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ABSTRACT

BACKGROUND AND PURPOSE: Accurate automated infarct segmentation is needed for acute ischemic stroke studies relying on infarct
volumes as an imaging phenotype or biomarker that require large numbers of subjects. This study investigated whether an ensemble of
convolutional neural networks trained on multiparametric DWI maps outperforms single networks trained on solo DWI parametric maps.

MATERIALS AND METHODS: Convolutional neural networks were trained on combinations of DWI, ADC, and low b-value-weighted
images from 116 subjects. The performances of the networks (measured by the Dice score, sensitivity, and precision) were compared with
one another and with ensembles of 5 networks. To assess the generalizability of the approach, we applied the best-performing model to
an independent Evaluation Cohort of 151 subjects. Agreement between manual and automated segmentations for identifying patients with
large lesion volumes was calculated across multiple thresholds (21, 31, 51, and 70 cm3).

RESULTS: An ensemble of convolutional neural networks trained on DWI, ADC, and low b-value-weighted images produced the most
accurate acute infarct segmentation over individual networks (P � .001). Automated volumes correlated with manually measured volumes
(Spearman � � 0.91, P � .001) for the independent cohort. For the task of identifying patients with large lesion volumes, agreement
between manual outlines and automated outlines was high (Cohen �, 0.86 – 0.90; P � .001).

CONCLUSIONS: Acute infarcts are more accurately segmented using ensembles of convolutional neural networks trained with multipa-
rametric maps than by using a single model trained with a solo map. Automated lesion segmentation has high agreement with manual
techniques for identifying patients with large lesion volumes.

ABBREVIATIONS: ALV � automatically segmented lesion volume; CNN � convolutional neural network; E2 � ensemble of CNNs using DWI and ADC; E3 �
ensemble of CNNs using DWI, ADC, and LOWB; IQR � interquartile range; LKW � last known to be well; LOWB � low b-value diffusion-weighted image (b0); MLV �
manually segmented lesion volume

Accurate acute infarct segmentation on DWI is important for

many aspects of the management of patients with ischemic

stroke such as deciding whether to triage the patient to an inten-

sive care unit, monitoring brain swelling, aiding prognosis, assess-

ing the risk of complications, and predicting functional outcome.

Robust automated segmentation of acute infarcts also has great

potential for use in clinical trials in which precise volume mea-

surements are needed to assess differences between groups or to

monitor lesion growth. Various automated algorithms for seg-

menting tissue have been presented.1-3 However, many of these

methods focus only on using a solo diffusion parametric map,

such as isotropic high-b-value DWI1 or an ADC image.2 There

have been studies that combined DWI and ADC maps,4-6 but

these did not include the non-diffusion-weighted low-b-value

images (b � 0 s/mm2, LOWB), which can potentially be used to

measure early vasogenic edema. Another study has proposed us-
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ing multiple b-values, up to 2000 s/mm2 (which are typically not

acquired in the acute setting), but whether the data were acquired

in the acute or subacute stage was not reported, and the effects of

using combinations of parameters were not investigated.7

We hypothesize that a multimodal approach can improve the

performance of automated segmentation algorithms. Indeed,

most radiologists use other sequences in addition to DWI when

assessing the extent of acute infarction. We tested this hypothesis

by comparing the accuracy of fully automated acute infarct seg-

mentation algorithms that use solo diffusion parametric maps

with the performance of algorithms that combine multiple para-

metric maps. We also posit that ensemble models that aggregate

segmentation results from multiple algorithms will surpass single

algorithms. The superior accuracy of ensemble algorithms has

been shown for tumor applications,8 but not yet for acute infarct

segmentation. Finally, we assessed the generalizability of our ap-

proach by evaluating its performance on an independent cohort.

