computational Details. To demonstrate the
performance of TS-MD, we apply both PaCS-MD and TS-
MD methods to the folding of the 10-residue protein
Chignolin (PDB id 1UAO39) and the 20-residue protein
Trp-cage (PDB id 1L2Y40) in explicit water (Figure 2). During

the folding process, an NMR structure is used as a product,
whereas the artificially extended structure (see the Supporting
Information) with the same amino acids using the same
protonation states as the former is used as a reactant. The
extended structures were prepared by using the molecular
operating environment (MOE, Chemical Computing Group,

Figure 2. (a) Native structure of Chignolin. Chignolin can have three
characteristic hydrogen bonds: HB1, HB2, and HB3. (b) Native
structure of Trp-cage. The blue area represents the α helix region and
the red area represents the other region.
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Montreal, Canada). The AMBER ff99SB force field41 was
employed for both the systems. The proteins were solvated
with the TIP3P water model42 in rectangular simulation boxes
with counter ions to maintain the system being neutral in
charge. The box sizes were set to ensure that the distances
between any atoms of the protein and the box edges were at
least 10 Å in each dimension. Cubic boxes with initial edge
lengths of 53.1 and 83.7 Å were employed for Chignolin and
Trp-cage, respectively. We used these boxes for both PaCS-
MD and TS-MD. As a result, the Chignolin system contained
4818 water molecules and two sodium ions, whereas the Trp-
cage system contained 18 980 water molecules and one
chloride ion. The energy of all the systems was minimized
using the steepest descent algorithm to avoid high energy
interactions in modeling with the imposing of positional
restraints of the backbone atoms of the proteins (force
constant: 1000 kJ/mol nm2). Then, the systems were then
thermalized at 300 and 320 K for Chignolin and Trp-cage,
respectively, using a canonical ensemble with a velocity-
rescaling thermostat43 in 100 ps. After that, the isothermal-
isobaric ensemble was employed to relax the system to 1 bar
pressure using an isotropic barostat with the Parrinello−
Rahman algorithm44 and to keep the corresponding temper-
atures in the next 100 ps. In each cycle of PaCS-MD and TS-
MD, each short (100 ps) MD simulation used the same
thermostat and barostat as used in the equilibrating stage,
except that no positional restraint was applied to the system.
The electrostatic interactions were treated using the particle
mesh Ewald method.45 The simulation time step was 2 fs with
constraints on all bonds via the LINCS algorithm46 and

snapshots in each trajectory were recorded every 1 ps.
Leapfrog integration was used. All the MD simulations were
performed using the GPU version of the GROMACS 2016.5
package.47

We set the number of parallel cascades in PaCS-MD to five.
Therefore, in each PaCS-MD cycle, five short MDs are
performed from the five highest ranking snapshots from the
previous cycle. The maximum number of child nodes
(CHILDRENmax) in TS-MD was set to three.

3. RESULTS

3.1. Chignolin Folding. To find a reactive folding pathway
of Chignolin in explicit water, PaCS-MD and TS-MD were
performed up to 2000 MD iterations. Note that a cycle of
PaCS-MD corresponds to five MD iterations because it
consists of five short MD simulations. A cycle of TS-MD
corresponds to one MD iteration. Figure 3a presents various
profiles of 10 trials of PaCS-MD and TS-MD as a function of
the number of MD iterations, which include the RMSD from
the product, radius of gyration, the fraction of native contact,48

and F1 score of contact prediction.49 We used the backbone
atom RMSD after least-square-fitting of the backbone atoms to
the product. In TS-MD, the parameters C and α were set to
0.05 and 1.05, respectively. As seen in the profiles, the protein
structure becomes closer to the product as the MD iteration
progresses and sufficiently converges in 2000 MD iterations.
Among the 10 trials, nine PaCS-MD trials and all TS-MD trials
reached the RMSD of less than 1.0 Å and four PaCS-MD trials,
and eight TS-MD trials reached the RMSD of less than 0.5 Å.

