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Abstract

Allele age has long been a focus of population genetic research, primarily because it can be

an important clue to the fitness effects of an allele. By virtue of their effects on fitness, alleles

under directional selection are expected to be younger than neutral alleles of the same fre-

quency. We developed a new coalescent-based estimator of a close proxy for allele age,

the time when a copy of an allele first shares common ancestry with other chromosomes in

a sample not carrying that allele. The estimator performs well, including for the very rarest of

alleles that occur just once in a sample, with a bias that is typically negative. The estimator is

mostly insensitive to population demography and to factors that can arise in population

genomic pipelines, including the statistical phasing of chromosomes. Applications to 1000

Genomes Data and UK10K genome data confirm predictions that singleton alleles that alter

proteins are significantly younger than those that do not, with a greater difference in the

larger UK10K dataset, as expected. The 1000 Genomes populations varied markedly in

their distributions for singleton allele ages, suggesting that these distributions can be used

to inform models of demographic history, including recent events that are only revealed by

their impacts on the ages of very rare alleles.

Author summary

We developed a way to estimate the time when a copy of a gene most recently shared

ancestry with other copies of that gene. This is also an estimate of the upper bound of

when a mutation has arisen, and it can be used to study the ages of alleles that are found in

a population. The method can be applied to the very rarest alleles found only once in a

sample, even in studies of many thousands of genomes. We tested the method extensively,

found it performs well, and can be used under a wide variety of conditions. We applied it

to 1000 Genomes project data (26 populations) and the UK10K data (over 7000 genomes)

and found clear evidence that alleles that change proteins are younger than alleles that do

not, as expected. We also observed wide variation in the ages of alleles at low frequency
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among the 1000 Genome project populations, indicating that our method could be used

to study the demographic history of human populations. Going forward, the estimator

should be useful for many kinds of questions in population genomics, particularly as sam-

ple sizes continue to grow.

Introduction

The age of an allele of a given frequency can be reveal the forces acting upon it, with rare alleles

being particularly sensitive to recent evolutionary processes [1]. A functional allele that is

younger than expected given its frequency is likely to have been under directional selection.

This is not surprising for favored alleles, but it is also true for harmful alleles [2], including

those with negative impacts on health that are under negative selection [3]. If researchers are

able to estimate allele age, they could combine this with other information (e.g. allele fre-

quency, geographical distribution, functional annotation) to improve predictions of an allele’s

effect on human health. Alternatively, an allele that is older than expected given its frequency

is also a candidate for having an interesting history, as functional alleles older than expected

can be the result of balancing or negative frequency-dependent selection [4].

As population genomic samples grow in size, the density of variable sites rises approxi-

mately in proportion to the log of the sample size [5], and very large data sets will have large

numbers of SNPs and other variants in every gene. If information could be gleaned on the ages

of a large number of variants for a functional region of the genome, this could be used to

develop a detailed portrait of the history of natural selection specifically on that region.

Allele ages are also shaped by processes that act in aggregate across the genome. The overall

distribution of ages will be strongly shaped by the demographic history of the population, and

for the rarest alleles, that distribution will be acutely sensitive to recent admixture [6]. The age

spectrum will also fluctuate spatially along the genome, both stochastically and as a function of

the intensity of background selection [7].

In developing a way to study allele age, we considered several constraints. An estimator

should not be a function of allele frequency, as we wish to glean information about allele his-

tory that is distinct from its frequency. We also prefer an approach that is not a function of the

demographic history of the population, as some estimators are [8, 9]. An estimator that can get

close to the true value of the unknown, regardless of demographic history, enables analyses in

cases when the history is not known and it enables comparisons between populations that are

not confounded by errors in our knowledge of the demographic history of the populations.

We also wish to be able to study the age of the very rarest alleles, including those that appear

only once in a sample (singletons). This last criterion leads to an approach that is different

from existing methods that are based on the variation observed among copies of an allele, or in

flanking regions [8–13]. An estimator should also be applicable for very large sample sizes for

which it becomes increasingly possible to find low frequency alleles that arose by multiple

mutations [14]. For these cases, as with singletons, we need a method that is applicable for

each individual gene copy. Finally, an estimator should not be highly sensitive to the details of

the bioinformatics pipeline used to process the data, such as whether the data were statistically

phased.

We developed a new estimator that focuses, not directly on allele age, but rather on the time

when a base position in a particular chromosome first coalesces in the genealogy. The muta-

tion causing a derived allele at that base will have occurred since this first coalescent time, and

so first coalescent time can be used as a proxy for allele age. For example, a neutral singleton

An estimator of first coalescent time

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008340 August 19, 2019 2 / 25

implements the estimator for VSF files is available

at https://github.com/jaredgk/msh-python/tree/

master/msh_est. The simulation results are

available at https://bio.cst.temple.edu/~hey/nolinks/

Platt_etal_SimulationsAndAnalyses.zip.

Funding: This work was supported in part by US

National Institutes of Health grant R01GM078204

to JH. The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pgen.1008340
https://github.com/jaredgk/msh-python/tree/master/msh_est
https://github.com/jaredgk/msh-python/tree/master/msh_est
https://bio.cst.temple.edu/~hey/nolinks/Platt_etal_SimulationsAndAnalyses.zip
https://bio.cst.temple.edu/~hey/nolinks/Platt_etal_SimulationsAndAnalyses.zip


allele will have a uniform probability of having arisen anywhere along an external branch, and

therefore an expected age of half the first coalescent time. We assessed performance using sim-

ulated data, and show that it performs well and substantially overcomes the challenges describe

above. We also applied it to SNP alleles from the 1000 Genomes Project [15] and the UK10K

genome panel [16]. For these data sets, we assessed basic predictions regarding population-

specific variation in the ages of rare alleles, the ages of private alleles and alleles shared by pop-

ulations, and we compared ages of alleles that are expected a priori to have functional impacts

with those that are not. Our estimator shares structural similarities with existing methods

developed to estimate demographic histories from shared-haplotype tract-length distributions

[17–20], but is uniquely able to discern the specific histories of individual rare alleles.

Results

An estimator of first coalescent time

Consider one chromosome (the focal chromosome) from a sample of chromosomes drawn at

random from a population, and an individual base position on that chromosome (the focal

base). As shown in Fig 1, the focal base can be thought of as the terminal point on a branch A
of the genealogy of the sample of chromosomes at that base position. If the focal base is a sin-

gleton variant (i.e. a derived allele that occurs only once in the sample), then the mutation

causing that allele must have occurred on this branch. Also shown in Fig 1 is that branch A
connects the focal chromosome to the most recent common ancestor of that chromosome and

a sister branch S , which is ancestral to one or more sister chromosomes of the focal chromo-

some. Branches A and S share their most recent common ancestor at a time tc generations

Fig 1. A. Gene tree showing a chromosome at the focal base (white) as the terminus of branch A, which has length tc, and a sister clade (blue)

which share a branch S of length φ. B. Two situations regarding the maximum shared haplotype (msh) and the closest mutation on either

branch A or SðxASÞ. Each is depicted as a genealogy (left side) and an adjacent alignment of the focal chromosome with its sisters (only the

alignment to the right side of the focal base is shown). Each branch is labeled with the distance from the focal base position to the most proximal

mutation to arise on that branch. Numbers in black are distances to events that may contribute to both msh and xAS. Numbers in brown are

distances that can only contribute to the observed msh but not xAS as they involve events that did not happen on branch A or S. Each mutation

is shown as an X mark in the corresponding chromosome alignment. Top panel: Not all sister chromosomes have mutations closer than the

mutations on A or S, thus msh = xAS. Bottom panel: msh is less than xAS as both sister chromosomes have independently acquired mutations

closer to the focal locus than mutations on branches A or S.