We also tested the clinical utility of automated approaches for

triaging patients with large infarct volumes who might not benefit

from endovascular treatment.9,10

MATERIALS AND METHODS
Subjects
All analyses were performed retrospectively under Partners Human

Research Committee review board approval. MR imaging from pa-

tients with acute ischemic stroke admitted at a single academic med-

ical center between 2005 and 2007, imaged within 12 hours of when

the patient was last known to be well (LKW), and who did not receive

either thrombolysis before MR imaging or experimental therapy

were used for training the convolutional neural networks (CNNs).11

An independent cohort12,13 consisting of nonoverlapping patients

admitted to the same center between 1996 and 2012 for whom im-

aging was performed within 24 hours of LKW and for whom fol-

low-up MR imaging datasets were available was used for the evalua-

tion group. Both cohorts were drawn from separate repositories for

which manual outlines were available that had been drawn several

years ago for a study of early-stage stroke patterns11 or for studies

predicting lesion expansion.12,13

MR Imaging
Diffusion-weighted MR imaging was acquired on 1.5T scanners (GE

Genesis SIGNA, SIGNA Excite, SIGNA HDx, SIGNA HDxt; GE

Healthcare, Milwaukee, Wisconsin) with the following parameters

for most subjects: b-value � 1000 s/mm2, TR � 5000 ms, TE � 88.9

ms, FOV � 220 mm, 23 5-mm thick-slices and 1-mm gap, and 6

diffusion directions (see the On-line Appendix and On-line Table 1

for details). Diffusion-weighted MR imaging were corrected for eddy

current distortions before calculation of isotropic trace DWI maps

(geometric mean of the high-b-value acquisitions) and ADC maps

(slope of the linear regression fit of the log of the DWI and LOWB

images using techniques described previously).14 Manual outlines

had been drawn for prior studies11-13 using the program Display

(McConnell Brain Imaging Centre, Montreal, Canada) by a neuro-

scientist with 15 years of experience (reader 1: O.W., Training Co-

hort) and a neuroradiology fellow with 4 years of experience (reader

2: R.B., Evaluation Cohort) interpreting stroke MR imaging. The

readers were blinded to the results of the automated segmentation

algorithm. No a priori thresholds were used for manual segmenta-

tion, but concomitant ADC and LOWB maps were referenced to

avoid inclusion of susceptibility artifacts and chronic lesions with

elevated ADC values. Tissue was considered an acute infarct if it ex-

hibited hyperintensity on DWI, with hypointensity on the ADC or

abnormal T2 prolongation on LOWB. To assess interrater agree-

ment, we randomly selected 10 subjects from the Evaluation Cohort

and outlines drawn by reader 1, and 2-way intraclass correlation was

calculated.

A neuroradiologist with 12 years of experience (W.A.C.) as-

signed each patient to 1 of the following categories based on lesion

location: brain stem, cerebellum, supratentorial/cortical, or su-

pratentorial/subcortical. The “supratentorial/cortical” designa-

tion was used if any portion of �1 infarct involved the cortex.

Patients with both supra- and infratentorial lesions or lesions in-

volving both the brain stem and cerebellum were assigned to a

fifth category, “multiple.”

Image Preprocessing
DWI, ADC, and LOWB images were resampled to an isotropic

voxel size of 1 mm3. The LOWB brain mask was computed

using the Brain Extraction Tool (FSL, Version 5.0.9; (http://fsl.

fmrib.ox.ac.uk/fsl/fslwiki/BET).15,16 Mean and SD were calcu-

lated from intensities within the brain mask limited to the 1 to 99

percentile range to normalize values to a mean of 0 and SD of 1.0.

CNN Training
CNNs were trained to classify voxels as lesion or non-lesion on a

NVIDIA Tesla K40 GPU (NVIDIA, Santa Clara, California) using

the DeepMedic (Version 0.7.0; https://biomedia.doc.ic.ac.uk/

software/deepmedic/) framework with 2 pathways (see the origi-

nal publication17 and the On-line Appendix). On-line Fig 1 shows

the architecture. DeepMedic is a 3D-CNN that operates on mul-

tiresolution pathways to allow efficient and accurate supervised

segmentation. This framework was chosen over other approaches

because it performed best in the Ischemic Stroke Lesion Segmen-

tation Challenge (ISLES) 2015 study.18 Additional studies have

also shown that DeepMedic had better or comparable perfor-

mance compared with other neural network architectures (On-

line Appendix). Separate CNNs were trained on single or different

combinations of diffusion parametric maps (DWI, ADC,

and LOWB individually, and DWI�ADC, ADC�LOWB,

DWI�LOWB, DWI�ADC�LOWB). To generate ensemble seg-

mentations, we averaged voxelwise the class posteriors from the

softmax layers of 5 independent CNNs.

