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Abstract

The microbial communities that inhabit the distal gut of humans and other mammals exhibit

large inter-individual variation. While host genetics is a known factor that influences gut

microbiota composition, the mechanisms underlying this variation remain largely unknown.

Bile acids (BAs) are hormones that are produced by the host and chemically modified by gut

bacteria. BAs serve as environmental cues and nutrients to microbes, but they can also

have antibacterial effects. We hypothesized that host genetic variation in BA metabolism

and homeostasis influence gut microbiota composition. To address this, we used the Diver-

sity Outbred (DO) stock, a population of genetically distinct mice derived from eight founder

strains. We characterized the fecal microbiota composition and plasma and cecal BA pro-

files from 400 DO mice maintained on a high-fat high-sucrose diet for ~22 weeks. Using

quantitative trait locus (QTL) analysis, we identified several genomic regions associated

with variations in both bacterial and BA profiles. Notably, we found overlapping QTL for Turi-

cibacter sp. and plasma cholic acid, which mapped to a locus containing the gene for the

ileal bile acid transporter, Slc10a2. Mediation analysis and subsequent follow-up validation

experiments suggest that differences in Slc10a2 gene expression associated with the differ-

ent strains influences levels of both traits and revealed novel interactions between Turici-

bacter and BAs. This work illustrates how systems genetics can be utilized to generate

testable hypotheses and provide insight into host-microbe interactions.
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Author summary

Inter-individual variation in the composition of the intestinal microbiota can in part be

attributed to host genetics. However, the specific genes and genetic variants underlying

differences in the microbiota remain largely unknown. To address this, we profiled the

fecal microbiota composition of 400 genetically distinct mice, for which genotypic data is

available. We identified many loci of the mouse genome associated with changes in abun-

dance of bacterial taxa. One of these loci is also associated with changes in the abundance

of plasma bile acids—metabolites generated by the host that influence both microbiota

composition and host physiology. Follow up validation experiments provide mechanistic

insights linking host genetic differences, with changes in ileum gene expression, bile acid-

bacteria interactions and bile acid homeostasis. Together, this work demonstrates how

genetic approaches can be used to generate testable hypothesis to yield novel insight into

how host genetics shape gut microbiota composition.

Introduction

The intestinal microbiota has profound effects on host physiology and health [1–3]. The com-

position of the gut microbiota is governed by a combination of environmental factors, includ-

ing diet, drugs, maternal seeding, cohabitation, and host genetics [4–7]. Together, these factors

cause substantial inter-individual variation in microbiota composition and modulate disease

risk [8,9]. Alterations in the composition of the microbiota are associated with a spectrum of

cognitive, inflammatory and metabolic disorders [10–12], and a number of bacterial taxa have

been causally linked with modulation of disease [13–15]. A major challenge in the field is deci-

phering how host genetics and environmental factors interact to shape the composition of the

gut microbiota. This knowledge is key for designing strategies aimed at modifying gut micro-

biota composition to improve health outcomes.

Several mouse and human studies have examined the role of host genetics in shaping the

composition of the gut microbiota [16]. Mouse studies comparing gut bacterial communities

from inbred mouse strains [17,18] and strains harboring mutations in immune-related genes

[19–22] support this notion. Additionally, quantitative trait locus (QTL) analyses in mice have

identified genetic regions associated with the abundance of several bacterial taxa and commu-

nity structure [23–26]. Twin studies and genome-wide association studies (GWAS) in humans

have identified heritable bacterial taxa and SNPs associated with specific gut microbes. While

comparing these studies is often difficult due to differences in environmental variables among

populations, some associations are consistently detected among geographically discrete popu-

lations, such as the association between Bifidobacterium abundance and the lactase (LCT) gene

locus [27–29], indicating the abundance of specific taxa is influenced by host genetic variation.

Gut microbes and the host communicate through the production and modification of

metabolites, many of which impact host physiology [30–34]. Bile Acids (BAs) are host-derived

and microbial-modified metabolites that regulate both the gut microbiome and host metabo-

lism [35–37]. BAs are synthesized in the liver from cholesterol, stored in the gallbladder and

are secreted in the proximal small intestine where they facilitate absorption of fat-soluble vita-

mins and lipids. Once in the intestine, BAs can be metabolized by gut bacteria through differ-

ent reactions, including deconjugation, dehydroxylation, epimerization, and dehydrogenation,

to produce secondary BAs with differential effects on the host [33,35]. In addition to their

direct effects on the host, BAs shape the gut microbiota composition through antimicrobial

activities [38,39]. The detergent properties of BAs cause plasma membrane damage. The
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bactericidal activity of a BA molecule corresponds to its hydrophobicity [40]. Additionally, the

microbiota modulates primary BA synthesis through regulation of the nuclear factor FXR

[41]. Thus, we hypothesized that host genetic variation associated with changes in BA homeo-

stasis mediates alterations in gut microbiota composition.

To investigate how genetic variation affects gut microbiota and BA profiles, we used the

Diversity Outbred (DO) mouse population, which is a heterogenous population derived from

eight founder strains: C57BL6/J (B6), A/J (A/J), 1291/SvImJ (129), NOD/ShiLtJ (NOD), NZO/

HiLtJ (NZO), CAST/EiJ (CAST), PWK/PhJ (PWK), and WSB/EiJ (WSB) [42,43]. These eight

strains capture a large breadth of the genetic diversity found in inbred mouse strains. Addi-

tionally, the founder strains harbor distinct gut microbial communities and exhibit disparate

metabolic responses to diet-induced metabolic disease [18,44,45]. The DO population is main-

tained by an outbreeding strategy aimed at maximizing the heterozygosity of the outbred

stock. The genetic diversity and large number of generations of outbreeding make it an ideal

resource for high-resolution genetic mapping of microbial and metabolic traits [43].

We characterized the intestinal microbiota composition and plasma and cecal BA profiles

in ~400 genetically distinct DO mice fed a high-fat/high-sucrose diet for ~22 weeks and per-

formed quantitative trait loci (QTL) analysis to identify host genetic loci associated with these

traits. Specifically, we focused our analysis on potentially pleiotropic loci, which we defined as

a single genetic locus that associates with both bacterial and BA traits. Our analysis revealed

several instances of bacterial and metabolite traits attributed to the same DO founder haplo-

types mapping to the same position of the mouse genome, including a locus associated with

plasma BA levels and the disease-modulating organism Akkermansia muciniphila. Addition-

ally, we identified the ileal BA transporter Slc10a2 as a candidate gene that regulates both the

abundance of Turicibacter sp. and plasma levels of cholic acid.

Results and discussion

Phenotypic variation among Diversity Outbred (DO) mice fed high-fat and

high-sucrose diet

We investigated the impact of genetic variation on gut microbiota composition and bile acid

(BA) profiles using a cohort of ~400 DO mice maintained on a high-fat high-sucrose diet (45%

kcal from fat and 34% from sucrose) for ~22 weeks (range 21–25 weeks), starting at weaning.