https://doi.org/10.1371/journal.pgen.1008340.g001
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prior to the sample generation, and branch A is therefore tc generations long. We denote the

length of branch S as φ generations. If the sample contains a single unique sister chromosome

(that is, the focal chromosome is also the closest relative of the sister at the focal base), then φ
is equal to tc. When multiple chromosomes are all equally and most closely related to the focal

chromosome at the focal base, they form a clade of sisters, and φ< tc.
Consider first the case when there is no recombination and the focal chromosome has just

a single sister. In this situation, any differences between the focal and sister chromosomes will

have been caused by mutations on branches A and S . We model mutation as a Poisson pro-

cess, where each base has a constant probability, μ, of mutating in each generation. Treating a

chromosome as a continuous line, and considering events just to one side of the focal base (in

either the 5’ or 3’ direction), the probability density of distance x from a focal base to the first

base that is not identical between the two chromosomes can be approximated with an expo-

nential distribution having a rate of μ2tc:

pðxÞ ¼ m2tce
� xm2tc : ð1Þ

If we knew which chromosome was the sister chromosome, we could compare them and

identify the distance from the focal base to the nearest difference between the chromosomes

(i.e. x), and use this to estimate tc. This basic idea captures the underlying rationale of our

approach. The final formulation takes into account the remaining issues: that we do not

know which chromosome is the sister to the focal chromosome; that the focal chromosome

may have multiple sisters; and that Eq (1) assumes no recombination (see Materials and

methods). Ultimately, an expression that resembles Eq (1), but that differs in replacing x
with the longest observed tract of identity between the focal chromosome and each of the

other chromosomes in the sample, proves applicable. We call this quantity the maximum

shared haplotype (msh), and show that it arises on either branch A or S (Fig 1) with high

probability.

Estimator performance

We use t̂ c to denote the estimator, and because tc values range over several orders of magnitude

and Poisson processes have variances proportional to their means, we focused primarily on

the logarithm, log10ðt̂ cÞ. Performance was assessed in terms of the root mean squared error

(RMSE), bias (mean of estimated minus true values), and correlation (Pearson’s r for the true

and estimated values of log10(tc)) for alleles at all frequencies in a series of large simulated data

sets. We varied sample size and recombination rate, and considered three demographic histo-

ries that varied in terms of population sizes, exponential growth, historical bottlenecks, and

intercontinental migration. We also considered samples of chromosomes with known and

with estimated phase. All of these results are summarized in S1 and S2 Tables. For low and

intermediate recombination, over a wide range of circumstances, the estimator exhibits an

RMSE of about 0.4 log-transformed generations, corresponding to estimates that are typically

within a factor of 2.5 of the true value. Across the models, correlations of true and estimated

values ranged from 0.4 to 0.95 with a mode of 0.9. For recombination rates equal to or less

than the mutation rate, bias varies from -0.4 to 0.1 with a mode of -0.2, which corresponds to

an average underestimate by a factor of 0.63. Performance was consistent across the spectrum

of allele frequencies, and with respect to particular independent variables, performance was

better: when recombination was low; when population size was constant; when phase was

known; and when sample sizes were larger. A key factor that determines how informative esti-

mates are is having chromosomes that are much more closely related to their closest relatives

than to unrelated chromosomes. Thus, strong recent growth can produce more star-like

An estimator of first coalescent time
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genealogies that reduces these differences and reduce the quality of the estimates, while larger

sample sizes improve them.

When recombination rate is appreciably higher than the mutation rate, such that typical

msh values are small enough to be within the range of distances between average pairwise

SNPs, estimates worsens and the bias shifts from negative to positive (S2 Table). The amount

of recombination that is too high relative to the mutation rate will depend on the length of the

region of high recombination (e.g. if it is associated with hotspots of short length), and on sam-

ple size and the demographic history of the sample. We observed that larger sample sizes exert

a greater improvement on the quality of estimates in the case of high recombination than with

low to intermediate recombination (S1 and S2 Tables). The change in sign of the bias, with

high recombination, and that the observed absolute value of the bias is lower with intermediate

levels of recombination, suggests that there are multiple contributions to the bias.

Fig 2 shows plots of estimated versus true values for different ranges of allele frequencies

and for two different sample sizes (box plots are shown in S1 Fig). Also shown in Fig 2 is an

idealized estimator of log10(tc) that is based on allele frequency and for which all alleles at a

given frequency generate the same estimate–shown as a band of red points. We show both the

msh-based and the idealized frequency-based estimators to highlight the contrast; the former

does not make use of information about a variant’s frequency while the latter does not make

use of any information about a variant’s msh value. Unlike the msh-based estimator, where

Fig 2. Panels a thru e. Shown in black are estimated log10(tc) values plotted against true values from simulations of 1000 (top row) or 100

(bottom row) chromosomes. For comparison are shown values in red for a hypothetical estimator of log10(tc) that is based only on allele

frequency (all alleles at a given frequency will share the same estimated value of log10(tc). For a given allele frequency k the hypothetical

frequency-based estimate is a value τk that minimizes the sum of squared residuals with respect to the true Log10(tc) values, i.e. ∑i(τk−Log10(tc,i))2

where variant i with frequency k has true first coalescent time tc,i. f. The square of Pearson’s correlation coefficient is plotted against allele

frequency for both estimators, for sample of 1000 (dotted lines) and 100 chromosomes (solid lines).

https://doi.org/10.1371/journal.pgen.1008340.g002
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each variant may have a unique msh from which to generate a unique tc estimate, no fre-

quency-based estimator can distinguish among the potentially large number of variants occur-

ring at identical frequencies within a sample. When considered over the full range of allele

frequencies, the idealized estimator can explain nearly as much of the variation in log10(tc) as

the msh-based estimator (Fig 2f). However, for rare alleles, the msh-based stimator retains

strong performance, whereas the frequency-based estimator explains little to none of the varia-

tion in log10(tc).

Phasing

An important application is assessing upon which of the two chromosomes of an individual a

singleton allele correctly resides. As shown in Fig 3, the phasing accuracy for singleton variants

in simulated data rises as the ratio of the genetic lengths of the alternative msh tracts diverge.

For variants with msh tracts of similar length (and thus high probability of misassigned phase),

similar t̂ c values will be found regardless of how phase is assigned.

For non-singleton variants, the estimator is expected to be relatively immune to switch

errors introduced by haplotype phasing software. This is because switch errors typically

involve low frequency variants among similar haplotypes [21, 22], and these do not typically

affect the distribution of msh values which are often terminated by relatively common variants

or recombination events between unrelated haplotypes. S2 Fig shows that results for statisti-

cally phased chromosomes are quite similar to those for the correct chromosomes (r = 0.941)

based on analyses of singleton alleles in male X-chromosome UK10K data.

Fig 3. Frequency of a singleton variant residing within the shorter of two msh tracts. Accuracy of phasing singleton

variants identified in simulations of n = 1000 (red) and of n = 100 (black) in 100 equal-width bins of the ratio of the

longer to shorter msh tracts of the genotype carrying the rare variant.

https://doi.org/10.1371/journal.pgen.1008340.g003
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From S1 and S2 Tables we see that mean error is slightly increased when the data (including

singletons) are phased statistically. The bias also becomes more negative by a small amount

with phasing. Singletons are phased by assigning them to the chromosome that reveals the

shorter msh and thus the longer t̂ c. The proximal effect of this will be to introduce a positive

bias that applies in those instances when this phase assignment is not correct. However, the

observation that bias becomes slightly more negative with phasing, including for singletons,

suggests a greater effect in the other direction. It is possible that the phasing of singletons prior

to determining msh values causes them to cluster on fewer chromosomes, thereby lengthening

the msh values that are observed.