The results of all models were resampled back to the original

image resolution, thresholded at 50%, and masked with the re-

sampled brain masks created at the normalization step. Perfor-

mance within the training data was assessed via 5-fold cross-val-

idation. For subjects in each fold, lesion segmentations were

generated using a CNN that was trained on data from the other 4

folds. Training a single CNN with DWI�ADC�LOWB maps on

the full Training Cohort of 116 subjects required approximately

16 hours. Applying the trained CNN to an individual subject to

segment the lesion took on average 35 seconds. With sequential

evaluation of 5 CNNs, merging their output, and resampling, we

estimate that a full segmentation would require �5 minutes.
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Performance Evaluation
Binarized segmentation performances were assessed with the Dice

score (measure of overlap between automated and manual lesion

segmentations), precision, and sensitivity metrics. Dice score, preci-

sion, and sensitivity were computed as follows: Dice � 2TP / (2 �

TP�FP�FN); Precision � TP / (TP�FP); Sensitivity � TP /

(TP�FN) for which TP � true-positive, FP � false-positive, and

FN � false-negative. All metrics range from 0% to 100%, with higher

values indicating better performances.

To evaluate the generalizability of the approach, we retrained

the best performing network on the full Training Cohort and

applied it to the independent cohort. The Evaluation Cohort was

also segmented with an approach that has been used in clinical

trials.19 In brief, the technique combined thresholding of ADC

(�615 � 10�6 mm2/s), DWI, and exponential attenuation maps

with morphologic operations (opening with a 2-voxel structural

element). ADC images were first masked with a LOWB brain

mask before thresholding. We evaluated the algorithm on images

that had been resampled to 1-mm resolution for processing and

on images that were segmented at their original resolution. Seg-

mented outputs from all algorithms were evaluated at 1-mm res-

olution to reduce potential confounds from different MR imaging

acquisition resolutions. Effects of lesion volume and location on

performance were investigated using univariable and multivari-

able regression analysis as a function of the manually segmented

lesion volumes (MLVs). We also compared algorithm accuracy

between very small MLVs of �1 cm3 (group I-A) and larger

MLVs � 1 cm3 (group I-B).

To assess the accuracy of using automatically segmented lesion

volumes (ALVs) in place of MLVs for identifying patients who

have lesion volumes that are too large to likely benefit from endo-

vascular treatment, we explored the agreement between ALV and

MLV for MLV �21 cm3 (group II-A) versus �21 cm3 (group

II-B), MLV �31 cm3 (group III-A) versus �31 cm3 (group III-B),

MLV �51 cm3 (group IV-A) versus �51 cm3 (group IV-B), and

MLV �70 cm3 (group V-A) versus �70 cm3 (group V-B) to de-

termine potential misclassification rates of patients with large le-

sions using automated algorithms compared with manual vol-

umes. The thresholds (21, 31, 51, and 70 cm3) were selected on the

basis of values that had been used for enrollment in prospective

endovascular clinical trials of expanded-window interven-

tions.9,10 To be eligible for endovascular treatment using the DWI

or CTP Assessment with Clinical Mismatch in the Triage of

Wake-Up and Late Presenting Strokes Undergoing Neurointer-

vention With Trevo (DAWN) trial criteria,10 patients had to meet

the inclusion and exclusion criteria of 1 of the following 3 groups:

group A, 80 years of age or older, NIHSS score � 10, and infarct

volume of �21 cm3; group B, younger than 80 years of age, NIHSS

score � 10, and infarct volume of �31 cm3; group C, younger

than 80 years of age, NIHSS score � 20, and infarct volume of 31

to �51 cm3. For the MR imaging cohort, the infarct volume was

measured on DWI. Similarly, to be eligible for late window endo-

vascular treatment using the Endovascular Therapy Following

Imaging Evaluation for Ischemic Stroke 3 (DEFUSE) 3 MR imag-

ing criteria,9 patients had to exhibit an infarct volume on DWI of

�70 cm3. Although there may be other volume thresholds that

might be useful for patient selection,20 we focused on thresholds

that were used in positive prospective clinical trials.