We previously showed that this diet elicits a wide range of metabolic responses in the eight

founder strains that are associated with microbiome changes [18,46]. Furthermore, we incor-

porated in our analyses previously published clinical weight traits collected from the same DO

mice [47]. All animals were individually housed throughout the duration of the study to mea-

sure food intake and minimize microbial exchange.

We performed LC-MS/MS analyses of plasma and cecal contents to assess relative variation

in the levels of 27 BAs. Both plasma and cecal bile acids were measured to provide a compre-

hensive picture of systemic BA homeostasis. There was substantial variation in the plasma and

cecal BA profiles across the 384 mice (Fig 1A and 1B; S1 Table). Additionally, we examined

gut microbiota composition (n = 399) using 16S rRNA gene amplicon sequencing of DNA

extracted from fecal samples collected at the end of the experiment. Within the cohort, there

were 907 unique Exact Sequence Variants (ESVs), (100% operational taxonomic units defined

with dada2 [48]), which were agglomerated into 151 lower taxonomic rankings (genus, family,

order, class, phyla). The microbial traits represented each of the major phyla found in the

intestine and the relative abundance of these phyla was highly variable among the DO mice

(Fig 1C). For instance, the abundance of taxa classified to the Bacteroidetes phylum ranged

from 1.17–89.28%.
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For subsequent analysis, we identified a core measurable microbiota (CMM), which we defined

as taxon found in at least 20% of the mice [24]. This was done to remove the effects of excessive

variation in the data due to bacterial taxa that were low abundance and/or sparsely distributed. In

total, the CMM was comprised of 86 ESVs and 42 agglomerated taxa (S2 Table). The CMM traits

represent a small fraction of the total microbes detected, but account for 94.5% of the rarefied

sequence reads, and therefore constitute a significant portion of the identifiable microbiota.

Since mice were received in cohorts (i.e., waves) of 100, we examined whether animals in

each wave were more similar to each other than mice in other waves. The fecal microbiota

composition significantly clustered by wave (p< 0.001, PERMANOVA) and sex (p< 0.001,

PERMANOVA) (S1 Fig). PCA analysis of plasma and cecal bile acids showed a significant

effect of sex, but not wave, on both plasma (p< 0.0001, Kruskal Wallis) and cecal BA profiles

(p< 0.05, Kruskal Wallis) (S2 Fig).

There is substantial evidence implicating gut microbiota and BAs in metabolic disease

development [36,37]. To identify potential relationships among these traits, we performed

Fig 1. Phenotypic variation among Diversity Outbred (DO) mice fed high-fat and high-sucrose diet. (A) Abundance (peak area) of primary

bile acids detected in plasma and (B) cecal contents (n = 384). (C) Distributions of the normalized relative abundance of bacterial phyla

identified in DO fecal microbiota (n = 399).

https://doi.org/10.1371/journal.pgen.1008073.g001
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correlation analysis which yielded many significant associations after FDR correction

(FDR< 0.05) (S3 Table, discussed in S1 Data).

Abundance of gut bacterial taxa and bile acids are associated with host

genetics

To identify associations between regions of the mouse genome and the clinical and molecular

traits discussed above, we performed QTL analysis using the R/qtl2 package [49]. We used sex,

days on the diet, and experimental wave as covariates. We identified 13 significant QTL

(LOD� 7.66; P� 0.05) and 50 suggestive QTL (LOD� 6.80; P� 0.2) for bacterial [36], bile

acid [13], and body weight [1] traits (Fig 2, S4 Table).

Of the microbial QTL, we found 23 QTL for 17 distinct bacterial ESVs from the Bacteroi-

detes and Firmicutes phyla that met the LOD� 6.80 threshold. ESVs with the strongest QTL

(LOD> 8) are classified to the Clostridiales order and map on chr 12 at ~33 Mbp, the Lach-

nospiraceae family on chr 2 at 164 Mbp, and the S24-7 family on chr 2 at ~115 Mbp. We also

identified 12 QTL for microbial taxa collapsed by taxonomic assignment (i.e., genus to phy-

lum). The genera Lactococcus and Oscillospira were also associated with host genetic variation,

which is consistent with previous studies [23,24,50,51].

Similarly, BA QTL mapped to multiple loci spanning the mouse genome and most BA traits

mapped to multiple positions. BA synthesis and metabolism are regulated by multiple host signal-

ing pathways: there are>17 known host enzymes involved in the production of BAs [36], trans-

porters, which play a critical role in maintaining the enterohepatic circulation and BA homeostasis,

and receptors that respond to BA in a variety of host tissues [52–54]. Therefore, it is not surprising

that our results indicate that BA levels are polygenic and shaped by multiple host factors.

To identify instances of overlapping QTL, we applied a less stringent threshold of

LOD� 6.1 (P< 0.5). We observed multiple instances of related BA species associating to the

same genetic locus, indicating the presence of pleiotropic loci. Interestingly, several of these

loci associate with levels of related BA species in different stages of microbial modification. For

example, cecal taurocholic acid (TCA) and plasma CA QTL overlap on chr 7 at 122 Mbp. Like-

wise, QTL for plasma TDCA and cecal DCA, overlap on chr 12 between ~99–104 Mbp. For

the cecal DCA, the WSB founder haplotype was associated with higher levels of this BA, while

the NOD founder haplotype was associated with lower levels. The opposite pattern was

observed for plasma TDCA, where the NOD and WSB haplotype were associated with higher

and lower levels, respectively (S3A and S3B Fig).

We also identified overlapping QTLs on chr 11 at ~71 Mbp for cecal levels of the secondary

BAs lithocholic acid (LCA) and isolithocholic acid (ILCA), the isomer of LCA produced by

bacterial epimerization (S3C Fig). Higher levels of these cecal BAs are associated with the 129

founder haplotype and lower levels are associated with the A/J founder haplotype (S3D and

S3E Fig). We identified the positional candidate gene Slc13a5 (S3F Fig), which is a sodium-

dependent transporter that mediates cellular uptake of citrate, an important precursor in the

biosynthesis of fatty acids and cholesterol [55]. Recent evidence indicates that Slc13a5 influ-

ences host metabolism and energy homeostasis [56–58]. Slc13a5 is a transcriptional target of

pregnane X receptor (PXR) [59], which also regulates the expression of genes involved in the

biosynthesis, transport, and metabolism of BAs [60].

Co-mapping analyses identify novel interactions between bacterial taxa and

bile acid homeostasis

We searched for regions of the chromosome that were associated with both BA and bacterial

abundance, as this may provide evidence of interactions between the traits [61]. We identified
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17 instances of overlapping microbial and BA QTL on 12 chromosomes (LOD� 6.1; P� 0.5).

