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ABSTRACT Proteins secreted by the type V secretion system possess multiple func-
tions, including the capacity to mediate adhesion, aggregation, and biolfilm forma-
tion. The type V secretion system can be divided into five subclasses, one of which
is the type Ve system. Proteins of the type Ve secretion system are also referred to
as inverse autotransporters (IATs). In this study, we performed an in silico analysis of
126 completely sequenced Escherichia coli genomes available in the NCBI database
and identified several distinct IAT-encoding gene families whose distribution varied
throughout the E. coli phylogeny. The genes included three characterized IATs (in-
timin, fdeC, and yeeJ) and four uncharacterized IATs (here named iatA, iatB, iatC, and
iatD). The four iat genes were cloned from the completely sequenced environmental
E. coli strain SMS-3-5 and characterized. Three of these IAT proteins (IatB, IatC, and
IatD) were expressed at the cell surface and possessed the capacity to mediate bio-
film formation in a recombinant E. coli K-12 strain. Further analysis of the iatB gene,
which showed a unique association with extraintestinal E. coli strains, suggested that
its regulation is controlled by the LeuO global regulator. Overall, this study provides
new data describing the prevalence, sequence variation, domain structure, function,
and regulation of IATs found in E. coli.

IMPORTANCE Escherichia coli is one of the most prevalent facultative anaerobes of
the human gut. E. coli normally exists as a harmless commensal but can also cause
disease following the acquisition of genes that enhance its pathogenicity. Adhesion
is an important first step in colonization of the host and is mediated by an array of
cell surface components. In E. coli, these include a family of adhesins secreted by
the type V secretion system. Here, we identified and characterized new proteins
from an emerging subclass of the type V secretion system known as the inverse au-
totransporters (IATs). We found that IAT-encoding genes are present in a wide range
of strains and showed that three novel IATs were localized on the E. coli cell surface
and mediated biofilm formation. Overall, this study provides new insight into the
prevalence, function, and regulation of IATs in E. coli.
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Escherichia coli is one of the most prevalent facultative anaerobes of the human gut
and harbors genes encoding a wide array of surface-expressed factors that promote

the colonization of specific niches. One such factor includes the highly abundant group
of proteins secreted by the type V secretion system (1, 2). All proteins secreted by this
system share several common features: (i) an N-terminal signal sequence that targets
the protein to the Sec machinery for transport across the inner membrane, (ii) a
passenger domain that is either cell surface exposed or secreted, and (iii) a translocator
(or �-barrel) domain that is embedded in the outer membrane and helps to facilitate
the translocation of the passenger domain (2–5). The passenger domain of these
proteins determines the unique functional characteristics of an individual protein.
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Overall, proteins secreted by the type V system possess a wide range of functions,
including adhesion, cell-to-cell aggregation, and biofilm formation (6–8), as well as
protease and cytotoxic activity (9, 10). For example, the well-characterized autotrans-
porter (AT) protein antigen 43 (Ag43) of uropathogenic E. coli (UPEC) contributes to
adhesion, cell-to-cell aggregation, biofilm formation, and long-term persistence in the
urinary tract (11–14).

AT proteins can be classified into five subclasses, namely, types Va (monomeric AT),
Vb (two-partner secretion system), Vc (trimeric), Vd (fused two-partner secretion sys-
tem), and Ve (inverse ATs [IATs]) (1, 15, 16). The domain organization of IATs resembles
that of the classical type Va AT proteins but with the passenger and translocation
domains in opposite locations within the primary amino acid sequence. Two well-
studied proteins from the type Ve subclass include intimin from E. coli and invasin from
enteropathogenic Yersinia species (17–19). Intimin is an adhesin expressed by entero-
pathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) and contributes to the
formation of actin pedestals leading to attaching and effacing lesions in the gut (20, 21).
Invasin-mediated adherence of enteropathogenic Yersinia to host cells triggers the
envelopment of bacterial cells through host cell-mediated autophagy and plays an
early role in the infection cycle by binding directly to host �1-integrins (22, 23).