Figure 3. Profiles of RMSD, radius of gyration, the fraction of native contact, and F1 score of PaCS-MD and TS-MD in (a) Chignolin folding and
(b) Trp-cage folding as a function of the number of MD iterations. The simulation time of one short MD was 100 ps for both PaCS-MD and TS-
MD. The total simulation times of one trial for Chignolin and Trp-cage foldings were 200 and 400 ns, respectively. Ten trials were performed for
each method, and different colors indicate different trials.
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To demonstrate how the penalty to the high frequency states
and the value of parameter C affect the search behavior, TS-
MD with different settings of α (1.01 and 1.05) with C = 0.05
and TS-MD without penalty (α = 1) with different settings of
C (0.01, 0.03, 0.05, 0.1, and 0.2) were performed. Figure 4a
shows a boxplot of RMSD at the 2000th iteration to
summarize the performance of each method. In TS-MD
without penalty, the value of C affected the search perform-
ance, which indicates that it involves the exploration and
exploitation trade-off. This effect can also be observed in the
projection of sampled structures (Figure S1). In this case,
because Chignolin folding can be considered as a relatively
simple mechanism, a larger C could converge to the target in
3000 iterations and resulted in better performance compared
to that of smaller Cs. However, the performance of TS-MD
with penalty with C = 0.05 was better than those of PaCS-MD
and TS-MD without penalty with any setting of C, with respect
to the number of trials needed to reach the product, the

median of the minimum RMSD, and the RMSD in the worst
trial. The contribution of the penalty to the search efficiency
was confirmed by comparing the performances between TS-
MD with penalty and without penalty, with C = 0.05.
To examine, in detail, the search process, the structures were

projected onto a low-dimensional space. Previous studies39,50

showed that the length of hydrogen bonds, HB1(Asp3:N-
Thr8:O), HB2(Asp3:N-Gly7:O), and HB3(Asp3:O-Gly7:N)
characterize the process of folding and misfolding (Figure 2a).
It is reported that HB3 works as a folding trigger. The
formation of HB1 occurs under the condition that HB3
completes the folding, but the conformation with HB2 leads to
a misfolded structure. Figure 5 shows all the structures in the
tree projected onto a subspace spanned by HB1 and HB3. In
this study, reactive trajectories15 which are defined as joint
multiple trajectories connecting the reactant to the structure
with the minimum RMSD, are also projected. Because the
space searched by PaCS-MD is quite narrow, some trials

Figure 4. Boxplots of the smallest RMSDs for 10 trials of (a) Chignolin folding (3000 iterations) and (b) Trp-cage folding (4000 iterations) for
each method: PaCS-MD, TS-MD with α = 1.01, 1.05 and C = 0.05, and TS-MD without penalty with C = 0.01, 0.03, 0.05, 0.1, 0.2.

Figure 5. Two-dimensional plot of Chignolin structures (points) and the reactive trajectory (a polygonal line) for each trial into the subspace
spanned by the distances between key hydrogen bonds, HB1 and HB3, of (a) PaCS-MD and (b) TS-MD. The red star is the native structure
(product). The minimum RMSD for each trial is at the top-left corner. The area surrounded by the red dotted circle indicates a misfolded state
corresponding to that shown in Figure 6.
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stopped at unfolded states, in which HB3 is not formed
sufficiently and RMSDs are stopped around 1.0 Å. On the
other hand, TS-MD searched a much broader conformational
space and almost all trials successfully reached the product. As
demonstrated in Figure S1b, some TS-MD trials were initially
trapped into misfolded states where HB2 is formed, but
eventually avoided searching those states as the MD iterations
go on. In addition, there were some reactive trajectories that
reached the product by passing through misfolded states.
When we judge the success of folding using the distance
between the H-bonds (HB1 and HB3 ≤ 3.5 Å), eight trials
except for the ocher and light blue ones in Figure 5, were
successfully folded by PaCS-MD and all 10 trials were folded
by TS-MD. Furthermore, we calculated the principal