This QTL overlap indicates there might be QTL with pleiotropic effects on BAs and the

Fig 2. Genetic architecture of quantitative trait loci (QTL) for microbial exact sequence variants (ESVs) and taxa abundance, and plasma and cecal bile acids in

400 Diversity Outbred (DO) mice. The outer layer shows the chromosome location where major tick marks correspond to 25 Mbp. Logarithm of the odds (LOD)

range is shown for each track. Each dot represents a QTL on each chromosome of the mouse genome for a given trait. Grey dots denote QTLs with LOD< 6.8.

Candidate genes discussed in text are denoted.

https://doi.org/10.1371/journal.pgen.1008073.g002
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microbiota, suggest that genetic variation influencing host BA profiles has an effect on compo-

sitional features of the gut microbiota, or genetic-driven variation in microbiota composition

alters BAs. Examples of notable instances of overlapping bacterial and BA QTL, including

Akkermansia muciniphila and Peptostreptococcaceae family are discussed in the Supporting

Information (S1 Data).

We focused our co-mapping analysis on chr 8 at ~ 5.5 Mbp, where Turicibacter sp. QTL

and plasma cholic acid (CA) QTL overlap (Fig 3A and 3B). These traits were particularly inter-

esting because both have been shown to be influenced by host genetics by previous studies.

Turicibacter has been identified as highly heritable in both mouse and human genetic studies

[24,27,45,50], and multiple reports have found differences in CA levels as a function of host

genotype [18,46]. Furthermore, CA levels are influenced by both host genetics and microbial

metabolism since it is synthesized by host liver enzymes from cholesterol and subsequently

modified by gut microbes in the intestine. Notably, these co-mapping traits also share the

same allele effects pattern, where the A/J and WSB haplotypes have strong positive and nega-

tive associations, respectively (Fig 3C and 3D).

To assess whether the trait patterns observed in the DO founder strains correspond to the

observed allelic effects in the QTL mapping, we performed a separate characterization of the

fecal microbiota composition and plasma bile acids in age-matched A/J and WSB animals fed

the HF/HS diet. The founder strain allele patterns inferred from the QTL mapping closely

resembled the observed levels of Turicibacter sp. (Fig 3E) and plasma CA in the founder strains

(Fig 3F), where A/J animals had significantly higher levels of Turicibacter sp. and CA than

WSB animals. However, Turicibacter levels in the founder strains do not completely mirror

the estimated allele effects. This may be due to other genetic factors that also influence Turici-
bacter levels, as this taxa may be influenced by multiple host genes and levels of Turicibacter
have previously been associated on chr 7 [24], 9 and 11 [50] in mice. Furthermore, Turicibacter
and plasma CA were positively correlated in the DO mice (r = 0.43, p = 3.53e-10). This finding

is consistent with a previous study that found positive correlations between Turicibacter and

unconjugated cecal BAs [62]. Taken together, the overlap between the Turicibacter sp. QTL

and plasma CA QTL, along with the similar allele effects pattern, which reflect the values

observed in the founder strains, provide strong evidence that these traits are related and they

are responding to the common genetic driver.

Slc10a2 is a candidate gene for Turicibacter sp. and plasma cholic acid

We searched in the QTL confidence interval for candidate genes via high-resolution associa-

tion mapping on chr 8 and identified SNPs associated with both microbial and BA traits.

Among these we identified SNPs upstream of the gene Slc10a2, which encodes for the apical

sodium-bile transporter (Fig 3G). Slc10a2 is responsible for ~95% of BA reabsorption in the

distal ileum and plays a key role in BA homeostasis [63]. In humans, mutations in this gene are

responsible for primary BA malabsorption, resulting in interruption of enterohepatic circula-

tion of BAs and decreased plasma cholesterol levels [64]. Likewise, Slc10a2-/- mice have a

reduced total BA pool size, increased fecal BA concentrations and reduced total plasma choles-

terol in comparison to wild-type mice [63]. Additionally, a comparison between germ-free

and conventionally-raised mice found that expression of Slc10a2 is downregulated in presence

of the gut microbiota, suggesting microbes may influence the expression of the transporter

[41].

Our analysis identified SNPs associated with levels of Turicibacter sp. and plasma CA at the

QTL peak (Fig 3G). The SNPs with the strongest associations were attributed to the WSB and

A/J haplotypes and fell on intergenic regions near Slc10a2. There is growing evidence that

Genetic determinants of gut microbiota composition and bile acid profiles in mice

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008073 August 29, 2019 7 / 24

https://doi.org/10.1371/journal.pgen.1008073


non-coding intergenic SNPs are often located in or closely linked to regulatory regions, sug-

gesting that they may influence host regulatory elements and alter gene expression [65,66]. To

assess if candidate gene expression patterns in the DO founders corresponds to the estimated

allelic effects in the QTL mapping, we quantified Slc10a2 expression in distal ileum samples

from A/J and WSB mice by quantitative reverse transcriptase PCR (qRT-PCR). A/J mice

exhibited significantly higher expression of Slc10a2 compared to WSB mice (Fig 3H), which is

consistent with estimated allele patterns for the overlapping Turicibacter and plasma CA QTLs

Fig 3. Co-mapping of Turicibacter sp. and plasma cholic acid (CA) QTL on chromosome 8. Association of (A) fecal abundance of Turicibacter sp. and (B) plasma CA

levels on chromosome (chr) 8. The x-axis indicates the position in Mbp along chr 8. The y-axis for the top panel and the y-axis in the bottom panel is the LOD score.

Dashed line corresponds to LOD = 6.11 (P< 0.5). A/J and WSB founder alleles are associated with higher and lower levels of Turicibacter and plasma CA levels,

respectively. Estimated founder strain levels of Turicibacter sp. and plasma cholic acid were inferred in the DO population from the founder strain coefficients observed at

the corresponding QTL on chr 8. The estimated founder strain abundance of (C) Turicibacter and (D) levels of plasma CA in the DO population reflects measured values

observed in founder strains for (E) the abundance of Turicibacter sp. and (F) plasma cholic acid levels (n = 8 mice/genotype, 4 male and 4 female). (G) SNPs (top panel)

and protein coding genes (bottom panel) under the QTL interval. Magenta dots correspond to SNPs with the strongest association where the LOD drop< 1.5 from the top

SNP. (H) Relative expression of Slc10a2 measured in the distal ileum by qRT-PCR in A/J and WSB parental strains (n = 6, 3 male and 3 female). Data are presented as

mean ± SEM; Welch’s t test; � p< 0.05. Correlation p-values adjusted for multiple tests using Benjamini and Hochberg correction. ND–not detected.

https://doi.org/10.1371/journal.pgen.1008073.g003
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on chr 8 (Fig 3A and 3B). Remarkably, several studies have noted concomitant changes in

microbiota composition and Slc10a2 mRNA levels [67–69].