1000 Genomes Project analyses

Based on analysis of variation (ANOVA, Table 1, S6 Table), we learned that different popula-

tions show different distributions of log10ðt̂ cÞ values for singleton variants (d. f. = 25;

F = 19248; p< 1 × 10−128). As shown in Fig 4 and S3 Table, populations in Africa have higher

geometric means (6353 to 7178 generations) than populations from regions that have not had

substantial admixture from African populations (East Asia, South Asia, and Europe), which

have lower geometric means (2018 to 3882 generations). Admixed American populations

spanned a wide range (5610 to 7194), with values near those of the African populations. The

finding of younger ages for singletons from non-African old-world populations is expected

under a general Out-of-Africa model in which those populations have passed through a bottle-

neck and have had an overall lower effective population size and thus shorter coalescent times.

The 1KGP data allow us to compare the age of rare variants that are found only in a single

population to the age of variants that have the same low frequency within that population, but

that also are found in one or more other populations. For all of the 1KGP populations, private

singletons had distributions that were shifted to the left (younger) relative to singletons that

were shared. Fig 5 shows these distributions for a single population that is representative of

those observed from each the five super-populations, each of which showed a characteristic

distribution (S9–S13 Figs). In every population, private singleton alleles are younger than sin-

gleton alleles that are also shared with other populations (d. f. = 1; F = 896298; p = 0, Table 1),

with private singleton variants being 70% younger than comparable shared variants. However,

the size of the reduction varies considerably by population (d. f. = 25; F = 3437; p = 0, Table 1),

with the largest reduction observed in admixed American populations (82% to 92%).

The age of protein-changing alleles

With respect to the functional impact of rare alleles, we expect that the rarest variants in a sam-

ple will be enriched (relative to more common variants) for alleles that have an impact on

Table 1. Type-II ANOVA results for log10(̂t c) values for 1KGP singletons, where PC is a categorical variable indicating protein-changing status, Private is a categor-

ical variable indicating the restriction of a variant to a single population, and Population is a categorical variable indicating the population in which a variant is

observed.

Sum of squares Degrees of freedom F Pr (> F)

Population 2.61E+05 25 19248.54 0

PC 1.30E+01 1 23.93626 9.96 × 10−7

Private 4.86E+05 1 896297.7 0

PC × Population 7.93E+00 25 0.584825 9.5 × 10−1

PC × Private 1.55E+00 1 2.86222 9.07 × 10−2

Private × Population 4.66E+04 25 3437.326 0

Residual 4.67E+06 8611081 - - - -

https://doi.org/10.1371/journal.pgen.1008340.t001
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fitness, and therefore that rare alleles will be targeted more by natural selection. This is because

such alleles pass through frequency space more quickly than neutral alleles and, if not lost

from the population, will reach a given frequency more quickly than a neutral allele [2]. Con-

sistent with this prediction we observed in the 1KGP data that, conditional on population and

geographic spread, singleton variants that alter proteins are 3.6% younger than those that do

not (d. f. = 1; F = 24; p = 1 × 10−6, Table 1). There is no significant difference to the effect of

protein-changing status in individual populations (d. f. = 25; F = 0.58; p = 0.95, Table 1), and

there is no significant interaction between protein-changing status and a variant being private

to its population (d. f. = 1; F = 2.86; p =< 9 × 10−2, Table 1).

The theory that says that alleles that affect fitness will be younger applies to both harmful

and beneficial alleles [2]. However, if it is the case that harmful rare alleles are much more

common than beneficial rare alleles, then the age difference between functional alleles and

neutral alleles should be greater the rarer are the alleles under comparison. This is because

most harmful alleles are rapidly removed from a population and are more likely to be observed

at the lowest frequencies in larger samples. We therefore predict that we should observe a

greater difference in ages between alleles that change proteins and those that do not in the

larger UK10K dataset than in the 1KGP data. In fact, the singletons in the 7,242 samples of

UK10k data showed a considerably larger effect of protein-changing status than those identi-

fied as singletons in the 100-sample populations of the 1KGP data. The geometric mean t̂ c
value for the 105 protein-changing singleton variants was 12% lower than it was for the

1.5 × 107 non-protein-changing variants (305 generations vs 347 generations; Wilcoxon-

Mann-Whitney p = 0).

Discussion

Every mutation can be envisioned as occurring on a branch of the genealogy or gene tree for a

sample of genomes at the locus where the mutation occurred. Previous estimators of allele age

have focused on the time point at which different copies of an allele coalesce with each other,

Fig 4. Distributions of log10(̂t c) values for singleton variants from each 1KGP population.

https://doi.org/10.1371/journal.pgen.1008340.g004
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i.e. the time of the top of the gene tree edge upon which the mutation occurred [8–12]. Here

we have taken a different approach and focused on the time at the bottom of that same edge,

the time of first coalescence for an edge carrying a mutation. These first coalescent times have

direct connections to msh values, which are easily measured from aligned genomes. The result-

ing estimator is not without noise, but estimates covary roughly linearly with true values, with

moderate error and bias over a wide range of circumstances.

Our estimator also meets a variety of desired criteria established at the outset. It is not a

function of allele frequency, and thus can be used to study how an allele came to reach its

observed frequency. It is only very weakly a function of demographic history, and thus it can

be used to compare the ages of alleles of different populations that have unknown or widely

varying histories. It can be applied to alleles that occur only once in a sample, and to genomic

data with very large sample sizes. It can be applied individually to each copy of an allele, and

Fig 5. Distributions of log10ðt̂ cÞ values for 1% frequency alleles (singletons) from representatives of five super-

populations. Shown in each panel are distributions for alleles found only in that population at 1% (Private), alleles that

are at 1% in that population, but also shared with one or more other populations (Shared), and the sum of Private and

Shared. A. the Peruvian population(PEL) from the admixed American super-population. B. the Turin population (TSI)

from Europe. C. the Yoruban population (YRI) from Africa. D. the Bengali population (BEB) from South Asia. E. the

Bejing Han Chinese population (CHB) from East Asia.

https://doi.org/10.1371/journal.pgen.1008340.g005
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thus can be used in cases when an allele has arisen by multiple mutations. And it suffers little

degradation in performance when run on statistically phased chromosomes.

The estimator is not expected to be highly sensitive to some additional issues that can arise

with population genomic data, including sequencing errors. The UK10K data for example are

low coverage (7x), however, because new singleton variants are only called when the data are

strongly supportive (high false negative rate, low false positive rate) only a small minority of

the singletons in the data set are expected to be errors. In fact, the proportion of called variants

in the case of the UK10K sample that are true variants was estimated to be quite high (~94%

for singleton variants), based on measurements across monozygotic twins. This is shown in

the first figure of the extended data for that paper (panel k, row AC = 1, MZ twins section, col-

umn "non-ref genotypes %", divided by two and subtracted from 100) [16]. However the vari-

ants that are missing from low coverage data can affect the distribution of msh values in ways

not accounted for by the method. For example, many of the mutations that terminate tracts of

identify and determine msh are themselves singletons, and so a coverage bias against singletons

will tend to lengthen msh values and reduce t̂ c values.

Although the method can be used to study selection, implicit in the method is an assump-

tion of neutrality, such that mutations on branches A and S (Fig 1) do not affect the distribu-

tion of tc values. But of course a significant fraction of the mutations in evolutionarily

constrained regions are not neutral, and the tc values in these regions are reduced, as we see in

our ANOVA results. The question then is, how does this kind of variation in the non-deleteri-

ous mutation rate affect msh and t̂ c values? A closely related question applies to factors such as

variation in background selection and flucations in rates of gene flow or admixture, that cause

polymorphism levels to wax and wane across chromosomes, and that alter the distribution of

msh values that terminate due to recombination events. The basic expectation is that these

kinds of variations will have a greater effect on long tc values, when flucations in the detmi-

nants of what should be short msh values can have a greater affect. However short tc values are

associated with very long msh values that span large portions of chromosomes and can be

expected to be more immune to local flucations in the factors that terminate msh tracts.