components (PCs) of the 18 models in PDB id 1UAO, and
projected the final snapshots of PaCS-MD and TS-MD to the
first and second PCs as shown in Figure S2. The result shows
that the best structures obtained by PaCS-MD and TS-MD are
correctly folded and approach the NMR structures. Notice that
we used model 1 as the targeted structure.
Figure 6 shows examples of the search trees of PaCS-MD

and TS-MD with the reactant, product, and intermediate
structures. They correspond to the trials shown in light blue
(PaCS-MD) and blue (TS-MD) in Figure 5, respectively. The
former shows a typical example of a failed case in PaCS-MD,
and the latter shows how TS-MD avoided being trapped by
misfolded states. The tree colors indicate the order in which
each node was added to the tree. With PaCS-MD, the tree

Figure 6. Search tree examples of (a) PaCS-MD and (b) TS-MD in the Chignolin folding (light blue and blue trail in Figure 5). The color of each
node indicates the order in which it is added to the tree. Intermediate structures at some nodes are also illustrated with the values of RMSDs from
the product. The structures in the red dotted square have the minimum RMSD in each trial, and the one in the red dotted circle indicate a
misfolded structure. In (b) TS-MD, at the beginning, the pathways to a misfolded structure were sampled preferentially. However, the search
process escaped from the local minima owing to the UCT algorithm, and finally, reached the product.

Figure 7. Two-dimensional plot of Trp-cage structures (points) and the reactive trajectory (a polygonal line) in each trial in the subspace spanned
by the RMSDs of SegA and SegB of (a) PaCS-MD and (b) TS-MD. The area surrounded by the red dotted circle indicates the unfolded state
corresponding to that shown in the Figure 8.
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went deep and created only one long branch. The search was
trapped in a local structure for a long time. However, TS-MD
created many branches on one tree and backtracked from some
branches to explore other branches when the search was
trapped at a misfolded structure. The structure in the red
dotted circle is a misfolded structure formed with HB2, and its
projection onto the reaction coordinates is shown in Figures 5
and S1. After discovering the best structure in the red dotted
rectangle, TS-MD tried to search for different pathways to the
target structure. As a result, relatively small RMSD structures
were obtained in the later stage (blue or purple nodes), but not
less than 0.185 Å. Furthermore, to make it easy to understand
the folding process, we represented the progresses of MD
iterations using a color gradation (see Figure S3).
3.2. Trp-Cage Folding. To find a reactive folding pathway

of Trp-cage in explicit water, PaCS-MD and TS-MD were also
performed up to 4000 MD iterations. Figure 3b shows the
profiles of 10 trials of PaCS-MD and TS-MD. The parameters
C and α for TS-MD were 0.05 and 1.01, respectively. Only 1
trial successfully reached the product in PaCS-MD and 3 trials
reached in TS-MD with the criterion of RMSD < 1.0 Å. When
we judge the success of folding with the criterion of RMSD ≤
1.5 Å, two and four trials were successfully folded by PaCS-
MD and TS-MD, respectively. Some trials were stopped at
unfolded structures whose RMSDs were in between 2.0 and
3.0 Å. The convergence of RMSD in Trp-cage folding is slower
than that in Chignolin folding because Trp-cage is larger and
more complicated. Similar to the Chignolin demonstration,
TS-MD with different settings of α (1.01 and 1.05) with C =
0.05 and TS-MD without penalty (α = 1) with different
settings of C (0.01, 0.03, 0.05, 0.1, and 0.2) were performed.
Figure 4b shows a boxplot of RMSDs at the 4000th iteration
for each method. Both TS-MD with penalty and without
penalty exhibited better performance than PaCS-MD.
To analyze their properties, sampled structures and reactive