The enormous volume of data available from genome sequencing has facilitated the
identification of IATs from different phyla of bacteria (17, 24). However, many IATs still
remain to be identified and characterized. In this study, we sought to identify the
complement of IAT proteins found in E. coli and to characterize their phenotypic
properties. To this end, we first probed 126 completely sequenced E. coli genomes
available in the NCBI database for the presence of genes encoding IAT proteins. Next,
we cloned, expressed, and characterized the function of three new IAT proteins, one of
which was also examined at the regulatory level. Overall, this study has defined the set
of IAT proteins found in E. coli.

RESULTS
E. coli possesses a diverse range of IAT genes. The �-barrel domain represents the

most conserved region of IAT proteins, and the presence of an intimin-like �-barrel
domain defines the IAT family (18, 24). As such, we used the �-barrel amino acid
sequences of intimin and invasin to probe a database of annotated protein sequences
from 126 completely sequenced E. coli genomes (see Data Set S1 in the supplemental
material). The subsequent list of hits represented proteins that contained the IAT
�-barrel Pfam domain (PF11924). The amino acid sequences of these �-barrel domains
were aligned, revealing seven distinct groups of IAT proteins (Fig. S1). Among these,
intimin (encoded by the eaeA gene) has been very well characterized and thus was not
examined further. The remaining IATs, the genes for which were all present in the
environmental E. coli strain SMS-3-5, were selected for further study (Table 1). The six
IAT genes from SMS-3-5 include the previously studied fdeC and yeeJ genes (25–27) and
four uncharacterized IAT genes found at different locations on the chromosome and
renamed as follows: EcSMS35_1920 (iatA), EcSMS35_2661 (iatB), EcSMS35_4024 (iatC),
and EcSMS35_4876 (iatD).

Analysis of the six IAT genes in E. coli. The prevalence of the six IAT genes was
assessed in the 126 completely sequenced E. coli genomes. A complete gene was found

TABLE 1 E. coli SMS-3-5 type Ve AT proteins

Locus tag
GenBank
accession no. Gene

Gene size
(bp)

Protein size
(aa)a

EcSMS35_0331 ACB16013.1 fdeC 4,245 1,415
EcSMS35_1146 ACB16711.1 yeeJ 7,077 2,359
EcSMS35_1920 ACB19099.1 iatA 1,395 465
EcSMS35_2661 ACB17431.1 iatB 2,175 725
EcSMS35_4024 ACB17037.1 iatC 8,802 2,934
EcSMS35_4876 ACB20062.1 iatD 5,241 1,747
aaa, amino acids.
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in 67% of strains for fdeC (84/126), 35% for yeeJ (44/126), 99% for iatA (124/126), 35%
for iatB (44/126), 3% for iatC (4/126), and 6% for iatD (7/126). A breakdown of the
prevalence of the genes within each phylogroup is depicted in Fig. 1A. To extend this
analysis, we examined the well-defined E. coli Reference (ECOR) collection of 72 strains
using a PCR screening approach. The ECOR collection comprises strains isolated from a
variety of hosts and locations and is representative of the ecological and phylogenetic
diversity of the E. coli species. The correct-sized PCR product was found in 83% of
strains for the fdeC gene, 36% for yeeJ, 90% for iatA, 36% for iatB, 19% for iatC, and 10%
for iatD (Data Set S2).

Next, we examined the genomic context of each of the E. coli IAT genes. The six IAT
genes occur at different chromosomal locations; note that the position of each ortho-
logue is conserved in all of the strains examined (Fig. S2). Both iatA and iatD were highly
conserved (amino acid identity of �98%). In contrast, the iatB and iatC genes varied in
size, with the predicted IatB protein ranging from 725 to 743 amino acids (amino acid
identity of �89%) and the predicted IatC protein ranging from 2,459 to 2,965 amino
acids (amino acid identity of �78%). IatB and IatC possessed a highly conserved signal
sequence and translocation domain, respectively, with their variability attributed solely
to sequence changes in the passenger domain.