Statistical Analysis. Differences between model performance

metrics were tested by 2-way ANOVA followed by post hoc paired

Wilcoxon signed rank tests. Correlations were assessed via the

Spearman correlation coefficient (�). Univariate analysis was per-

formed with the Wilcoxon 2-sample rank sum test for continuous

variables or the 2-sided Fisher exact test for categoric variables.

Cohen � assessed agreement between MLV, and ALV statistical

tests were conducted with JMP Pro 14.0 (SAS Institute, Cary,

North Carolina). P values � .05 were considered significant. Fig-

ures of MR imaging data were generated using FSLeyes (Version

0.27; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes).

RESULTS
Subject demographics for training (n � 116) and Evaluation Cohort

(n � 151) are shown in Table 1. Although there were imbalances in

sex and time to MR imaging likely due to different inclusion and

exclusion criteria of the 2 cohorts (ie, patients for whom follow-up

MR imaging is ordered clinically who made up the Evaluation Co-

hort tend to have more severe conditions), there was no statistical

difference in the distribution of MLVs. The median volume of the 10

subjects randomly selected from the Evaluation Cohort for intraclass

correlation coefficient analysis was 9.7 cm3 (interquartile range

[IQR] � 2.7–32.6 cm3), ranging from 1.2 to 94.4 cm3. The intraclass

correlation coefficient for the 2 readers was excellent (intraclass cor-

relation coefficient � 1.00, P � .001).

Effect of Selection of Diffusion Parametric Maps on CNN
Performance
Significant differences (P � .001) were found among all perfor-

mance metrics (Dice, precision, sensitivity) across all models (Ta-

ble 2). Precision could not be calculated for cases in which models

could not detect a lesion.

Individual Diffusion Maps
The CNN trained on DWI yielded significantly higher Dice scores

compared with the CNN trained on ADC (P � .001) or LOWB (P �

.001) maps (On-line Fig 2 and Table 2). Findings for the CNN pre-

cision (DWI versus ADC, P � .001, versus LOWB, P � .001) and

sensitivity (DWI versus ADC, P � .001, versus LOWB, P � .001)

were analogous to those for the Dice score. Of the networks trained

with a single parametric map, the CNN models that used the DWI

parametric map performed best, followed by the model based on the

ADC map, with the LOWB-based model having the worst scores.

Table 1: Demographics for training and Evaluation Cohortsa

Characteristic
Training
(n = 116)

Evaluation
(n = 151)

P
Value

Age (yr) 67.9 � 17.2 65.2 � 15.5 0.11
Male sex 57 (49.1%) 104 (68.9%) .002
NIHSS score 7 (3–15.75)b 6 (3–13)c .53
Time to MRI (h) 5.0 (2.9–6.8) 6.2 (3.8–8.3) .002
Manual lesion volumes (cm3) 9.0 (1.5–28.4) 10.6 (2.0–32.4) .60

a Differences as a factor of the Training Cohort are shown. Data are shown as median
(IQR), mean � SD, or No. (%).
b n � 112.
c n � 115.
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Combinations of 2 Diffusion Maps
Including additional diffusion parametric maps as training data

improved segmentation results. When we trained CNNs on 2

parametric maps (On-line Fig 2B and Table 2), all 3 CNNs that

used combinations of 2 maps yielded higher Dice scores than all

single-map CNNs (DWI�ADC versus LOWB, versus ADC, ver-

sus DWI, P � .001; DWI�LOWB versus LOWB, versus ADC,

versus DWI, P � .001; ADC�LOWB versus LOWB, versus ADC,

versus DWI, P � .001). DWI�ADC had the highest Dice score

compared with the other combinations (ADC�LOWB, P � .001;