Another potential difficulty is that as sample sizes grow very large, some rare alleles will

have been caused by multiple mutations [14]. While this is not a concern for singletons, it is

possible that, for example, a doubleton will actually represent two mutations. In these cases,

the likelihood estimator will simply generate a composite of two different singleton coalescent

times. Unlike methods that estimate the time of most recent common ancestry among individ-

uals carrying a rare variant, t̂ c is the estimated time since each copy of the rare variant last

shared a common ancestor with an individual not carrying the variant. If two copies of an allele

are actually the result of independent mutations, the composite t̂ c estimation will produce an

intermediate value and not an aberrantly large one, as would occur with a method based on

intra-allelic differences. S3 Fig illustrates the impact of analyzing two independently derived

minor variants as copies of a single mutation.

Some additional and important benefits of the estimator described here emerged during

the course of this study. Estimated tc values, or msh values, can be used to phase singleton

alleles (i.e. estimate the correct chromosome for placement in diploid heterozygous individu-

als). Another benefit is that the method can be applied relatively quickly to very large data sets

with the benefit of the PBWT algorithm [23]. Computing time increase linearly with both sam-

ple size and numbers of variants, and all the singleton variants for the full UK10K panel for

chromosome 22 can be analyzed in under 30 minutes, for example (S4 Table). A third likely

benefit, that has not been explored here, is that it should be possible to work with genomic

data in which only dispersed portions of the genome have been sequenced. In particular, msh
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tracts for rare alleles from large samples are typically much longer than the distances between

genes, and consequently it should be possible to apply the method to data sets of aligned

exome sequences.

Our analysis of variants of 1% frequency among 26 populations of the 1KGP data, revealed

considerable systematic variation in allele ages depending on the variant’s function, location,

and geographic distribution. Different human populations have variants at 1% frequency with

very different distributions of ages. Population-specific demographic histories, including pop-

ulation bottlenecks, expansion, and admixture events, have likely all contributed to these

broad differences, and therefore changing, in effect, what it means to be a 1% frequency variant

on a population-by-population basis.

We also observed that the ages of variants found at 1% frequency in one population

depend greatly on whether or not they are also found in other populations. To be found

in multiple populations, a variant that arose by a single mutation must have either: 1) origi-

nated prior to the divergence of those populations and risen to sufficient frequency that it has

not been lost in either; or 2) persisted in its population of origin long enough and risen to suf-

ficient frequency that migrants have had an opportunity to bring it to at least 1% frequency

in another population. Both of these phenomena are reflected in substantial differences of

ages of variants found in a population at 1% frequency depending on their total geographic

range.

The survey of singleton t̂ c distributions for 1KGP revealed bimodal distributions in each of

the non-African populations (S9–S13 Figs). All of them exhibit a large peak at less than a thou-

sand generations, and another smaller one at more than ten thousand generations, a pattern

that is readily interpreted in terms of an older bottleneck associated with the out-of-Africa his-

tory of these populations. S14 Fig shows these same patterns arise for simulated data generated

with parameter estimates for an Out-of-Africa model [24]. The younger larger peak is charac-

teristic of variants that arose after the population’s ancestors had emigrated from Africa. These

are relatively new variants that have not yet had an opportunity to rise to high frequency or

spread to other populations. The older peak consists of variants that arose within an ancestral

African population and predate the modern human expansion into Eurasia. Although they are

identified as singletons in individual populations, these variants are often shared across multi-

ple populations, and they typically occur at frequencies greater than 1% in some populations.

In the populations where they are ascertained as singletons, founder events, genetic drift, and

natural selection have made these older alleles rare, or even eliminated them entirely before re-

introduction by migration from other populations.

Independently of geography and demographics, protein-changing variants in the 1KGP

populations that are found at 1% frequency are younger on average than comparable variants

that do not change proteins, consistent with previous reports [25]. These are expected to be

mostly deleterious variants that have not yet been removed from the population, but they may

also include some beneficial variants that have not yet been pushed to higher frequencies. At

the 1% frequency level, the impact of protein-changing status on the distribution of allele ages

is statistically significant, but considerably smaller than the systematic differences introduced

by demography and geography. Among the singleton protein-changing variants ascertained in

the UK10k data, however, we find a larger difference with respect to variants that do not

change proteins. The contrast with the 1KGP data is consistent with the younger, rarer, and

more numerous variants of the UK10K data are subject to greater selective forces than the vari-

ants at 1% frequency in the 1KGP populations.

Our ANOVA did not reveal evidence that local adaptation contributes to the variance in

ages of alleles at 1% frequency. If selectively important alleles were disproportionately
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prevented from migrating between populations or remaining in multiple populations, we

would have observed the pool of shared protein-changing variants to be enriched for protein-

changing variants without selective function. There would have been less differentiation

between non-shared and shared, non-protein-changing variants, and there would have been a

significant (negative) interaction term between private status and protein-changing status,

which we did not observe. We also did not detect an interaction between populations and pro-

tein-changing status. If different populations were broadly experiencing greater or lesser

amounts of directional selection on rare variants, or if there were substantial differences

between populations in the ability of natural selection to remove harmful variants or raise the

frequency of beneficial variants (such as due to variation in effective population size), we

would expect to have seen a significant interaction between populations and protein-changing

status. However, we did not; and while both of these phenomena may be taking place, they are

not major drivers of the distribution of ages of variants found at 1% frequency, in contrast to

the contributions of that demography, geographic spread, and global properties of natural

selection.

These population genetic results are all presented as conditioning on alleles at 1% frequency

that have been down-sampled to equal sizes. By considering only alleles of a particular fre-

quency, we are able to draw meaningful comparisons and contrasts among populations. While

the formula for the estimator itself is not a function of the frequency of the allele to which it is

being applied, the distributions of t̂ c estimates will vary greatly as a function of the frequencies

of the alleles being studied (see e.g. S15 Fig). Indeed, it is because of these very different age dis-

tributions that alleles of different frequencies can have very different histories, including the

action of natural selection and the amount of movement among populations. Any future work

that would make comparisons between populations or estimate demographic models based on

t̂ c estimates will need to explicitly condition on allele frequencies.

With an estimate of an allele’s age, an investigator has an important new piece of informa-

tion to bring to bear on the possible functional impact of a mutation. As shown here, for

1KGP data and even more strongly for the larger UK10K data, functional alleles are younger,

and therefore, concomitantly, any allele that is discovered to be especially young, given its fre-

quency in the sample, is a good candidate for having an effect of fitness. In this context, an

increase in sample sizes will have multiple important effects. First, the rarest alleles in large

samples will be rarer and younger, on average, than those found in smaller samples, and they

will thereby be relatively enriched for more alleles of harmful effect and for alleles of more

harmful effect (these are the alleles that would not reach those higher frequencies observable

with smaller sample sizes). Second, the numbers of alleles in the rarest class rises with sample

size, and thus so does the number of very rare alleles observed for a given gene. For example,

the average number of autosomal singletons for the 26 1KGP populations (100 genomes) was

3,311,984, while the count for the UK10K data (7242 genomes) was approximately 6 times

higher at 19,078,777. Based on those values, and assuming the number of SNPs is a function of

the log of the sample size [5], a sample of 2N = 100,000 genomes would have 36 million single-

tons, and a sample of 1 million genomes would have 45 million singletons. The increasing den-

sity of very rare alleles, as sample sizes grow, opens the door to a kind of mapping of functional

constraint across a gene that will become increasingly fine-grained. Third, as data sets get very

large so grows the potential for studying the impact of selection on variation that has arisen at

different times and it will become increasingly possible to assess whether the action of selection

has been changing for different genes or regions of the genome.