The six IAT genes from SMS-3-5 encode proteins with similar domain organi-
zations. A schematic diagram representing the domain organizations of the six IAT
proteins from SMS-3-5 is shown in Fig. 1B. The signal sequence of each protein is
followed by an IAT �-barrel Pfam domain (PF11924). Modeling of the �-barrel domains
from all six proteins revealed that they are very similar in size (243 to 246 amino acids)
and are predicted to fold into a 12-stranded �-barrel structure. Overall, the �-barrel
domains of these proteins share 34 to 88% amino acid identity. A comparative amino
acid alignment against the �-barrel sequences from subtype Va AT proteins (Ag43,
UpaH, Sat, and Vat) revealed that the sequences of each subgroup cluster indepen-
dently and are highly variable between the different subgroups of AT proteins (Fig. S3).

Analysis of the C-terminal passenger domain of each IAT on InterPro revealed that
FdeC, YeeJ, IatC, and IatD contain various numbers of Big1 repeats, which are typical of
IATs. Nonetheless, structural modeling of the passenger domains of IatA and IatB on
Phyre2 suggests that they possess structural characteristics (e.g., a fibronectin III

FIG 1 (A) Prevalence of IAT-encoding genes within phylogroups A (n � 40), B1 (n � 20), B2 (n � 39), C
(n � 2), D (n � 4), E (n � 18), and F (n � 3). (B) Schematic diagram of E. coli SMS-3-5 IAT proteins.
Predicted domains are shown as colored boxes (orange, signal sequence; green, LysM domain; blue,
�-barrel domain; purple, passenger domain; yellow, C-type lectin domain). aa, amino acids.
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domain) similar to those of other bacterial immunoglobulin superfamily (IgSF) domains.
The passenger domains of the three larger proteins (YeeJ, IatC, and IatD) are capped
with a C-type lectin domain. Additionally, a LysM domain is present at the N-terminal
end of the �-barrel domain of these three larger proteins.

Cloning and expression of IAT genes from SMS-3-5. In order to examine the
functional properties of the four uncharacterized IAT proteins, the iatA, iatB, iatC, and
iatD genes were amplified from SMS-3-5 and cloned into the isopropyl-�-D-1-
thiogalactopyranoside (IPTG)-inducible pSU2718 expression vector to generate plas-
mids pIatA, pIatB, pIatC, and pIatD, respectively. A list of strains and plasmids used is
provided in Data Set S3. The plasmids were transformed into the E. coli K-12 flu deletion
strain MS427, which is unable to mediate cell aggregation and biofilm formation
normally associated with Ag43 expression (28). Specific antisera were generated against
the C-terminal passenger domains of IatB, IatC, and IatD and used to confirm their
expression by Western blot analysis of whole-cell lysates prepared from IPTG-induced
cultures grown overnight (Fig. S4). These experiments resulted in the detection of
bands corresponding to full-length IatB, IatC, and IatD proteins as well as lower-
molecular-weight bands presumed to be breakdown products based on their specific
antibody cross-reactivity. Despite our efforts, we were unable to generate an IatA
antiserum of sufficient quality and could not reliably detect the expression of the IatA
protein. Hence, only IatB, IatC, and IatD were further characterized.

IatB, IatC, and IatD are located on the cell surface. To examine if the IAT proteins
were localized to the outer membrane, immunofluorescence microscopy was per-
formed using antisera specific to each protein. A strong fluorescence signal was
observed for MS427(pIatB), MS427(pIatC), and MS427(pIatD), suggesting that these
three proteins were effectively translocated to the cell surface in our recombinant E. coli
strain (Fig. 2).