trajectories were projected onto 2D reaction coordinates
(Figure 7). We have also shown the progresses of MD
iterations using a color gradation in Figure S4. Following the
folding analysis by Meuzelaar et al.,51 we used RMSDs with the
product in two partial segments, SegA and SegB, as the
reaction coordinates. SegA contains an α helix region (residue
1−8) and SegB contains the other region (residue 8−20)
(Figure 2b). In the folding process of Trp-cage, there is a free-
energy barrier while the α helix structure is formed.51 As
shown in the plots, there are unfolded states at 2−3 Å without
the formation of the α helix structure in both PaCS-MD and
TS-MD. However, TS-MD is more likely to find the correct
transition pathway.
Figure 8 shows examples of search trees of PaCS-MD and

TS-MD with the reactant, product, and intermediate
structures. They correspond to the orange trial in PaCS-MD
and green trial in TS-MD shown in Figure 7, respectively. It is
observed that PaCS-MD chooses a wrong pathway and is
trapped in a local structure in which the α helix is formed
wrongly. On the other hand, TS-MD searches multiple
pathways, including a wrong one and escapes from local stable
structures. The structure in the red dotted circle is a misfolded
structure and its projection onto the reaction coordinates is
shown in Figure 7. We confirmed that all folding pathways
obtained by TS-MD and PaCS-MD first formed the tertiary
contacts before helix formation. This pathway is identical to
the major pathway of Trp-cage folding reported in a previous
study.52 On the other hand, the minor pathway reported in the

paper was not observed in this study. In addition, we have
thoroughly performed well-tempered metadynamics6 folding of
Trp-cage with the collective variable radius of gyration (Rg)
and RMSD to the extended state of Trp-cage
(RMSDextended_state). We mapped the TS-MD trajectories to
the free energy landscape as shown in Figure S5. In the best
cases, the plots demonstrated a thorough sampling of the
whole free energy landscape of Trp-cage.

4. DISCUSSION
One of the biggest benefits of using the tree search method is
that it can memorize the previous results as a tree and utilize
them for further simulations. Because MD simulation is
strongly dependent on a trial, it is suggested that multiple trials
are be needed to observe desired events. In PaCS-MD, those
trials are independent and cannot share the knowledge among
each other. In contrast, because TS-MD does many trials in
one tree, it can share all simulation results. This property
allows TS-MD to reduce the number of simulations needed to
get rare events in a complicated system.
In addition, TS-MD has several advantages and disadvan-

tages compared to other sampling methods. Specifically, TS-
MD (PaCS-MD) can generate a pathway without adding bias
force, changing temperature, and modifying potential, which
are often done by the previous works such as conformational
flooding, hyperdynamics, metadynamics, replica exchange,
multicanonical MD (McMD), accelerated MD, ABF, and
others. Furthermore, implementation of TS-MD is relatively
easy because there is no need to change the force field. The
idea of TS-MD does not depend on the MD implementation,
and our implementation is also available. As a disadvantage of
TS-MD, compared to other well-established methods such as
metadynamics,5 because sampling by TS-MD is not based on
any physical principle, but only on the similarity to a product
such as RMSD, TS-MD cannot calculate the free energy
landscape without being combined with other methods such as
the weighted histogram analysis method53 or the Markov state
model.54−56

Figure 8. Search tree examples of (a) PaCS-MD and (b) TS-MD in
the Trp-cage folding (orange and green trials in Figure 7). The color
of each node indicates the order in which it is added to the tree. The
intermediate structures at some nodes are also illustrated with the
RMSD values from the product. The structures in the red dotted
square are those having the minimum RMSD in each trial, and the
structure in the red dotted circle is a misfolded structure.
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The results of a TS-MD search in the conformational space
strongly depend on parameter C in UCT. For example, a larger
value of C enables broader sampling in the conformational
space, as shown in Figures S6 and S7. When computational
resources are limited, it is beneficial to reduce the cost of
unnecessary searching using a relatively small C. Although we
treated parameter C as a constant in this study, automatic
tuning methods of C have already been proposed57 and their
benefits have been shown in solving real problems.58 In
addition, the maximum number of child nodes (CHILD-
RENmax) affects the conformation sampling efficiency,
although we fixed it to three in this paper. Furthermore, we
introduced a penalized reward with the parameter α for the
acceleration of sampling. Although we showed that the
proposed method has some effectiveness for sampling
transition pathways, it is not necessarily the most effective
one. The development of an automatic adjustment method of
optimal values for these parameters would improve the
usefulness of TS-MD.
For the parameters C and α, it is possible to adjust