The estimator can also be used to study forces that shape the overall distribution of allele

ages across the genome, particularly demographic forces. As shown in Fig 5, the distributions
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of ages of singletons across 1KGP populations varies greatly, as do the differences between the

ages of private and shared alleles. These distributions can be used in principle to develop mod-

els of demographic history, including in particular recent events that are only revealed by their

impacts on the ages of very rare alleles [26].

Methods

Estimator development

Unknown sister(s). Eq (1) assumes that the focal chromosome has a single known sister

chromosome. However, even without knowing the sister(s), it is still possible to compare the

focal chromosome to other chromosomes, and in each case measure the length of identity

flanking the focal base. In the comparison with the (unknown) sister chromosome the dis-

tance will be a realization of a mutation process with parameter μ2tc, but for a non-sister the

distance will be a realization of a process with parameter m2t�c , where t�c > tc (because a sister

chromosome is, by definition, the most closely related). It follows that for non-sisters the

lengths of the regions identical to the focal chromosome flanking the focal base will be shorter

on average than for the sister chromosome. For comparisons where t�c � tc, the length of the

tract of identity with the sister will be longer than the one with the more distant relative. The

greater the difference between tc and t�c , the more reliably the longest tract will come from an

alignment with the sister chromosome. However, when t�c ffi tc, the longest tract may come

from either alignment, but this is also the case where an estimate of t�c based on the longest

tract length is also a good estimate of tc. This suggests that it is not necessary to identify the

sister(s), and that we can simply use the longest observed tract of identity. We call this quan-

tity the maximum shared haplotype (msh). The msh can be measured by aligning the chromo-

some carrying the focal base with all other homologous chromosomes in the sample, and then

measuring the distance between the focal base and the first non-identical base in each align-

ment. The largest such distance is the msh. The msh is also useful because it can be quickly

measured, even for a large sample of chromosomes (see Extracting msh values from aligned

sequence data).

The msh is primarily determined by events on branches A and S . The msh will have

been caused by a mutation on one of the genealogy edges that has a location in the genealogy

that is close to the edge associated with the focal base—indeed it will often be that very edge

(A in Fig 1). However the msh value (i.e. the distance to this mutation) can only be revealed in

comparison to other chromosomes, and this causes the msh to be a complex function of both

the branch lengths and the topology of the genealogy.

We consider first the case of a genealogy that includes only multiple sister chromosomes.

When the focal chromosome has multiple sisters, the density of the length of the tract of

sequence identity between the focal chromosome and each individual sister is given by Eq (1),

but the density of the longest tract from all of those sister alignments is not. However, no align-

ment between the focal chromosome and any of its sisters can extend past the first mutation

arising on branch A or S , as mutations on either of these branches differentiate the focal chro-

mosome from all of its sisters. Therefore, the distance xAS from the focal base to the closest

mutation having arisen on either branch A or S is an upper bound on the msh. However if

every lineage in the sister clade has independently acquired a mutation closer to the focal base

than xAS, then the msh will end at the most distant of these mutations, and will be shorter than

xAS. This situation is diagrammed in Fig 1B and the general function for msh in the case of two

sisters is shown in S4 Fig. It is most likely to occur in configurations where the focal base has

only two sisters. In this case, the probability that msh is less than xAS is the probability that two

independent random variables drawn from an exponential distribution with a rate parameter
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μ(tc−φ) are both less than xAS, or

p msh 6¼ xASð Þ ¼

Z 1

0

m tc þ φð Þe� xASmðtcþφÞ½1 � e� xASmðtc � φÞ�2dxAS ¼
ðφ � tcÞ

2

tcð3tc � φÞ

This probability quickly drops from a maximum of 1/3 when φ = 0 (when the time of

the base of the sister clade is equal to tc), to 1/10 when φ = tc/2 and approaches zero as φ
approaches tc.

It is also possible for the msh to be less than xAS if the mutation causing the msh occurred

outside of the clade that includes the focal base and its sister. In general this requires that both

of the closest mutations on branches A or S were further away than the closest mutations on

other branches that are near to the focal base in the genealogy, with the precise conditions

becoming quite complex as sample size grows (S4 Fig).

Both sets of circumstances (i.e. msh< xAS due to mutations on the sister clade, or due to

mutations outside of the clade including the focal base and its sisters) have low probability as

we show by simulation in S5 Fig. We therefore use the exponential density for xAS, which is a

function of the lengths of only branches A and S (i.e. tc + φ), to approximate the density of the

msh,

pðmshjtc;φ;mÞ ffi mðtc þ φÞe� mshmðtcþφÞ: ð2Þ

The length of the sister edge, φ, is not observable, however we show below the development

of a coalescent approximation of the probability density, p(φ). Integrating over this density

yields a likelihood function that includes the case when there is only one sister (φ = tc) and the

range of possibilities when φ< tc:

pðmshjtc; mÞ ffi
Z tc

0

pðφÞmðtc þ φÞe� mshmðtcþφÞdφþ pðφ ¼ tcÞm2tce
� mshm2tc : ð3Þ

While the integration over φ does require a model of demographic history of the sample, in

practice the choice of demographic model has little impact on the estimate (see below).

Including recombination. Recombination can be included in a manner similar to that of

mutation, and we can envision a Poisson processes where each base has probabilities, μ and ρ,

of mutating or recombining (respectively) in each generation. Looking out from the focal base,

in comparisons between the focal chromosome and all other chromosomes, the tract over

which there are no mutation or recombination events has a length that is exponentially distrib-

uted with a rate parameter (μ + ρ) [27, 28]. However, unlike mutation events that cause a clear

difference between chromosomes, we cannot observe the base positions of recombination

events directly.

In a system with recombination, the nearest recombination event to the focal base alters the

genealogical relationship between the focal chromosome and its sisters. This is not an issue

when a mutation occurs on branch A or S at a distance along the chromosome that is closer to

the focal base than the first recombination event. However, when no mutation has occurred in

the distance to the first recombination event, the chromosomes that were sisters up to the

point of recombination, and that were acquiring differences from the focal chromosome at a

rate of μ2tc per site per generation, no longer share a common ancestor with the focal chromo-

some at tc. Instead, the recombination event will have introduced a random chromosome from

the population, and for this the rate of appearance of differences with respect to the focal chro-

mosome will be at the much higher rate of m2�t , where �t is a random draw from the distribution

of times of common ancestry between two unrelated chromosomes in the sample. The effect

of this higher rate of introduction of mutational differences means that the distance beyond
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the point of recombination to the first mutational difference will typically be short compared

to the distance between the focal locus and the recombination event. We therefore approxi-

mate the density of msh for the case that includes recombination, by including recombination

in the same way as we include mutation,

pðmshjtc; m; rÞ ffi
Z tc

0

pðφÞðmþ rÞðtc þ φÞe� mshðmþrÞðtcþφÞdφ þ pðφ ¼ tcÞðmþ rÞ2tce
� mshðmþrÞ2tc : ð4Þ

We assessed the difference between true msh values and expected msh value (by integration

of Eq 4) using simulations with recombination. As shown in S6 Fig, the approximation intro-

duces a modest bias, such that observed msh values tend to be longer on average than

expected.