Phenotypic properties of IatB, IatC, and IatD. AT proteins are often associated
with functions including cell aggregation, adhesion to extracellular matrix (ECM) pro-
teins, and biofilm formation. While overexpression of the IatB, IatC, and IatD IAT
proteins in MS427 did not lead to autoaggregation or adhesion to ECM proteins,
all three IATs promoted strong biofilm formation. We first assessed this phenotype
using a static microtiter plate biofilm assay, where MS427(pIatB), MS427(pIatC), and
MS427(pIatD), but not the vector control strain MS427(pSU2718), were able to form a
biofilm (Fig. 3A). The ability of the three IAT proteins to mediate biofilm formation was
further explored using the gfp-tagged OS56 strain (a derivative of MS427) in a
continuous-flow chamber setup, which permitted the distribution of cells within the
biofilm to be monitored using confocal laser scanning microscopy. Consistent with the
microtiter plate biofilm analyses, OS56(pIatB), OS56(pIatC), and OS56(pIatD) formed a
significant biofilm with higher total biovolume, substratum coverage, and mean thick-
ness (P � 0.0001) than for the vector control strain after 16 h of growth in M9 minimal
medium supplemented with 1 mM IPTG (Fig. 3B). These results demonstrate that IatB,
IatC, and IatD are able to mediate biofilm formation when overexpressed in a recom-
binant K-12 background.

Identification of genes involved in regulation of iatB. Based on the high prev-
alence of iatB in E. coli phylogroup B2 (37/39 strains) (Fig. 1A), we selected this gene
for further analysis and attempted to understand its regulation in SMS-3-5. The SMS-3-5
strain carries a large 130-kb plasmid (pSMS35_130; GenBank accession number
CP000971.1) containing nine antibiotic resistance genes [aadA2, aph(3=)-la, strA, strB,
blaTEM-1B, catA2, sul2, tet(A), and drfA14). To enable genetic manipulation of this strain,
we first cured plasmid pSMS35_130 using a counterselectable vector strategy (29) to
generate the strain SMS-3-5c.

To investigate the genetic basis of iatB regulation, we generated a chromosomal iatB
promoter-lacZ reporter fusion strain (SMS-3-5clacIZ iatB::lacZ). SMS-3-5clacIZ iatB::lacZ
was subjected to transposon mutagenesis using a mini-Tn5 cassette, generating ap-
proximately 30,000 transposon mutants that were screened for blue color development
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on lysogeny broth (LB) plates containing 5-bromo-4-chloro-3-indolyl-�-D-galacto-
pyranoside (X-gal). In this screen, we identified 12 colonies that were dark blue,
indicating increased iatB promoter activity, and this was confirmed by their increased
�-galactosidase activity compared to that of the SMS-3-5clacIZ iatB::lacZ parent strain
(Fig. 4A). Further analysis revealed that the mutants all contained independent inser-
tions within three regions of the leu operon: (i) three insertions in an intergenic region
between the leuL and leuO genes, (ii) one insertion within the leuL gene, and (iii) eight
insertions in an intergenic region between the leuL and leuA genes (Fig. 4B). Detailed
analysis of the 12 Tn5 insertions revealed that they were all oriented in the same
direction, with the chloramphenicol resistance gene placed in the same orientation as
the downstream leuO gene. In previous studies, we have shown that the promoter of
the chloramphenicol resistance gene in this Tn5 transposon can drive the transcription
of a downstream gene if the insertion position is favorable (30, 31). Hence, we
hypothesized that the Tn5 insertions caused increased transcription of the leuO gene,
which in turn resulted in enhanced iatB promoter activity.

iatB mRNA transcript levels are affected by the global regulator LeuO. To
directly examine the effect of LeuO on iatB expression, the leuO gene was mutated in
SMS-3-5c to generate strain SMS-3-5cleuO. In addition, the leuO gene was also PCR