A common genetic driver controls Turicibacter sp. and plasma cholic acid

We mapped QTL for Turicibacter sp. and for plasma CA levels to a common locus on chr 8 at 5–7

Mbp. Since the LOD profiles and allelic effects are highly similar, the QTL may be due to a single

shared locus (pleiotropy) or multiple closely linked loci. We examined this question using a likeli-

hood ratio testing of the null hypothesis of pleiotropy versus the alternative of two independent

genetic regulators of these traits [70]. Analysis of 1000 bootstrap samples resulted in a p-value of

0.531, which is consistent with the presence of a single pleiotropic locus that affects both traits.

We next sought to understand the causal relationships between the microbe and the BA.

We asked whether the relationship between the microbe and BA was causal, reactive or inde-

pendent. To establish the directionality of the relationship, we applied mediation analysis

where we conditioned one trait on the other [71]. When we conditioned Turicibacter sp. on

plasma CA (QTL! BA!Microbe), we observed a LOD drop of 3.2 (Fig 4A and 4B). Like-

wise, when we conditioned the plasma cholic acid on the microbe (QTL!Microbe! BA)

there was a LOD drop of 3.32 (Fig 4C and 4D). The partial mediation seen in both models sug-

gests that the relationship between the microbe and the BA could be bidirectional, where they

exert an effect on one another.

From this analysis, we can hypothesize this relationship can be explained by a pleiotropic

model, where a single locus influences a microbial and a BA trait, and the microbial trait is

also reactive to changes in the BA trait. It is important to note that statistical inference only

partially explains the relationship between the traits and there may be other hidden variables

that may further explain the relationship. The complex relationship depicted by the causal

inference testing is consistent with the interplay between gut microbes and BAs in the intestine

and their known ability to influence the other.

Bile acids inhibit Turicibacter sanguinis growth at physiologically relevant

concentrations

Due to the strong correlative relationship between the QTL, we tested whether there was a

direct interaction between bile acids and Turicibacter. Turicibacter inhabits the small intestine

where BAs are secreted upon consumption of a meal [72,73]. We screened the human isolate

Turicibacter sanguinis for deconjugation and transformation activity in vitro by HPLC/

MS-MS. We found that T. sanguinis deconjugated ~96–100% of taurocholic acid and glyco-

chenodeoxycholic acid (Fig 5A) within 24 hours. It also transformed ~6 and 8% of CA and

CDCA to 7-dHCA and 7-ketolithocholic acid (7-KLCA), respectively (Fig 5B and 5C). Both of

these transformations require the action of the bacterial 7α-hydroxysteroid dehydrogenase.

Based on these results, we asked if conjugated and unconjugated bile acids differentially

modulate T. sanguinis growth. BA concentrations range from ~1–10 mM along the small

intestine [74] to ~0.2–1 mM in the cecum [75]. Therefore, we grew T. sanguinis in the presence

of either conjugated or unconjugated bile acids at physiologically relevant concentrations

ranging from 0.1–5 mM. T. sanguinis growth decreased with increasing concentrations of BAs

and growth was completely inhibited at 1 mM for unconjugated BAs and 5 mM for conjugated

BAs (Fig 5D and 5E). Growth rate was significantly slower in the presence of 1 mM conjugated

and 0.5mM unconjugated bile acids (Fig 5F). These results suggest that levels of BAs may affect

abundance of Turicibacter in the gut.

To compare T. sanguinis sensitivity to conjugated bile acids relative to other small intestine

colonizers, we grew four taxa (Bacteroides thetaiotaomicron, Clostridium asparagiforme,

Genetic determinants of gut microbiota composition and bile acid profiles in mice
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Lactobacillus reuteri and Escherichia coli MS200-1) known to colonize this region of the intes-

tine with or without 1 mM conjugated bile acids. Members of these genera are known to have

bile salt hydrolase (BSH) activity to deconjugate bile acids [35]. Unlike T. sanguinis, the addi-

tion of high levels of conjugated bile acids had little to no effect on the growth of these four gut

microbes (S4 Fig). Consistent with these findings, Turicibacter abundance was negatively cor-

related with cecal TCA levels in the DO mice (r = -0.262, p = 0.0035).

Taken together, these data indicate that T. sanguinis is sensitive to higher concentrations of

BA compared to other small intestine colonizers. These reciprocal effects between the BA and

the bacterium provide biological evidence for the correlative relationship shown by the causal

model testing. In summary, using a genetic approach, we identified and provide validation of a

relationship between a genetic locus containing the BA transporter Slc10a2, and levels of Turi-
cibacter and plasma cholic acid. Based on our findings, we hypothesize that the identified locus

regulates expression of Slc10a2, altering active BA reabsorption in the ileum, leading to

increased intestinal BA concentrations and alterations in the intestinal BA environment. Con-

sequently, the resulting environmental change provides an unfavorable habitat for Turicibac-
ter. In turn, lower levels of Turicibacter BA deconjugation activity leads to a decrease in

circulating free plasma cholic acid levels.

Conclusion

In this study, we performed the first known genetic mapping integration of gut microbiome

and BA profiles. Using DO mice, we identified multiple QTL for gut microbes and bile acids

spanning the host genome. These included loci that associated with individual microbial and

BA traits, as well as loci with potential pleiotropic effects, where a single genetic region influ-

enced both the abundance of a gut microbe and levels of a BA. While several studies suggest

that host genetic variation has a minor impact on microbiota composition, there are overlap-

ping findings among different studies in both human and mouse populations that indicate

that specific bacterial taxa are influenced by host genetics. Our results in the DO population

Fig 4. Mediation analysis and causal inference testing suggest causal relationship between Turicibacter sp. abundance and plasma

cholic acid (CA) levels. (A) Hypothetical causal model that proposes that cholic acid (CA) mediates the changes in Turicibacter sp.

abundance. (B) Change in LOD score of plasma CA when adjusting for Turicibacter sp. abundance. The x-axis indicates the position in

Mbp along chr 8. (C) Hypothetical causal model that proposes that Turicibacter sp. mediates changes in abundance of plasma CA levels.

