Skip to main content
. Author manuscript; available in PMC: 2020 Apr 1.
Published in final edited form as: J R Stat Soc Ser C Appl Stat. 2018 Dec 23;68(3):771–791. doi: 10.1111/rssc.12334

Table 1.

Summary of the prediction performance evaluation of the proposed method and the LVCF method based on a landmark PH model. We consider mean squared error (MSE) and survival proportion difference (SPD) regarding the predicted survival probability π^i(u;tij*), and the area under an estimated ROC curve (AUC). The size of the training dataset is n = 200 or n = 500; that of the test dataset is 200. Means of the quantities over N = 100 simulation replicates are reported.

n=200 proposed metdod LVCF metdod
s u SPD(×100) MSE(×100) AUC SPD(×100) MSE(×100) AUC
2 3 0.024 0.479 0.810 1.520 0.652 0.806
2 5 −0.159 0.469 0.868 3.345 0.787 0.864
4 3 −0.250 0.554 0.843 4.379 0.632 0.843
4 5 −0.603 0.530 0.902 4.119 0.669 0.902
6 3 −1.263 1.109 0.852 5.212 1.217 0.854
6 5 −1.472 1.021 0.896 4.302 1.009 0.899
n=500 proposed method LVCF method
s u SPD(×100) MSE(×100) AUC SPD(×100) MSE(×100) AUC
2 3 −0.280 0.344 0.815 0.595 0.554 0.813
2 5 −0.843 0.386 0.873 3.014 0.687 0.872
4 3 −1.034 0.345 0.851 4.061 0.464 0.852
4 5 −0.377 0.298 0.902 4.614 0.533 0.903
6 3 −0.209 0.477 0.861 6.425 0.768 0.862
6 5 0.156 0.361 0.905 5.788 0.753 0.905