FIG 2 IatB, IatC, and IatD are localized at the cell surface when overexpressed in the MS427 background.
Shown are images from phase-contrast and immunofluorescence microscopy using specific antisera
against proteins IatB (A), IatC (B), and IatD (C). Positive reactions indicating the surface localization of IatB,
IatC, and IatD were detected in MS427 (bottom) but not in the MS427(pSU2718) vector control (top).
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amplified, cloned into the expression vector pSU2718 (to generate the plasmid pLeuO),
and transformed into the SMS-3-5cleuO mutant. The expression of iatB was first
examined in SMS-3-5c, SMS-3-5cleuO(pSU2718), SMS-3-5cleuO(pLeuO), and SMS-3-
5cleuO(pIatB) by quantitative reverse transcription PCR (qRT-PCR) (Fig. 4C). In this assay,
overexpression of leuO led to an �15-fold increase in relative iatB transcript levels,
whereas iatB transcript levels in the SMS-3-5cleuO(pSU2718) vector control strain were
similar to those in wild-type SMS-3-5c. In comparison, the level of the iatB transcript in
SMS-3-5c(pIatB) was �144-fold higher than in SMS-3-5c. Next, the expression of IatB
was examined by direct detection of the protein using Western blotting (Fig. 4D).
Although the IatB protein was clearly detected in SMS-3-5c(pIatB), it was not detected
in any of the other strains. Taken together, these results suggest that overexpression of
leuO increases iatB transcript levels in SMS-3-5c, but this increase in transcription does
not translate into detectable levels of the IatB protein under the experimental condi-
tions employed in this study.

DISCUSSION

Proteins secreted by the type V secretion system exhibit extensive diversity, and we
show here that this variation extends to IATs in E. coli. The three IAT proteins charac-
terized in this study, IatB, IatC, and IatD, all promoted biofilm formation, suggesting that
they may contribute to surface colonization under certain environmental conditions. By
focusing on the regulation of iatB, which displayed a high prevalence in phylogroup B2
strains frequently associated with extraintestinal infection, we also identified LeuO as a
putative regulator of IatB.

The presence of a short C-terminal passenger domain in IAT proteins, as observed
for IatA, is not uncommon. IAT proteins are almost exclusively found among the
Gammaproteobacteria, and many IATs possess short C-terminal extensions that share
structural characteristics with bacterial immunoglobulin superfamily (IgSF) domains
(e.g., a fibronectin III domain) (24, 32). These domains can participate in protein-protein
interactions and have been identified in factors that mediate the translocation of
protein substrates across the outer membrane (32). Modeling of the IatA passenger

FIG 3 IatB, IatC, and IatD mediate biofilm formation. (A) Biofilm formation by E. coli strain MS427 in microtiter
plates harboring plasmids pSU2718 (vector control), pIatB, pIatC, and pIatD. All strains were grown in M9 minimal
medium in the presence of 1 mM IPTG to induce IAT protein expression, and plates were incubated at either 28°C
or 37°C. Bar charts represent the average absorbance values at 595 nm, and error bars show the standard deviations
calculated from three separate experiments (****, P � 0.0001). (B) Confocal laser scanning microscopy images of
biofilms formed on plastic coverslips under continuous-flow conditions 16 h after inoculation with OS56(pSU2718)
(vector control), OS56(pIatB), OS56(pIatC), and OS56(pIatD). The images represent horizontal sections within each
biofilm. Displayed at the top and right of each image are vertical sections representing the xz and yz planes, at the
positions indicated by the green and red lines, respectively.
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domain in Phyre2 suggests that it possesses structural characteristics similar to those of
a fibronectin III domain (data not shown). IatA is also the most common IAT protein of
E. coli, and by analogy to other proteins that contain IgSF domains, it is possible that
IatA could assist in the translocation of other proteins across the outer membrane.