(D) Change in LOD score of Turicibacter sp. when controlling for plasma CA levels. Dashed lines correspond to LOD = 6.11 (p< 0.5).

https://doi.org/10.1371/journal.pgen.1008073.g004
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corroborate several of these key findings (discussed in S1 Data). Turicibacter sp. is among the

microbes consistently associated with host genetics. This work plus data from previous reports

suggest that alterations in the BA pool driven by Slc10a2 genetic variation and concomitant

changes in expression/activity elicit an impact on gut microbiota community structure and

influence the ability of Turicibacter to colonize and persist in the intestine. Although this

Fig 5. Turicibacter sanguinis and bile acid interactions. (A) Percent of conjugated bile acids detected after 24-hour incubation with or

without the presence of T. sanguinis. (B) Transformation of cholic acid (CA) to 7-dehydrocholic acid (7-dHCA), and (C) chenodeoxy

cholic acid (CDCA) to 7-ketolithocholic acid (7-KLCA) by T. sanguinis after 24 hours. Growth of T. sanguinis in the presence of 0.1 mM,

0.5 mM, 1 mM and 5 mM (D) conjugated (equimolar pool of taurocholic acid (TCA) and glycochenodeoxycholic acid (GCDCA)), and (E)

unconjugated (equimolar pool of cholic CA, CDCA, and deoxycholic acid (DCA)) bile acids over 24 hours. (F) Growth rate (μ) of T.

sanguinis in medium supplemented with varying concentrations of conjugated and unconjugated bile acids. Data shown are from one

experiment with three technical replicates. Data are presented as mean ± SEM; one-way ANOVA followed by Tukey’s multiple

comparisons test; �� p< 0.01, ��� p< 0.001, ���� p< 0.0001.

https://doi.org/10.1371/journal.pgen.1008073.g005
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microbe deconjugates primary BAs, we found that it is also sensitive to elevated concentrations

of both conjugated and unconjugated BAs. Future experiments are needed to examine how a

decrease in Slc10a2 expression changes intestinal BA profiles and the consequences on Turici-
bacter colonization. Additionally, this work identified multiple host-microbe-metabolite inter-

actions that need to be validated with additional molecular studies. More broadly, our work

demonstrates the power of genetics to identify novel interactions between microbial and

metabolite traits and provides new testable hypotheses to further dissect factors that shape gut

microbiota composition.

Materials and methods

Ethics statement

Animal care and study protocols were approved by the University of Wisconsin-Madison Ani-

mal Care and Use Committee (A005821) and were in compliance with all NIH animal welfare

guidelines.

Animals and sample collection

Animal care and study protocols were approved by the University of Wisconsin-Madison Ani-

mal Care and Use Committee. DO mice were obtained from the Jackson Laboratories (Bar

Harbor, ME, USA) at ~4 weeks of age and maintained in the Department of Biochemistry

vivarium at the University of Wisconsin-Madison. Mice were housed on a 12-hour light:dark

cycle under temperature- and humidity-controlled conditions. Five waves of 100 DO mice

each from generations, 17, 18, 19, 21, and 23 were obtained at intervals of 3–6 months. Each

wave was composed of equal numbers of male and female mice. All mice were fed a high-fat

high-sucrose diet (TD.08811, Envigo Teklad, 44.6% kcal fat, 34% carbohydrate, and 17.3% pro-

tein) ad libitum upon arrival to the facility. Mice were kept in the same vivarium room and

were individually housed to monitor food intake and prevent coprophagy between animals.

DO mice were sacrificed at 22–25 weeks of age.

The eight DO founder strains (C57BL/6J, A/J, 129S1/SvImJ, NOD/ShiLtJ, NZO/HILtJ,

PWK/PhJ, WSB/EiJ and CAST/EiJ) were obtained from the Jackson Laboratories. Mice were

bred at the University of Wisconsin-Madison Biochemistry Department. Mice were housed by

strain and sex (2–5 mice/cage), with the exception of CAST that required individual housing.

Inbred founder mice were housed under the same environmental conditions as the DO ani-

mals. Like the DO mice, the eight founder strains were maintained on the HF/HS diet and

were sacrificed at 22 weeks of age, except for NZO males that were sacrificed at 14 weeks, due

to high mortality attributable to severe disease.

For both DO and founder mice, fecal samples for 16S rRNA sequencing were collected

immediately before sacrifice after a 4 hour fast. Cecal contents, plasma, and additional tissues

were harvested promptly after sacrifice and all samples were immediately flash frozen in liquid

nitrogen and stored at -80˚C until further processing.

DNA extraction

DNA was isolated from feces using a bead-beating protocol [18]. Mouse feces (~1 pellet per

animal) were re-suspended in a solution containing 500μl of extraction buffer [200mM Tris

(pH 8.0), 200mM NaCl, 20mM EDTA], 210μl of 20% SDS, 500μl phenol:chloroform:isoamyl

alcohol (pH 7.9, 25:24:1) and 500μl of 0.1-mm diameter zirconia/silica beads. Cells were

mechanically disrupted using a bead beater (BioSpec Products, Barlesville, OK; maximum set-

ting for 3 min at room temperature), followed by extraction with phenol:chloroform:isoamyl
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alcohol and precipitation with isopropanol. Contaminants were removed using QIAquick

96-well PCR Purification Kit (Qiagen, Germantown, MD, USA). Isolated DNA was eluted in 5

mM Tris/HCL (pH 8.5) and was stored at -80˚C until further use.

16S rRNA sequencing

PCR was performed using universal primers flanking the variable 4 (V4) region of the bacterial

16S rRNA gene [76]. Genomic DNA samples were amplified in duplicate. Each reaction con-

tained 10–30 ng genomic DNA, 10 μM each primer, 12.5 μl 2x HiFi HotStart ReadyMix

(KAPA Biosystems, Wilmington, MA, USA), and water to a final reaction volume of 25 μl.

PCR was carried out under the following conditions: initial denaturation for 3 min at 95˚C,

followed by 25 cycles of denaturation for 30 s at 95˚C, annealing for 30 s at 55˚C and elonga-

tion for 30 s at 72˚C, and a final elongation step for 5 min at 72˚C. PCR products were purified

with the QIAquick 96-well PCR Purification Kit (Qiagen, Germantown, MD, USA) and quan-

tified using Qubit dsDNA HS Assay kit (Invitrogen, Oregon, USA). Samples were equimolar

pooled and sequenced by the University of Wisconsin–Madison Biotechnology Center with

the MiSeq 2x250 v2 kit (Illumina, San Diego, CA, USA) using custom sequencing primers.

16S analysis

Demultiplexed paired end fastq files generated by CASAVA (Illumina) and a mapping file were

used as input files. Sequences were processed, quality filtered and analyzed with QIIME2 (ver-

sion 2018.4) (https://qiime2.org), a plugin-based microbiome analysis platform [77]. DADA2

[48] was used to denoise sequencing reads with the q2-dada2 plugin for quality filtering and

identification of de novo exact sequence variants (ESVs) (i.e. 100% exact sequence match). This

resulted in 20,831,573 total sequences with an average of 52,078 sequences per sample for the

DO mice, and 2,128,796 total sequences with an average of 34,335.4 sequences per sample for

the eight DO founder strains. Sequence variants were aligned with mafft [78] with the q2-align-

ment plugin. The q2-phylogeny plugin was used for phylogenetic reconstruction via FastTree

[79]. Taxonomic classification was assigned using classify-sklearn [80] against the Greengenes

13_8 99% reference sequences [81]. Alpha- and beta-diversity (weighted and unweighted Uni-

Frac [82] analyses were performed using q2-diversity plugin at a rarefaction depth of 10000

sequences per sample. For the DO mice, one sample (DO071) was removed from subsequent

analysis because it did not reach this sequencing depth. For analysis of the eight DO founder

strains, one sample (NOD5) was removed because it did not reach this sequencing depth. Sub-

sequent processing and analysis were performed in R (v.3.5.1), and data generated in QIIME2

was imported into R using Phyloseq [83]. Sequencing data was normalized by cumulative sum

scaling (CSS) using MetagenomeSeq [84]. Summaries of the taxonomic distributions were gen-

erated by collapsing normalized ESV counts into higher taxonomic levels (genus to phylum) by

phylogeny. We defined a core measurable microbiota (CMM) [24] to include only microbial

traits present in 20% of individuals in the QTL mapping. In total, 86 ESVs and 42 collapsed

microbial taxonomies comprised the CMM.