Eq (4) was developed by considering a tract of identify extending in one direction, either 5’

or 3’, from the focal base. In practice, investigators can record two msh values for every variant:

msh5, extending from the focal base in the 5’ direction and msh3, in the 3’ direction. Each of

these is ended by a different mutation or recombination event and therefore an independent

observation (conditional on common values of tc and φ). The joint likelihood of both msh val-

ues is the product of the probabilities of each one,

pðmsh50 ;msh30 jtc; m; rÞ ffi
Z tc

0

pðφÞððmþ rÞðtc þ φÞÞ2e� ðmsh50 þmsh30 ÞðmþrÞðtcþφÞdφ

þ pðφ ¼ tcÞððmþ rÞ2tcÞ
2e� ðmsh50 þmsh30 ÞðmþrÞ2tc : ð5Þ

In practice, it is often the case that one of the msh values is not terminated by a difference

but rather comes from a tract of identical sequence that continues to the end of a chromosome.

If we denote this distance as msheoc, we obtain a density comprised solely of the probability of

no mutations or recombination events involving branches A or S within this distance,

pðmsheocjtc;φ; m;rÞ ffi e� msheocðmþrÞðtcþφÞ;

and a corresponding likelihood to be used when the msh in one direction is complete and the

other is prematurely truncated:

pðmsh;msheocjtc; m; rÞ ffi
Z tc

0

pðφÞððmþ rÞðtc þ φÞÞ2e� ðmshþmsheocÞðmþrÞðtcþφÞdφ

þ pðφ ¼ tcÞðmþ rÞ2tce
� ðmshþmsheocÞðmþrÞ2tc ð6Þ

Use of msh to estimate tc is not limited to systems with uniform rates of recombination. For

an arbitrary genetic map, the probability that no recombination events have occurred on

branch A or S within a span of c Morgans is e−c, and the probability that the closest such

recombination event occurs at a point c Morgans away from the focal base is ρce−c where ρc is

the per-base recombination rate at the site of the first recombination. We define c5, and c3, as

the length in Morgans of the 5’ and 3’ msh tracts, ceoc as the length in Morgans from a focal

base to the end of the chromosome, and ρ5, and ρ3, as the per-base recombination rates at the

ends of their respective msh tracts. The generalized versions of Eqs (5) and (6) are,

pðwjtcÞ ffi
Z tc

0

pðφÞbðtc þ φÞ2e� wðtcþφÞdφþ pðφ ¼ tcÞbð2tcÞ
2e� w2tc ð7Þ

And

pðweocjtcÞ ffi
Z tc

0

pðφÞbeocðtc þ φÞe� weocðtcþφÞdφþ pðφ ¼ tcÞbeoc2tce
� weoc2tc ð8Þ
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respectively, where, χ = μ(msh50 + msh30) + c50, + c30, χeoc = μ(msh + msheoc) + c + ceoc, β = (μ +

ρ50)(μ + ρ30), and βeoc = μ + ρ.

The probability density of φ and final likelihood approximations. The final steps in

developing a maximum likelihood estimator of tc require an expression for p(φ). From Slatkin

and Ranala [8], the number of branches ancestral to a sample of that existed t generations

before a sample was taken can be approximated as

n tð Þ ffi
n

1þ n
2
t tð Þ

Where n is the sample size, τ(t) is the coalescent intensity integral,
R t

0

1

2Nðt̂Þ, and Nðt̂Þ is the his-

torical effective size of the population t generations before sampling. By substituting t = tc − φ
we reverse the time direction, and by taking the derivative with respect to φ we have an expres-

sion for the instantaneous rate of coalescence in the gene tree as time moves forward:

n0 φð Þ ¼
n

2Nðtc � φÞtðtc � φÞ þ 4

� �2

:

The instantaneous rate of coalescence along one particular branch, our hazard function, λ
(φ), is the rate for the tree divided by the number of branches:

l φð Þ ¼
n0ðφÞ
nðφÞ

:

The probability that the next coalescent event to happen on the branch occurs after φ gener-

ations is the product of the coalescent rate at generation φ and the probability of zero coales-

cent events in generations zero through:

f ðφÞ ¼ lðφÞe�
R φ

0
lðφ�Þdφ�

: ð9Þ

The branch length φ has a maximum value of tc generations, and if no coalescent event hap-

pens before that time the branch terminates at time zero instead of at a coalescent event. This

event, with a point mass at φ = tc, corresponds to the case of the there being just one sister

edge. In summary, the density for φ is

pðφÞ ¼

f ðφÞ; for 0 � φ < tc
1 �

R tc
0
f ðφÞdφ; for φ ¼ tc

0; otherwise

:

8
><

>:
ð10Þ

For a model of a diploid population with a constant size, t tð Þ ¼ t
2N and tð Þ ¼ 4nN

4Nþnt. Substi-

tuting tc − φ for t, and carrying through Eqs (9) and (10), we obtain

p φð Þ ¼

n
4N þ ntc

; for 0 � φ < tc

1 �
ntc

4N þ ntc
; for φ ¼ tc

0; otherwise

:

8
>>>>><

>>>>>:

ð11Þ
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Substitution of Eq (11) for p(φ) in Eqs (7) and (8), followed by integration, provides the

functions that were used for optimization and estimation of tc:

p wjtcð Þ ffi
e� w2tcnð� 2bð1þ 2tcwð1þ tcwÞÞ þ ewtcbð2þ tcwð2þ tcwÞÞ

ð4N0 þ ntcÞw3
þ

16e� w2tcN0tc2b

4N0 þ ntc
ð12Þ

And

p weocjtcð Þ ffi
e� w2tcnbeocð� 1 � 2tcwþ eweoctcð1þ tcwÞ

ð4N0 þ ntcÞweoc2
þ

8e� weoc2tcN0tcbeoc

4N0 þ ntc
ð13Þ

for the cases when the msh can be measured in both directions, and when direction is prema-

turely truncated by the end of the chromosome, respectively. We observed that Eqs (12) and

(13), and estimates obtained using them, are weak functions of N0. More generally we found

that using either N = 104 or N = 105 has very little effect on estimates of tc, and that alternative

expressions, found by integration over f(φ) using a demographic model of recent strong expo-

nential growth, gave estimates of tc that were nearly identical to those obtained using Eqs (12)

and (13) which assumed a constant size of N (S5 Table, S7 Fig).

tc estimation and singleton phase estimation. The approximate likelihoods given above

can be used to estimate the first coalescent time at any base position, for any chromosome in a

sample of chromosomes from a population. In addition, these expressions can be easily

adapted to the case when a focal base on a focal chromosome carries a derived allele at a SNP.

Consider the case of a SNP in which the derived allele occurs just once in the sample (a single-

ton). If this singleton is the focal base, then there must have been at least one mutation on edge

A and the time of that mutation could not have been greater than tc. With a constant mutation

rate per base of μ, the probability of one or more mutations on this edge is ð1 � e� mtcÞ. Thus we

adapt the likelihoods used for estimating tc to the case of a single derived allele at the focal

base, simply by including this probability in the likelihood.

For variants found more than once in a sample, we record χ for each of the k copies of the

rare allele, which is the longest tracts of identity it shares with a chromosome that does not

carry the rare allele. The product,
Qk

i¼1

pðwitcÞ, gives a composite likelihood that can be maxi-

mized to estimate tc.
The property by which the probability of a branch harboring a mutation increases with the

length of the branch also provides information about the correct haplotype phasing of single-

ton variants. Consider the position of the focal base on the two chromosomes of a diploid

individual that is heterozygous for a singleton variant at that base position. One of the chromo-

somes carries a mutation that occurred at the focal base position between tc and the time of

sampling, whereas no mutation has occurred on the individual’s other chromosome at this

base position since its first coalescent time (a time point we identify as t�c ). As the probability of

a mutation on a genealogical branch is proportional to the length of the branch, assigning the

singleton variant to the haplotype with the larger estimated tc should correctly phase the vari-

ant with a probability equal to tc=ðtc þ t�c Þ. When the difference between tc and t�c is large, the

probability of correctly phasing the singleton variant is high. When t�c ffi tc, the probability of

correctly phasing the singleton variant drops towards 0.5. In this case, however, the estimate of

tc is approximately correct even when phase is incorrectly assigned.