IatB is an orthologue of SinH from Salmonella and shares 74% amino acid identity.
Analysis of this locus revealed that the coding sequences immediately downstream of
iatB (i.e., EcSMS35_2660) and sinH (i.e., sinI) also share sequence similarity and encode
predicted proteins that lack a �-barrel domain. These gene clusters are analogous to
the well-characterized zirTSU operon found in Salmonella. The ZirT protein shares a

FIG 4 Effect of LeuO on iatB transcription in SMS-3-5c. (A) �-Galactosidase activity (in Miller units) of each
mutant in comparison to the SMS35clacIZ iatB::lacZ control strain. (B) Schematic diagram depicting the
location and orientation of the Tn5 insertions. (C) qRT-PCR showing the relative fold differences of iatB
transcript levels in SMS-3-5c, SMS-3-5cleuO(pSU2718), SMS-3-5cleuO(pLeuO), and SMS-3-5cleuO(pIatB) (**,
P � 0.0069 to 0.009; ns, not significant). (D) Western blot analysis of IatB in the respective strains. A band
corresponding to IatB was detected only in the SMS-3-5cleuO(pIatB) strain.
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similar domain organization with SinH and IatB: it contains an N-terminal IAT �-barrel
domain and a C-terminal passenger containing IgSF domains. In addition, ZirT serves as
a platform for the translocation of ZirS and ZirU (33, 34), and thus, it is possible that IatB
(and SinH) could possess similar functional properties. Our results demonstrate that IatB
is able to mediate biofilm formation independent of the downstream EcSMS35_2660
protein. However, whether IatB also acts as a transport platform for other proteins
remains an intriguing subject for further investigation.

The typical IAT passenger domain contains variable repeats of Big1 domains with a
similar fold despite their low sequence similarity (17, 27). Of the four new IAT proteins
identified in this study, IatB and IatC contain passenger domains of various lengths. The
passenger domains of some IATs, such as the invasin-like molecule of Yersinia ruckeri,
contain Ig domains that are almost identical (35). The presence of tandem sequence
repeats can result in misassembly of a gene sequence due to erroneous sequencing
analyses (36). However, we found no evidence to support the idea that there is
variability in the number of tandem repeats in IatC or IatD. Other AT proteins, like UpaH
and Ag43, exhibit sequence variation that results in altered levels of biofilm formation
by different variants (13, 37). Thus, it is possible that different variants of IatB and IatC
may possess different functional properties, such as various degrees of biofilm forma-
tion.

We showed that IatB, IatC, and IatD were able to mediate biofilm formation when
expressed in a recombinant K-12 strain. Like intimin and invasin, bioinformatic analysis
predicts that the passenger domains of IatC and IatD are capped with a C-type lectin
domain. The C-type lectin domain of intimin mediates adhesion of enteropathogenic E.
coli strains to the intestinal epithelium via interaction with its receptor Tir, whereas the
domain found in invasin mediates binding to �1-integrins. Thus, it is possible that the
C-type lectin domains of IatC and IatD could also recognize specific receptors on host
surfaces that remain to be identified. The IatC and IatD proteins also contain a LysM
domain, which has also been identified in other large IAT proteins (26, 38). The LysM
domain is found in many peptidoglycan-binding proteins and may contribute to their
localization and stability in the outer membrane (38, 39).

We also sought to understand the regulation of the iatB gene. The regulation of AT
protein expression in E. coli is complex; for example, many AIDA-I AT proteins are not
expressed during standard laboratory growth, and multiple control mechanisms have
been described (7, 8, 40). Consistent with this, we were unable to detect expression of
the IAT proteins in wild-type SMS-3-5 via Western blot analysis following static or
shaking growth in either LB or M9 minimal medium at 28°C, 37°C, or 42°C (data not
shown). Using a mutagenesis approach, we identified LeuO as a potential activator of
iatB. However, while overexpression of LeuO led to an increase in the iatB transcript in
SMS-3-5c, direct expression of the protein could not be detected via Western blotting.
This may have been due to its low level of expression or instability or even the lack of
additional regulatory factors that are required for its optimal expression. LeuO is a
LysR-type transcriptional regulator (LTTR) that contains an N-terminal helix-turn-helix
DNA-binding domain (41) and can be found in other members of the Enterobacteri-
aceae, including Salmonella, Shigella, and Yersinia spp. (41). LeuO is involved in coor-
dination of the bacterial stress response, and expression of LeuO is increased upon
entry into stationary phase (42–44). Additionally, LeuO activates several cryptic fimbriae
of E. coli, and overexpression of LeuO in E. coli led to increased cell adhesion and biofilm
formation (42). Our findings are consistent with these phenotypic properties, suggest-
ing that further work is now required to understand the molecular mechanisms by
which LeuO controls IatB expression and to determine if LeuO plays a role in the
coordinated regulation of other IATs.