Sample preparation for plasma bile acid analysis

40 μL of DO plasma collected at sacrifice (30 μL used for founder strains) were aliquoted into a

tube with 10 μL SPLASH Lipidomix internal standard mixture (Avanti Polar Lipids, Inc.). Pro-

tein was precipitated by addition of 215 μL MeOH. After the mixture was vortexed for 10 s,

750 μL methyl tert-butyl ether (MTBE) were added as extraction solvent and the mixture was

vortexed for 10 s and mixed on an orbital shaker for 6 min. Phase separation was induced by

adding 187.5 μL of water followed by 20 s of vortexing. All steps were performed at 4˚C on ice.
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Finally, the mixture was centrifuged for 4 min at 14,000 x g at 4˚C and stored at -80˚C. For tar-

geted bile acids analysis, samples were thawed on ice. 400 μL of ethanol were added to further

precipitate protein, as well as 15 μL of isotope-labeled internal standard mix (12.5 μM

d4-TαMCA, 10 μM d4-CDCA). The samples were vortexed for 20 s and centrifuged for 4 min

at 14,000 g at 4˚C after which the supernatant (ca. 1000 μL) was taken out and dried down.

Dried supernatants were resuspended in 60 μL mobile phase (50%B), vortexed for 20 s, centri-

fuged for 4 min at 14,000 g and then 50 μL were transferred to vials with glass inserts for MS

analysis.

Sample preparation for cecal bile acid analysis

30 ± 7.5 mg cecal contents along with 10 μL SPLASH Lipidomix internal standard mixture

were aliquoted into a tube with a metal bead and 270 μL MeOH were added for protein precip-

itation. To each tube, 900 μL MTBE and 225 μL of water were added as extraction solvents. All

steps were performed at 4˚C on ice. The mixture was homogenized by bead beating for 8 min

at 25 Hz. Finally, the mixture was centrifuged for 4–8 min at 11,000 x g at 4˚C. Subsequent

processing for the DO mice and eight DO founder strains differed due to other analyses per-

formed on the samples that are not presented in this paper. For DO samples, 100 μL of the

aqueous and 720 μL of organic layer were combined and stored at -80˚C. For analysis, these

were thawed on ice and 400 μL of ethanol were added to further precipitate protein, as well as

15 μL of isotope-labeled internal standard mix (12.5 μM d4-TαMCA, 10 μM d4-CDCA). The

samples were vortexed for 20 s and centrifuged for 4 min at 14,000 g at 4˚C after which the

supernatant (ca. 1000 μL) was taken out and dried down. Dried supernatants were resus-

pended in 100 μL mobile phase (50%B), vortexed for 20 s, centrifuged for 8 min at 14,000 g

and then 50 μL were transferred to vials with glass inserts for MS analysis. For the eight DO

founder strains, the mixture was dried down including all solid parts and stored dried at

-80˚C. For targeted bile acid analysis, these dried down samples were then thawed on ice and

reconstituted in 270 μL of methanol, 900 μL of MTBE, and 225 μL of water. 400 μL of ethanol

were added to further precipitate protein, as well as 15 μL of isotope-labeled internal standard

mix (12.5 μM d4-TαMCA, 10 μM d4-CDCA). The mixture was bead beat for 8 min at 25 Hz

and centrifuged at 14,000 g for 8 minutes after which the supernatant (ca. 1500 μL) was taken

out and dried down. Dried supernatants were resuspended in 100 μL mobile phase (50%B),

vortexed for 20 s, centrifuged for 4 min at 14,000 g and then 90 μL were transferred to vials

with glass inserts for MS analysis.

Measurement and analysis of mouse bile acids

LC-MS analysis was performed in randomized order using an Acquity CSH C18 column held

at 50˚C (100 mm × 2.1 mm × 1.7 μm particle size; Waters) connected to an Ultimate 3000

Binary Pump (400 μL/min flow rate; Thermo Scientific). Mobile phase A consisted of 10 mM

ammonium acetate containing 1 mL/L ammonium hydroxide. Mobile phase B consisted of

MeOH with the same additives [85]. Mobile phase B was initially held at 50% for 1.5 min and

then increased to 70% over 13.5 min. Mobile phase B was further increased to 99% over 0.5

min and held for 2.5 min. The column was re-equilibrated for 5.5 min before the next injec-

tion. Twenty microliters of plasma sample or ten microliters of cecum sample were injected by

an Ultimate 3000 autosampler (Thermo Scientific). The LC system was coupled to a TSQ

Quantiva Triple Quadrupole mass spectrometer (Thermo Scientific) by a heated ESI source

kept at 325˚C (Thermo Scientific). The inlet capillary was kept at 350˚C, sheath gas was set to

15 units, auxiliary gas to 10 units, and the negative spray voltage was set to 2,500 V. For tar-

geted analysis the MS was operated in negative single reaction monitoring (SRM) mode

Genetic determinants of gut microbiota composition and bile acid profiles in mice

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008073 August 29, 2019 14 / 24

https://doi.org/10.1371/journal.pgen.1008073


acquiring scheduled, targeted scans to quantify selected bile acid transitions, with two transi-

tions for each species’ precursor and 3 min retention time windows. Collision energies were

optimized for each species and ranging from 20–55 V. Due to insufficient fragmentation for

unconjugated bile acids, the precursor was monitored as one transition with a CE of 20 V. MS

acquisition parameters were 0.7 FWHM resolution for Q1 and Q3, 1 s cycle time, 1.5 mTorr

CID gas and 3 s Chrom filter. In total, 27 bile acids, including 14 unconjugated, 9 tauro- and 4

glycine-conjugated species, were measured. The resulting bile acid data were processed using

Skyline 3.6.0.10493 (University of Washington). For each species, one transition was picked

for quantitation, while the other was used for retention time confirmation. Normalization of

the quantitative data was performed to the internal standard d4-CDCA as indicated in Eq 1.

ðPeak Area=d4� CDCA Peak AreaÞ � Average of d4� CDCA Peak Area Eq 1

Genotyping

Genotyping was performed on tail biopsies as previously described [42] using the Mouse Uni-

versal Genotyping Array (GigaMUGA; 143,259 markers) [86] at Neogen (Lincoln, NE). Geno-

types were converted to founder strain-haplotype reconstructions using a hidden Markov

model (HMM) implemented in the R/qtl2 package [49]. We interpolated the GigaMUGA

markers onto an evenly spaced grid with 0.02-cM spacing and added markers to fill in regions

with sparse physical representation, which resulted in 69,005 pseudomarkers.