We developed software to estimate tc values for every genetic variant in a haplotype-phased

VCF file given a demographic history, genomic mutation rate, and genetic map. We adapted

the positional Burrows–Wheeler transform (PBWT) algorithm of Durbin [23] to extract

the lengths and locations of msh50 and msh30 tracts for each variant. These msh50 and msh30
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tracts are converted into χ values, and tc is estimated by maximizing Eqs (12) and (13) using

the Brent optimization routine implemented in the Python module scipy.optimize. The

PBWT algorithm can be rapidly applied and has linear time complexity with sample size,

allowing for rapid calculation of large numbers of t̂ c values even for very large numbers of

chromosomes.

Extracting msh values from aligned sequence data. We extract all msh values from a

VCF file using prefix arrays generated by the positional Burrows-Wheeler transform. Follow-

ing algorithm 2 in Durbin [29], we create matrices a and d from the sequence alignment. Both

matrices have a row for each chromosome and a column for each position in the VCF file.

Each column k of matrix a orders the chromosomes to give the longest matching alignment

preceding site k between consecutive chromosomes. Matrix d records the lengths of all the pre-

ceding alignment matches when the chromosomes are ordered as in matrix a.

For a singleton variant located at focal base k of a focal chromosome, the start of the msh50

tract is read by identifying the position j of the focal chromosome in the k-th column of matrix

a and taking the minimum of the values of the j-th and (j + 1)-th values of the k-th column of

matrix d. By reversing the VCF file and repeating algorithm 2 we create a second set of a and d
matrices with which we derive msh30 tracts. Using the physical locations of variants in the VCF

file and a human reference genetic map, the start and end points of the msh tracts are trans-

formed into values of χ necessary for estimation of tc.
Matrix d is also sufficient to ascertain the length of the msh between any pair of chromo-

somes at every locus in the genome. For the row of matrix d corresponding to a position of

interest, the maximum entry found between two chromosomes indicates the position of the

most recent non-shared site between them. From this observation, for a variant observed at

greater than singleton frequency, we calculate an msh for each instance of the variant as the

longest msh found between the chromosome carrying the variant and any chromosome not

carrying the variant.

Data

We applied the estimator of tc to low frequency alleles in data from 26 human populations,

grouped into five super-populations, from the 1000 Genomes Project (1KGP) data set [15].

We sub-sampled each population to achieve a uniform sample size of N = 50 diploid individu-

als. Chromosomes were taken as phased by the 1000 Genomes Consortium using SHAPEIT

[30] with the exception that we re-phased singleton variants in each population based on rela-

tive t̂ c values. To do this, for each heterozygous singleton, we masked all other singleton vari-

ants, calculated t̂ c for both possible phases, and assigned the variant to the chromosome

producing the larger t̂ c: tc values were estimated separately for each population, not collectively

as a single pooled sample.

We also estimated tc for singleton variants in the mapping sample of 3,621 individuals

(7,242 genomes) from the UK10k data set that has been filtered by the UK10k consortium to

remove close relatives and individuals of recent non-European ancestry [16]. These include

genomes from the ALSPAC cohort, which focused on the Avon region, and the TWINSUK

cohort which includes samples from across the UK. Haplotype phase for variants found two or

more times was inferred by the UK10k consortium using SHAPEIT. Haplotype phase for sin-

gleton variants was determined as for the 1KGP data.

For all data we masked TpG/CpG transitions to minimize mutation rate variability. We

compared results found using genetic maps based on both linkage disequilibrium [26] and

pedigrees [31], and found very little difference in tc estimates (S8 Fig). Results presented here

used the pedigree-based map. We assume the (non-CpG) mutation rate is constant and equal
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to 1 × 10−8 per base per generation [32–34]. We assume a demographic history of constant

population size of N = 1 × 104.

Simulations

Data were simulated using the msprime program [35] under three demographic models: a

constant population of size N = 1 × 104; a population with recent exponential growth that

started from an ancestral population size of Na = 1 × 104 to a population size of N = 5 × 105

over the last 200 generations prior to sampling; and a bottleneck model in which samples were

drawn from a ‘European’ population included in an out-of-Africa model with exponential

growth and migration using the parameter estimates of Gutenkunst et al., [24]. We simulated

samples of 1000 10-Megabases chromosomes from which we sub-sampled populations of 100

chromosomes for comparison with 1KGP data. We used a fixed mutation rate of μ = 1 × 10−8

per base per generation, as is typical for human populations [32–34]. For recombination rate

we used a value of ρ = 1 × 10−8 that is typical of the mean rate per base pair in human popula-

tions [26, 31], as well as both a lower recombination rate (ρ = 1 × 10−9) and a higher recombi-

nation rate (ρ = 1 × 10−7) to assess performance when a different proportion of msh tracts end

in a variant that has been introduced to the focal chromosome or a sister chromosome by

recombination, and not directly by mutation.

We assess error as the root mean squared error of log10 transformed tc values, and bias as

the average signed error of the log10 transformed tc values. To assess the impact of phase uncer-

tainty we randomly paired chromosomes and phased the data using SHAPEIT with default

parameters. Singletons were phased as for the 1KGP and UK10K data.

Data analysis

We used SNPEff [36] to identify variants annotated as missense, stop gained, stop lost, start

lost, splice acceptor, or splice donor as ‘protein changing’. For singleton variants in UK10K

populations, a variant is labeled as ‘private’ when it is found in only one population, and

‘shared’ when it is also found in other populations (at any frequency).

Singleton variant ages in the 1KGP data were analyzed with a type-II ANOVA that exam-

ined the effect of three variables, including: (1) the population in which the variant was

observed; (2) whether or not a variant is private to a single populations; and (3) whether or not

a variant effects a protein sequence. The model has the form log10(tc) ~ Intercept + PC + Pri-
vate + Population + (PC × Population) + (Private × Population) + (PC × Private), where PC is a

categorical variable indicating protein-changing status, Private is a categorical variable indicat-

ing the restriction of a variant to a single population, and Population is a categorical variable

indicating the population in which a variant is observed.

Ethics statement

The only human data used in this study are genome sequences that are publicly available. Two

sources of human data were used. The 1000 Genomes data were downloaded from the data

server at http://www.internationalgenome.org/data. The UK10K data are made available to

researchers as described (https://www.uk10k.org/data_access.html) and were made available

to Dr. Hey following completion of the UK10K Project Data Access Agreement (signed 14 Oct

2014). These data included dataset IDS EGAS00001000090 (UK10K COHORT ALSPAC) and

EGAS00001000108 (UK10K COHORT TWINSUK). These data include no information such

that the original subjects could be identified. Because all of the data is publicly available, and
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because none of the data can be used to identify the original subjects, the study falls under

NIH Human Subjects Research Exemption 4. For these same reasons the research was deter-

mined to not involve Human Subjects by Temple University IRB.

Web resources

The program, entitled “runtc”, that implements the estimator for VSF files is available at

https://github.com/jaredgk/msh-python/tree/master/msh_est.

The simulation results are available at https://bio.cst.temple.edu/~hey/nolinks/Platt_etal_

SimulationsAndAnalyses.zip.