Overall, this study has identified the complement of IAT proteins present in E. coli
and provides new insight into their diversity, function, and regulation. Four of these IAT
proteins were new, and three were functionally characterized. We found that the IATs
IatB, IatC, and IatD are surface exposed, mediate biofilm formation, and thus may
comprise part of the arsenal of factors used by E. coli to colonize different surfaces.
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Further work is now needed to understand the molecular mechanisms that control
their expression.

MATERIALS AND METHODS
Bioinformatics analysis. The E. coli database was represented by 126 published complete genomes

available in the NCBI database. Sequence comparisons were examined using the fasta36 software
package (45). The database of annotated proteins from each strain was generated using the cds_ex-
tractor v0.7.1 tool (46) and probed using fasta36 to identify putative �-barrel domain-containing IAT
proteins. The context of the �-barrel domain was examined in each extracted protein sequence to ensure
that it was located at the N-terminal end of the protein. The prevalence of genes was determined using
tfastx36 and a cutoff of �75% identity over an 80% amino acid sequence alignment. Any proteins lacking
an N-terminal signal sequence or the �-barrel domain were discarded. Multilocus sequence typing
(MLST) analysis was performed using the sequences of seven housekeeping genes as previously
described (47). The E. coli strains were classified into major phylogroups (A, B1, B2, D, E, and F) as
previously described (48). Briefly, strains were sorted into the different phylogroups based on an in silico
analysis of the arpA, chuA, yjaA, and TSPE4.C2 loci using fasta36 with a cutoff of �90% identity over a
95% nucleotide sequence alignment. The genomic context of genes was analyzed and drawn with
Easyfig (49). Alignments were constructed in MEGA7 (50) using the Muscle algorithm with default
settings. Trees were produced with MEGA7 using the maximum likelihood method with default settings
and supported with 100 bootstraps. The Conserved Domain Database (CDD) (51), InterPro (52), and
Phyre2 (53) were used to analyze protein structures, and SignalP4.1 (54) was used to predict the presence
of signal sequences.

Bacterial strains and culture conditions. Strains were routinely cultured on solid or in liquid
lysogeny broth (LB) or M9 minimal medium and supplemented with the following antibiotics where
appropriate: gentamicin (Gent) (20 �g/ml), ampicillin (Amp) (100 �g/ml), kanamycin (Kan) (50 �g/ml),
and chloramphenicol (Cm, 30 �g/ml). Expression of genes was induced with either 1 mM isopropyl-�-
D-1-thiogalactopyranoside (IPTG) or 0.2% L-arabinose when required. The bacterial strains and plasmids
used in this study are outlined in Data Set S3 in the supplemental material.

Molecular methods. Methods for DNA extraction, purification, sequencing, and PCR were performed
as previously described (8, 55, 56). Deletion mutants were constructed using a modified � red recom-
binase gene replacement system as described previously (57–59). For RNA extraction, exponentially
growing cells grown in LB (500 �l) (optical density at 600 nm [OD600] � 0.6) were stabilized in 1 ml of
RNAprotect bacterial reagent (Qiagen). Subsequent RNA extraction, DNase I treatment, first-strand cDNA
synthesis, and qRT-PCR were performed as previously described (60). Gene expression levels were
determined with the 2���CT method (61), with relative fold differences expressed against wild-type
SMS-3-5. All experiments were performed in three independent replicates. RT-PCRs were performed with
primers specific for each gene. The full list of primers used is shown in Data Set S4.