experimentally using the following strategy to some extent. As
mentioned above, the larger the value of C, the broader the
search tree will grow. If the value of C is too large, the search
does not proceed deeply. We show a typical example of a large
value of C in Figure S8a. Our implementation of TS-MD
outputs such diagrams by default. However, if the value of C is
too small, the search tree becomes too deep with few branches.
In addition, we show a typical example of such a search tree in
Figure S8b. We can adjust C while observing the growth of
such a search tree. If the search tree is too wide, then we
should use a smaller value for C. It is difficult to determine the
optimal C, but it is possible to narrow down its range roughly.
Furthermore, the same adjustment is possible for α. If α is too
large, the penalty increases and the tree spreads widely. On the
other hand, if α is too small, its search is close to a search
without a penalty. Therefore, α can also be roughly adjusted by
observing the growth of the search trees. The abovementioned
procedures are not optimal, and there may be room for
improvement to tune the α and C parameters.

5. CONCLUSIONS
In this study, we proposed TS-MD, which uses reinforcement
learning to enhance protein conformational sampling. TS-MD
can effectively sample various states and escape from local
stable structures, based on the combination of the UCT
algorithm and short MD simulations. We demonstrated that
the folding processes of Chignolin and Trp-cage are sampled
with higher efficiency by TS-MD, compared to PaCS-MD.
Although we demonstrated TS-MD-based samplings only for
the folding processes of small proteins, this method can be
applied to any protein conformational transition such as
domain motion and protein−ligand binding. TS-MD requires a
target structure in the present. However, it is also possible to
use TS-MD when the target state is unknown if the reward is
changed properly as the nontargeted PaCS-MD.59

There is room for improvement in the adjustment of the
search parameters such as C, α, and the number of child nodes
in TS-MD. In future work, we will consider how to determine
the optimal parameter values for a given system. TS-MD would
be applicable to larger systems such as T4 lysozyme and Villin.
By the several previous studies,15,60 it is shown that the open-
close transition of T4 lysozyme has multiple pathways. TS-MD
can be applicable to the open-close transition of such larger

systems with multiple pathways by multiple search trials from
different initial velocities. However, TS-MD’s performance for
such larger systems needs to be validated in the future.
Furthermore, because TS-MD uses a relatively simple
algorithm, we will enhance it by applying many acceleration
techniques that use heuristic knowledge,61 pruning of
suboptimal moves,62 and massive parallelization.63,64

■ ASSOCIATED CONTENT

*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acsome-
ga.9b01480.

1UAO_extended.pdb: the extended structure of Chigno-
lin 1L2Y_extended.pdb: the extended structure of Trp-
Cage; 2D plot of Chignolin structures; projected final
snapshots of PaCS-MD and TS-MD; 2D plot of
Chignolin structures with iteration information; 2D
plot of Trp-cage structures with iteration information;
trajectories mapped to the free energy landscape; 2D
plot of Chignolin structures with different settings of C;
2D plot of Trp-cage structures with different settings of
C; typical examples of tree growths (PDF)

■ AUTHOR INFORMATION

Corresponding Authors
*E-mail: kei.terayama@riken.jp (Kei Terayama).
*E-mail: tsuda@k.u-tokyo.ac.jp. Phone: +81(4)-7136-3983.
Fax: +81(4)-7136-3975 (Koji Tsuda).