DWI�LOWB, P � .03). Similarly, all CNNs trained with combi-

nations of 2 parametric maps had higher precision than CNNs

trained with 1 map (DWI�ADC versus LOWB, versus ADC, ver-

sus DWI, P � .001; DWI�LOWB versus LOWB, versus ADC,

versus DWI, P � .001; ADC�LOWB versus LOWB, versus ADC,

versus DWI, P � .001). However, there was no significant differ-

ence in precision between the combinations (DWI�ADC versus

DWI�LOWB, P � .67; DWI�LOWB versus ADC�LOWB, P �

.28), except for DWI�ADC versus ADC�LOWB, P � .03.

DWI�ADC similarly outperformed the individual parametric

maps (LOWB, P � .001; ADC, P � .001)

except for DWI (P � .28) in terms of

sensitivity. ADC�LOWB outperformed

the individual LOWB (P � .001) and

ADC (P � .001) models, but not DWI

(P � .24). Similar results were found for

the DWI�LOWB model compared with

the individual parametric maps (LOWB,

P � .001; ADC, P � .001; DWI, P � .83).

DWI�ADC was comparable sensitivity

with that of DWI�LOWB (P � .11) and

had improved sensitivity with respect to

ADC�LOWB (P � .001). DWI�

LOWB and ADC�LOWB were equally

sensitive (P � .06).

Combination of 3 Diffusion Maps
The CNN model that combined all 3

parametric maps had a significantly

greater Dice score (versus the LOWB,

ADC, DWI, P � .001; DWI�LOWB,

P � .01; ADC�LOWB, P � .001) com-

pared with all other combinations with

the exception of DWI�ADC (P � .49).

Precision results showed improvement

against models using individual maps

(versus LOWB, ADC, DWI, P � .001)

but not against the other combinations

(DWI�ADC, P � .47; DWI�LOWB,

P � .69; ADC�LOWB, P � .19). Similar

results were found for sensitivity (versus

LOWB, ADC, P � .001; DWI, P � .008;

DWI�ADC, P � .10; DWI�LOWB,

P � .007; ADC�LOWB, P � .001).

Ensemble of CNNs
Five CNNs were trained, each using either
DWI�ADC or DWI�ADC�LOWB, the

2 best-performing models. The Dice performances of each of the

5 individual CNNs were slightly different using DWI�ADC (On-

line Table 2 and On-line Fig 3, ANOVA P � .02, with differences

between CNN 2 and CNN 3, P � .04; and CNN 4 and CNN 5, P �

.04) but were similar to one another using DWI�ADC�LOWB

(On-line Table 3 and On-line Fig 4, ANOVA P � .60). Aggregat-

ing results of the individual CNNs to create ensembles (E2:

DWI�ADC CNNs, E3: DWI�ADC�LOWB CNNs) signifi-

cantly improved the Dice performance over individual CNNs

(P � .001). Both ensembles yielded results similar to one another

in terms of Dice (P � .66) and precision (P � .62), but both

surpassed the other CNNs (Table 2, P � .001). E3 and E2 had

similar sensitivity to one another (P � .46) and to the

DWI�ADC�LOWB model (versus E2, P � .58; versus E3, P �

.12), but outperformed the others (P � .01, Table 2).

Validation on the Independent Cohort
E3 was used for the evaluation studies to assess the generalizability

of the approach because E3 tended to perform better than E2.

FIG 1. Median Dice (80.2% [IQR, 56.6%–88.9%]), precision (82.9% [IQR, 59.7%–92.2%]), and sensitivity
(86.2% [IQR, 71.1%–92.3%]) scores of the DWI�ADC�LOWB ensemble on the Evaluation Cohort. The
white bar within the violin plot shows the IQR, mean is a diamond, and median is an X.