Supporting information

S1 Table. Performance of tc estimator under simulated models. Columns are shown for

Error (root squared mean error of log10(tc)), Error tc (rmse of tc), bias (mean signed error of

log10(tc)), and r (Pearson’s correlation) for the true and estimated values of log10(tc). Results are

shown for sample sizes of 100 and 1000 chromosomes drawn from populations with a constant

size of N = 1 × 104 (constant), one with an historical size of N = 1 × 104 and exponential growth

over the last 200 generations to a size of N = 5 × 105 at the time of sampling (recent growth), or

a complex model of European history derived from Gutenkunst et al. [24] including a large

ancestral African population with a population bottleneck, migration to and from diverging

African and Asian populations, and recent exponential growth (Out of Africa). Each model is

presented at two constant recombination rates, and evaluated with both perfectly phased hap-

lotypes taken from simulation (known) or haplotypes statistically phased from simulated dip-

loid genotypes (inferred). The estimator is evaluated for all alleles in each sample, as well as

subsets of alleles of increasing rarity.

(DOCX)

S2 Table. Estimator performance with high recombination. Results are shown for constant

and growing populations for high recombination (see S1 Table).

(DOCX)

S3 Table. Mean of log10 transformed singleton tc values, before and after transforming

back to natural scale for each 1KGP population.

(DOCX)

S4 Table. Timings for determination of msh values and tc estimates for singleton variants

in the UK10K chromosome 22 data by sample size and number of variants.

(DOCX)

S5 Table. Differences in t̂ c values across changes in demographic assumptions when

determining the density of the edge leading to the sister clade, (φ|tc). Data were simulated

to generate sample of 100 and 1000 chromosomes under each of two recombination rates

(1 × 10−9 and 1 × 10−8), and under each of two demographic models: one with a constant

size of N = 1 × 104; and one with an historical size of N = 1 × 104 followed by exponential

growth over the last 200 generations to a final size of N = 5 × 105. Two versions of the tc

estimator were applied to all alleles that occurred in each of the 8 simulations, one that

assumed a constant N = 1 × 104 and a second that assumed a constant N = 5 × 105. Results

are the average difference in log10ðt̂ cÞ values and Pearson’s r statistic between the log10ðt̂ cÞ val-

ues.

(DOCX)
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S6 Table. Table of coefficients for each categorical variable in ANOVA of log10(tc) values of

singleton variants in each population of the 1KGP data.

(DOCX)

S1 Fig. Comparisons of msh-based tc estimator with idealized frequency-based estimator.

Using the data from the simulations shown in Fig 2, these boxplots show the increase in preci-

sion in estimating tc from msh compared to the best possible estimator operating on variant

frequency. Cells a-c represent samples of n = 1000. Cells d-e represent samples of n = 100. a

and d include all variants of frequency� 10%, b and e represent variants of frequency� 1%,

and c is only variants found at 0.1% frequency.

(TIF)

S2 Fig. t̂ c values for 82563 singletons male X chromosomes from the UK10K panel. The X

axis shows values for a set of original X chromosomes, and the Y chromosome shows values

for the same data after randomization to simulate 50 (diploid) pairs of unphased chromo-

somes, followed by application of phasing software and singleton phasing as described in the

manuscript. To generate rephrased data, 100 chromosomes were randomly paired, and hetero-

zygous positions were randomized to simulate a diploid, short-read, assembly, and then

phased using SHAPEIT [37]. We used a mutation rate of 10−8 per base pair and the deCODE

genetic map [31, 38].

(TIF)

S3 Fig. Loci with multiple independently derived minor alleles. Shown is the case in which a

locus harbors both a singleton variant and a false-positive SNP call. 1000 doubleton variants

are generated by randomly selecting a singleton SNP in the UK10K sample, and then selecting

an additional chromosome at random and assigning to it the derived allele. We compare the

original singleton tc estimate with the tc estimate of the artificially created doubleton variant.

The addition of a derived allele that is identical by state but not identical by descent does not

produce radically deviant estimates. True double mutations are expected to behave in a similar

manner, though are more likely to be found on longer branches than randomly chosen

branches used for this figure.

(TIF)

S4 Fig. Gene trees showing a chromosome at the focal base (white), sister chromosomes

(blue) and other sampled chromosomes (black). Panels A, B and C show three different sam-

ple sizes. Within each panel, every edge has a value in italics (A, B, C, D etc) that is the distance

from the focal base to the closest mutation to that base that occurred on that edge. Below each

figure is given the maximum shared haplotype (msh) value as a function of the distances to the

mutations on each edge.

(TIF)

S5 Fig. Maximum shared haplotype (msh) and the distance to the first mutation on either

branch A or S . xAS are plotted against the corresponding msh values as determined in a set of

simulated data. Coalescent simulations (104 independent simulations) were conducted for a

sample of 100 chromosomes drawn from a constant-sized diploid population of N = 106, with

a per base mutation rate of 2 × 10−8, and no recombination using msprime [35]. For each sim-

ulated data set we measured msh of a singleton variant and the longest maximum shared hap-

lotype determined by considering only events on the external branch immediately ancestral to

the singleton variant and its first sister branch (approximate msh).

(TIF)
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S6 Fig. msh values as a function of tc. Black dots represent observed msh, values from single-

ton variants from n = 100 chromosomes sampled from a simulated constant-sized population

of N = 1 × 104 individuals with per-base mutation and recombination rates of μ = ρ = 1 × 10−8

as a function of their true tc values. The red line is the expected value of a one-direction msh
tract as a function of tc, given the same parameter values, obtained by integration of Eq 4

(slope: -0.961, intercept: 7.353). The blue line is the linear regression of log10(msh) on log10(tc)
(slope: -0.703, intercept: 6.858).

(TIF)

S7 Fig. Values of tc estimated under two assumptions of demographic history. Variants

from 100 chromosomes simulated from a population with an historic size of N = 1 × 104 and

exponential growth over the last 200 generations to a size of N = 5 × 105 at the time of sampling

(recent growth) have tc estimated under extreme assumptions of a constant demography of

N = 1 × 104 and a constant demography of N = 5 × 105.

(TIF)

S8 Fig. Comparison of results with different genetic maps. Log10ðt̂ cÞ values for 88,651 low

frequency UK10K alleles from chromosome 22 with counts between 2 and 10, inclusive. Esti-

mates were generated using the HapMap [26] genetic map, which has a total length of 80 centi-

morgans, and the deCODE map [31], which has a total length of 55 centimorgans. Pearson’s

correlation coefficient is 0.929.

(TIF)

S9 Fig. Observed frequencies of log10ðt̂ cÞ values for singleton alleles in African populations.

Distributions are shown for private alleles and alleles that are also found in other populations,

and for both.

(TIF)

S10 Fig. Observed frequencies of log10ðt̂ cÞ values for singleton alleles in European popula-

tions. Distributions are shown for private alleles and alleles that are also found in other popu-

lations, and for both.

(TIF)

S11 Fig. Observed frequencies of log10ðt̂ cÞ values for singleton alleles in East Asian popula-

tions. Distributions are shown for private alleles and alleles that are also found in other popu-

lations, and for both.

(TIF)

S12 Fig. Observed frequencies of log10ðt̂ cÞ values for singleton alleles in South Asian popu-

lations. Distributions are shown for private alleles and alleles that are also found in other pop-

ulations, and for both.

(TIF)

S13 Fig. Observed frequencies of log10ðt̂ cÞ values for singleton alleles in admixed American

populations. Distributions are shown for private alleles and alleles that are also found in other

populations, and for both.

(TIF)

S14 Fig. Observed frequencies of log10ðt̂ cÞ values for singleton alleles in an Out-of-African

simulation. Following the parameter estimates of Gutenkunst et al., [24], 100 chromosomes of

length 109 bases for each population were simulated using SCRM [39], with per base mutation

rates of 1e-8 for both mutation and recombination. Distributions are shown for Europe (A),
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Asia (B) and Africa (C) for private alleles and alleles that are also found in other populations,

and for both.

(TIF)

S15 Fig. Observed frequencies of log10ðt̂ cÞ values for the CEU population of the 1KG data

from alleles observed once, twice and five times.

(TIF)
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