ORCID
Akio Kitao: 0000-0002-5221-0806
Kei Terayama: 0000-0003-3914-248X
Koji Tsuda: 0000-0002-4288-1606
Funding
This work was supported by the Ministry of Education,
Culture, Sports, Science, and Technology of Japan (MEXT) as
a “Priority Issue on Post-K Computer” (Building Innovative
Drug Discovery Infrastructure through Functional Control of
Biomolecular Systems). This article is also based on the results
obtained from the “Materials Research by Information
Integration” Initiative (MI2I) project, Core Research for
Evolutional Science and Technology (CREST) (Grants No.
JPMJCR1502), and JST AIP-PRISM Grant Number
JPMJCR18Y3, Japan. The computations in this work were
carried out at the supercomputer centers of RAIDEN of AIP
(RIKEN) and Oakforest-PACS at the Joint Center for
Advanced High Performance Computing (JCAHPC).

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We thank Dr. Shigeyuki Matsumoto and Dr. Masato Sumita
for the preparation of the initial structures and helpful
comments. We also thank Prof. Yasushi Okuno and Dr.
Kazuki Yoshizoe for helpful comments and suggestions.

■ REFERENCES
(1) Protein Physics, 2nd ed.; Finkelstein, A. V., Ptitsyn, O. B., Eds.;
Academic Press: Amsterdam, 2016.

ACS Omega Article

DOI: 10.1021/acsomega.9b01480
ACS Omega 2019, 4, 13853−13862

13860

http://pubs.acs.org/doi/suppl/10.1021/acsomega.9b01480/suppl_file/ao9b01480_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.9b01480/suppl_file/ao9b01480_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.9b01480/suppl_file/ao9b01480_si_001.pdf
http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acsomega.9b01480
http://pubs.acs.org/doi/abs/10.1021/acsomega.9b01480
http://pubs.acs.org/doi/suppl/10.1021/acsomega.9b01480/suppl_file/ao9b01480_si_001.pdf
mailto:kei.terayama@riken.jp
mailto:tsuda@k.u-tokyo.ac.jp
http://orcid.org/0000-0002-5221-0806
http://orcid.org/0000-0003-3914-248X
http://orcid.org/0000-0002-4288-1606
http://dx.doi.org/10.1021/acsomega.9b01480


(2) Biomolecular Simulations: Methods and Protocols, 1st ed.;
Finkelstein, A. V., Ptitsyn, O. B., Eds.; Humana Press: New York,
2013.
(3) Grubmüller, H. Predicting slow structural transitions in
macromolecular systems: Conformational flooding. Phys. Rev. E
1995, 52, 2893−2906.
(4) Voter, A. F. Hyperdynamics: Accelerated Molecular Dynamics of
Infrequent Events. Phys. Rev. Lett. 1997, 78, 3908−3911.
(5) Laio, A.; Parrinello, M. Escaping free-energy minima. Proc. Natl.
Acad. Sci. 2002, 99, 12562−12566.
(6) Barducci, A.; Bussi, G.; Parrinello, M. Well-tempered
metadynamics: a smoothly converging and tunable free-energy
method. Phys. Rev. Lett. 2008, 100, 020603.
(7) Nakajima, N.; Nakamura, H.; Kidera, A. Multicanonical
ensemble generated by molecular dynamics simulation for enhanced
conformational sampling of peptides. J. Phys. Chem. B 1997, 101,
817−824.
(8) Sugita, Y.; Okamoto, Y. Replica-exchange molecular dynamics
method for protein folding. Chem. Phys. Lett. 1999, 314, 141−151.
(9) E, W.; Ren, W.; Vanden-Eijnden, E. String method for the study
of rare events. Phys. Rev. B: Condens. Matter Mater. Phys. 2002, 66,
052301.
(10) Maj́ek, P.; Elber, R. Milestoning without a reaction coordinate.
J. Chem. Theory Comput. 2010, 6, 1805−1817.
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