Table 2: Comparison of performance metrics of segmentations for different CNN modelsa

Model Dice Precision Sensitivity
LOWB 6.5 (0.3–20.9) 5.7 (0.3–32.7) 8.5 (0.3–28.5)
ADCb 56.4 (27.1–75.4) 59.4 (22.3–78.4) 58.2 (32.7–78.9)
DWI 72.3 (46.2–82.5) 73.0 (38.3–88.1) 84.0 (62.4–90.8)
ADC�LOWB 76.5 (51.9–86.1) 78.1 (47.2–88.8) 79.2 (66.6–89.7)
DWI�LOWB 76.7 (58.4–85.4) 79.4 (52.0–89.8) 83.0 (64.8–90.6)
DWI�ADC 79.0 (57.1–86.4) 79.0 (62.1–90.5) 82.6 (68.4–91.4)
DWI�ADC�LOWB 78.9 (56.2–86.2) 77.4 (55.0–89.8) 83.4 (71.3–91.8)
E2 (DWI�ADC) 82.0 (62.9–88.1) 82.0 (65.1–92.6)b 84.1 (71.0–92.6)
E3 (DWI�ADC�LOWB) 82.2 (64.9–88.9) 83.2 (67.7–93.3) 83.9 (71.9–92.4)

a All metrics are denoted in percentages as median (IQR). Of the nonensemble models, significant differences in Dice,
precision, and sensitivity were found (P � .001). The ensemble models, E2 and E3, were superior to all other models (P �
.001).
b Excludes 1 subject with an automatically segmented lesion volume of zero because precision is undefined in this
circumstance.
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Figure 1 shows the results of applying the E3 to the Evaluation

Cohort. Dice (P � .59), precision (P � .35), and sensitivity (P �

.66) were not significantly different from the results for the Train-

ing Cohort. In contrast, the thresholding approach performed

significantly worse compared with E3 across all measures (P �

.001), achieving only a Dice score of 13.3 (2.3– 41.6), precision of

7.5 (1.2–34.2), and sensitivity of 60.7 (39.5–72.2) for data ana-

lyzed in the original resolution and for data analyzed at 1-mm

isotropic resolution (Dice: 11.6 [2.2–34.7], precision: 6.5 [1.1–

28.0], sensitivity: 59.4 [37.6 –72.2]). We therefore focused the re-

mainder of our analyses on E3 results. Examples of segmentation

on subjects from the Evaluation Cohort using E3 are provided in

Fig 2 (see On-line Fig 5 for probability maps). Regression analysis

showed that Dice scores (P � .001), precision (P � .001), and

sensitivity (P � .01) improved with larger lesion volumes. The

independent Evaluation Cohort consisted of strokes involving

primarily supratentorial/cortical (n � 104, 69%) locations and

supratentorial/subcortical (n � 30, 20%) regions. There were sig-

nificant differences in MLV, ALV, Dice, precision, and sensitivity

as a function of location (On-line Table 4). Univariable regression

showed that lesion location affected Dice scores (P � .002), pre-

cision (P � .01), and sensitivity (P � .001). However, multivari-

able analysis including lesion volume (P � .001), showed that

lesion location was no longer significantly associated with the

Dice score (P � .06) or precision (P � .17). Notably, sensitivity

was still associated with location (P � .001) but not volume (P �

.09) in multivariable analysis.

ALV correlated significantly with MLV (� � 0.91, P � .001)

and NIHSS score (� � 0.55, P � .001), comparable with MLV

correlation with NIHSS score (� � 0.46, P � .001). Subgroup

FIG 2. Sample segmentation results of the ensemble of DWI�ADC�LOWB (blue regions) on sample subjects along with manual outlines (red
outlines). A, A small lesion example from a 70-year-old man with an admission NIHSS score of 1, imaged approximately 9 hours from LKW: MLV �
0.96 cm3, ALV � 1.07 cm3, Dice � 89.4%. B, Medium lesion sample from a 38-year-old woman with an admission NIHSS score of 4, imaged
approximately 10 hours from LKW: MLV � 54.3 cm3, ALV � 57.9 cm3, Dice � 95.7%. C, A large lesion example from a 62-year-old man with an
undocumented admission NIHSS score, imaged approximately 10 hours from LKW: MLV � 229.0 cm3, ALV � 208.7 cm3, Dice � 94.0%.
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analysis based on MLV (Table 3) showed that the automated

method performed significantly worse on small volumes (�1

cm3) compared with large volumes for all metrics (group I-A

versus group I-B, P � .01). Misclassification rates across all

thresholds were low—21 cm3: 9/151 (6.0%), � � 0.87, P � .001;