Generation of polyclonal antibodies. A fragment of the iatA-D genes corresponding to the
C-terminal passenger domain was PCR amplified from SMS-3-5, cloned as an N-terminal 6�His fusion
protein in plasmid pMCSG7 via ligation-independent cloning (LIC) (62), and transformed into E. coli
BL21(DE3). The expression of each of the 6�His-tagged fusion proteins was induced with 1 mM IPTG and
purified on a Ni-nitrilotriacetic acid (NTA) spin column (Qiagen). The purified proteins were quantified
with a bicinchoninic acid protein assay kit (Sigma) and assessed for purity via SDS-PAGE. These purified
proteins were used to generate polyclonal antisera in rabbits at the Walter and Eliza Hall Institute of
Medical Research Antibody Facility.

Protein sample preparation and immunoblotting. Whole-cell lysates were prepared by pelleting
1 ml of OD600-standardized cells and resuspending the cells in 50 �l water and 50 �l 2� SDS loading
buffer (100 mM Tris-HCl, 4% [wt/vol] SDS, 20% [vol/vol] glycerol, 0.2% [wt/vol] bromophenol blue [pH
6.8]). SDS-PAGE and transfer of proteins onto polyvinylidene difluoride (PVDF) membranes for Western
blot analysis were performed as previously described (63). Polyclonal antisera specific for each protein
were used to probe for the respective proteins, and alkaline phosphatase-conjugated anti-rabbit antisera
(Sigma-Aldrich) were used as the secondary antibodies.

Immunofluorescence. Cultures grown overnight and supplemented with the appropriate antibiotics
and 1 mM IPTG were fixed to an OD600 of 0.4, spotted onto a glass slide, and allowed to dry. The cells
were fixed with 4% paraformaldehyde (PFA), blocked with 0.5% bovine serum albumin (BSA), and
incubated with a 1:100 dilution of the appropriate primary antibody in phosphate-buffered saline (PBS)
for 30 min. The cells were washed and incubated with secondary goat anti-rabbit antiserum coupled to
fluorescein isothiocyanate (FITC) diluted 1:500 in PBS. The slides were washed and air dried, mounted
with Prolong gold antifade reagent (Life Technologies), and examined under a Zeiss Axioplan 2
epifluorescence light microscope.

Phenotypic assays. Biofilm assays were performed in 96-well PVC plates (Corning) as previously
described (64). Statistical analyses were performed using unpaired two-tailed Student’s t test. Flow cell
experiments were performed as previously described (65, 66). Biofilm thickness, coverage, and total
biomass measurements were collected from 10 z-stacks for each strain and analyzed with the COMSTAT
program (67). The nonparametric Kruskal-Wallis test within GraphPad Prism 7 software was used for
statistical analysis; P values of �0.05 were considered significant. �-Galactosidase assays were performed
as previously described (68). Each strain was assessed in quadruplicate, and experiments were performed
in two independent replicates.
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Transposon mutagenesis. Transposon mutagenesis of SMS-3-5lacIZ iatB::lacZ was performed using
the Epicenter EZ::Tn5 transposome construction kit as previously described (60). The transposon insertion
site of the mutants was identified via 2-step arbitrary PCR as previously described (69).

Curing of plasmid pSMS35_130. Curing of the pSMS35_130 plasmid was performed as previously
described (29). Briefly, the incompatibility regions (IncFIA and IncFII) and antitoxins (sok, vagC, and pemI)
from pSMS35_130 were synthesized (Epoch Life Science Inc.) and incorporated directly into plasmid
pMDP4, which contained a chloramphenicol resistance gene cassette, the gfp gene, and the sacB gene.
This plasmid is referred to as pSMS35_130cure. Plasmid pSMS35_130cure was electroporated into
SMS-3-5, and transformants were plated on LB agar containing chloramphenicol. Colonies were screened
for fluorescence indicating the presence of the pSMS35_130cure plasmid. After one round of subculture,
cells were plated onto LB agar containing 5% sucrose for subsequent selection of plasmid-free cells.
Plasmid loss was confirmed by antibiotic sensitivity testing.
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