QTL mapping

We performed QTL mapping using the R package R/qtl2 [49]. QTL mapping was done

through a regression of the phenotype on the founder haplotype probabilities estimated with

an HMM designed for multi-parental populations. Genome scans were performed for each

phenotype with sex, cohort (wave), and days on diet included as additive covariates. Genetic

similarity between mice was accounted for using a kinship matrix based on the leave-one-

chromosome-out (LOCO) methods [87]. For microbial QTL mapping, normalized gut micro-

biota abundance data transformed to normal quantiles. For bile acid QTL mapping, normal-

ized plasma and cecal bile acid levels were log2 transformed. The mapping statistic reported is

the log10 likelihood ratio (LOD score). The QTL support interval was defined using the 95%

Bayesian confidence interval. Significant and suggestive QTL were determined at a genome-

wide threshold of P� 0.05 (LOD� 7.66) and P� 0.2 (LOD� 6.80), respectively. We used a

common significance threshold for all phenotypes, by pooling the permutation results for the

individual phenotypes. No adjustment was made for the search across multiple phenotypes.

Mediation/Pleiotropy analysis

To assess whether two co-mapping traits were caused by a pleiotropic locus, we used a likeli-

hood ratio test implemented with the open source R package R/qtl2pleio [70]. Here, we com-

pared the alternative hypothesis of two distinct loci with the null hypothesis of pleiotropy for

two traits that map to the same genetic region. Parametric bootstrapping was used to deter-

mine statistical significance. Mediation analysis was applied to identify whether a microbe or

bile acid were likely to be a causal mediator of the QTL as presented in Li et al. [88]. This analy-

sis was adapted from a general approach previously described to differentiate target from

mediator variables [89]. The effect of a mediator on a target was evaluated by performing an

allele scan or SNP scan using the target adjusted by mediator. Only individuals with both val-

ues for both traits were considered for mediation analysis. Traits with a LOD drop >2 after

controlling for the mediator were considered for further causality testing. To statistically assess
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causality between microbial and bile acid trait sets (causal, reactive, independent, undecided),

a causal model selection test [90] was applied using the R packages R/intermediate and R/qtl2.

Causal model selection tests were evaluated on both alleles and SNPs in peak region.

RNA extraction

Total RNA was extracted from flash-frozen distal ileum tissues by TRIzol extraction and fur-

ther cleaned using the RNeasy Mini Kit (Qiagen, Germantown, MD, USA). DNA was removed

by on-column DNase digestion (Qiagen). Purified RNA was quantified using a Nanodrop

2000 spectrophotometer.

Quantitative Real-Time PCR

SuperScript II Reverse Transcriptase with oligo(dT) primer (all from Invitrogen, Carlsbad,

CA, USA) was used to synthesize 20 μl cDNA templates from 1 μg purified RNA. cDNA was

diluted 2X before use and qRT-PCR reactions were prepared in a 10 μl volume using SsoAd-

vanced Universal SYBR Green Supermix (Bio-Rad, Hercules, CA, USA) and 400 nM specific

primers targeting the gene of interest (SLC10A2-F [5’- TGGGTTTCTTCCTGGCTAGACT-3’];

SLC10A2-R [5’- TGTTCTGCATTCCAGTTTCCAA-3’] [91]). All reactions were performed in

triplicate. Reactions were run on a CFX96 Real-Time PCR System (Bio-Rad, Hercules, CA,

USA). The 2-ΔΔCt method [92] was used to calculate relative changes in gene expression and all

results were normalized to GAPDH.

Bacterial culturing

Bacterial strains were obtained from DSMZ and ATCC. All strains were cultured at 37˚C

under anaerobic conditions using an anaerobic chamber (Coy Laboratory Products) with a gas

mix of 5% hydrogen, 20% carbon dioxide and 75% nitrogen. Strains were grown in rich

medium (S5 Table) that was filter sterilized and stored in the anaerobic chamber at least 24

hours prior to use. L. reuteri was grown in medium supplemented with 20 mM glucose. For all

in vitro assays, cultures used for inoculation were grown overnight at 37˚C in 10 mL 14b

medium in anaerobic Hungate tubes. Stock solutions of conjugated bile acids (TCA, GCDCA)

and unconjugated bile acids (CA, CDCA, DCA) were prepared to a final concentration of 100

mM and used for all in vitro assays. All bile acids used were soluble in methanol.

Microbial bile acid metabolism screen

Stock solutions of conjugated and unconjugated bile acids (100 mM) were added to 3 ml 14b

medium to obtain a final concentration of 100 μM total bile acid. Tubes were inoculated with a

T. sanguinis cultured overnight, then incubated in the anaerobic chamber at 37˚C for 48

hours. At the 24- and 48-hour timepoints, 1 mL of each culture was removed and the superna-

tant was collected after brief centrifugation. Each culture supernant was diluted 10x in initial

running solvent (30:70 MeOH:10 mM ammonium acetate). Samples were spun at max speed

for 3 minutes to remove suspended particles prior to loading on the uHPLC. Samples were

analyzed using a uHPLC coupled with a high-resolution mass spectrometer.

Microbial bile acid screen uHPLC-MS/MS parameters

10 μL aliquots of diluted supernatant samples were analyzed using a uHPLC-MS/MS system

consisting of a Vanquish uHPLC coupled by electrospray ionization (ESI) (negative mode) to

a hybrid quadrupole-high-resolution mass spectrometer (Q Exactive Orbitrap; Thermo Scien-

tific). Liquid chromatography separation was achieved on an Acquity UPLC BEH C18 column
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(2.1-by 100-mm column, 1.7-μm particle size) heated to 50˚C. Solvent A was 10 mM Ammo-

nium acetate, pH 6; solvent B was 100% methanol. The total run time was 31.5 minutes with

the following gradient: 0 min, 30% B; 0.5 min, 30% B; 24 min, 100% B; 29 min, 100% B; 29

min, 30% B; 31.5 min, 30% B. Bile acid peaks were identified using the Metabolomics Analysis

and Visualization Engine (MAVEN) [93].

Growth curves

Bacterial growth rate was measured in medium 14b supplemented with either 100 μM,

300 μM, 1 mM bile acids or methanol control. Medium was dispensed inside an anerobic

chamber into Hungate tubes. Tubes containing 10 mL of medium were inoculated with 30 μL

of an overnight culture and incubated at 37˚C for 24 hours. T. sanguinis was grown with shak-

ing to disrupt the formation of flocculent colonies. Growth was monitored as the increase in

absorbance at 600 nm in a Spectronic 20D+ spectrophotometer (Thermo Scientific, Waltham,

MA, USA). Growth rate was determined as μ = ln(X/Xo)/T, where X is the OD600 value during

the linear portion of growth and T is time in hours. Values given are the mean μ values from

two independent cultures done in triplicate.

Statistical analysis

All statistical analyses were performed in R (v.3.5.1) [94]. Unless otherwise indicated in the fig-

ure legends, differences between groups were evaluated using unpaired two-tailed Welch’s t-

test. For multiple comparisons, Krustkal-Wallis test was used if ANOVA conditions were not

met, followed by Mann-Whitney/Wilcoxon rank-sum for multiple comparisons and adjusted

for multiple testing using the Benjamini-Hochberg FDR procedure. The correlation between

the abundance of microbial taxa was performed using Spearman’s correlation in the “Hmisc”

(v.4.1–1) R package [95]. The p-values were adjusted using the Benjamini and Hochberg

method, and correlation coefficients were visualized using the “pheatmap” (v.1.0.10) [96].

Multiple groups were compared by Kruskal-Wallis test and adjusted for multiple testing using

the Benjamini-Hochberg FDR procedure. Significance was determined as p-value < 0.05. To

assess magnitude of variability of the CMMs, summary statistics were calculated on each

CMM (taxa and ESVs). Non-parametric-based PERMANOVA statistical test [97] with 999

Monte Carlo permutations was used to compare microbiota compositions among groups

using the Vegan R package [98].

Supporting information

S1 Data. Extended results and discussion.

(PDF)

S1 Fig. Principal coordinate analysis (PCoA) of unweighted UniFrac distances for fecal

samples. PCoA shows significant clustering by (A) sex (F = 5.572, p = 0.001) and (B) wave

(F = 16.954, p = 0.001). Clustering by treatment evaluated by PERMANOVA.

(TIF)

S2 Fig. Plasma and cecal bile acids group by sex, but not wave. PCAs of plasma bile acid pro-

files colored by (A) sex (p< 0.0001) and (B) wave (p = 0.594), and PCAs of cecal bile acid pro-

files colored by (C) sex (p = 0.011) and (D) wave (p = 0.207). Kruskal Wallis one-way test

followed by Wilcoxon pair-wise multiple comparisons with Benjamini and Hochberg correc-

tion.

(TIF)
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S3 Fig. Related bile acid species map associate to same locus. (A) Haplotype effects and

LOD scores of plasma taurodeoxycholic acid (TDCA) and (B) cecal deoxycholic acid (DCA).

For each plot, the x-axis is the physical position in Mbp along chr 12. The y-axis for the top

panel is the effect coefficient depicting the estimated contributions of each founder allele, and

the y-axis in the bottom panel is the LOD score. (C) Cecal levels of isolithocholic acid (ILCA)

and lithocholic acid (LCA) associate to same locus on chr 11. (D) Estimated founder allele

effects for cecal ILCA and (E) LCA. (F) Genes under cecal LCA and ILCA QTL interval. Verti-

cal dashed lines denote QTL confidence interval. Horizontal dashed lines correspond to

LOD = 6.11 (p< 0.5).

(TIF)

S4 Fig. Gut associated bacteria have differential growth responses to conjugated bile acids.

Growth rate in the presence of 1 mM conjugated bile acids or methanol control for (A) Bacter-
oides thetaiotaomicron, (B) Clostridium asparagiforme, (C) Escherichia coli MS200-1, and (D)

Lactobacillus reuteri. Data shown are from duplicate experiments with three technical repli-

cates. Data are presented as mean ± SEM; Welch’s t test; no significant differences were

observed between growth conditions for any of the tested organisms.

(TIF)

S5 Fig. Peptostreptococcaceae and plasma bile acids co-map on chromosome (chr) 3. Hap-

lotype effects and LOD scores of (A) Peptostreptococcaceae family, (B) plasma cholic acid

(CA), (C) plasma chenodeoxycholic acid (CDCA), (D) plasma muricholic acid (MCA), (E)

plasma ursodeoxycholic acid (UDCA), and (F) plasma 7-dehydrocholic acid (7-dHCA). For

each plot, the x-axis is the physical position in Mbp along chr 3. The y-axis for the top panel is

the effect coefficient depicting the estimated contributions of each founder allele, and the y-

axis in the bottom panel is the LOD score. Horizontal dashed line corresponds to LOD = 5.5.

All overlapping QTL have positive association with the NOD allele. (G) Protein coding genes

under QTL interval.

(TIF)

S6 Fig. Exact sequence variant of Akkermansia muciniphila and plasma bile acid QTL over-

lap on chromosome (chr) 1. Haplotype effects and LOD scores of (A) A. muciniphila (B)

plasma cholic acid (CA), (C) plasma muricholic acid (MCA), and (D) plasma 7-dehydrocholic

acid (7-dHCA). For each plot, the x-axis is the physical position in Mbp along chr 1. The y-

axis for the top panel is the effect coefficient depicting the estimated contributions of each

founder allele, and the y-axis in the bottom panel is the LOD score. Horizontal dashed line cor-

responds to LOD = 5.5. (E) Protein coding genes under 10 Mbp QTL interval. Spearman cor-

relations in the DO mice between A. muiniphila and (F) plasma CA, (G) plasma MCA, and

(H) plasma 7-dHCA levels. Correlation p-values adjusted for multiple tests using Benjamini

and Hochberg correction. Higher levels of these microbial and bile acid traits were associated

with the NZO haplotype and lower levels were associated with the 129 haplotype. (E) Protein

coding genes under 10 Mbp QTL interval. Dashed lines denote QTL confidence interval.

Spearman correlations in the DO mice between A. muiniphila and (F) plasma CA, (G) plasma

MCA, and (H) plasma 7-dHCA levels. Correlation p-values adjusted for multiple tests using

Benjamini and Hochberg correction.

(TIF)

S1 Table. Measures of variability of cecal and plasma bile acids in DO mice. Bile acid levels

are presented as log2(peak area); n = 384; SD, standard deviation.

(XLSX)
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S2 Table. Measures of variability of microbial exact sequence variants (ESVs) or taxon

(phylum, class, order, family, genus) in DO mice. Data presented as normalized read counts;

n = 399; SD, standard deviation.

(XLSX)

S3 Table. Correlations among microbial taxa, bile acid and weight traits. Spearman’s rank

correlation. Only microbial exact sequence variants, genera and family included in figure. Cor-

relations shown passed FDR < 0.01 cut-off and correlation coefficient either < -0.35

or> 0.35. Correlating bile acids from same tissue removed from table for brevity.

(XLSX)

S4 Table. QTL peaks for gut microbiota, plasma and cecal bile acid, and weight traits in

the Diversity Outbred mice. Only QTL with LOD > 6.1 shown. "Pos" is peak position is Mbp.

"ci_lo" and "ci_hi" correspond to the positions for the 95% bayesian confidence interval.

(XLSX)

S5 Table. Media used for bacterial culture. Medium 14(b) recipe.

(XLSX)
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