31 cm3: 6/151 (4.0%), � � 0.90, P � .001; 51 cm3: 6/151 (4.0%),

� � 0.86, P � .001; and 70 cm3: 4/151 (2.6%), � � 0.89, P � .001.

There were 3 subjects for whom the differences in ALV and MLV

were �50 cm3; these cases had poor skull stripping as a result of

scanner inhomogeneities (On-line Fig 6). If we excluded these 3

subjects, the median (IQR) differences in the misclassified cases

for each threshold were the following—21 cm3: 18.7 cm3 (8.9 –

25.2 cm3); 31 cm3: 7.4 cm3 (1.7–16.8 cm3); 51 cm3: 8.8 cm3 (8.0 –

14.6 cm3); 70 cm3: 5.3 cm3 (3.7– 6.9 cm3).

DISCUSSION
We have shown that an ensemble of CNNs trained with multipa-

rametric diffusion maps improves automated segmentation of

acute infarcts over methods that use solo maps. Among the indi-

vidual parameter models, CNNs trained on DWI performed best.

However, a model trained on only DWI may incorrectly classify

regions with susceptibility artifacts that appear as DWI hyperin-

tensities or wrongly include subacute T2-shinethrough regions.21

Networks trained on only ADC images provided a fair perfor-

mance because reduced ADC values represent cytotoxic edema

that manifests in hyperacute stroke,22 but may undersegment lat-

er-stage strokes when ADC pseudonormalizes.21 CNNs exclu-

sively trained on LOWB performed poorly, likely because our

data consisted of mainly patients with early-phase stroke (me-

dian, 6 hours from LKW) before vasogenic edema is evident on

LOWB.23

Combining DWI and ADC improved segmentation, consis-

tent with “standard practice” by expert outliners who typically

refer to the ADC image to confirm that the DWI hyperintensity

coincides with reduced diffusivity to minimize inclusion of arti-

facts. Combining LOWB with either ADC or DWI increased the

Dice score, suggesting that LOWB provides complementary in-

formation. Although inclusion of LOWB with DWI�ADC did

not result in statistically significant improved performance, a ten-

dency toward more accurate segmentation was observed in the

ensemble models.

We have also shown that our model performs comparably with

humans as reflected by both high Dice scores and correlation be-

tween ALV and MLV. Indeed, the Dice scores of the E3 algorithm

results were comparable with the Dice scores between human readers

in our subcohort of 10 patients with outlines from both readers. The

time for automated segmentation currently is approximately 5 min-

utes, which may be similar to times required by an experienced hu-

man reader, but we expect that with optimization and faster GPUs,

the time for segmentation can be further reduced. Furthermore, the

primary benefits of our automated approach are that the results will

be reproducible, unbiased, and scalable (eg, clinical trials that com-

pare lesion volumes for thousands of subjects).

ALV and MLV were closely correlated, but segmentation of

small lesion volumes was overestimated. Accurate estimation of

small lesion volumes (�1 cm3) is more difficult because they are

harder to detect and small variation from the ground truth leads

to greater aberrations of performance metrics. Small-lesion seg-

mentation could possibly be improved by customizing specific

CNNs tailored to detecting lesions by volume size. Nevertheless,

we have shown that our automated approach performed compa-

rably with manual lesions delineated by our human experts with

regard to patient-selection tasks. The cases of disagreement typi-

cally occurred when there were image artifacts that led to poor

brain extraction, which, in turn, might have led to poor normal-

ization, resulting in oversegmentation. A second reason for this

failure might be that the networks have not previously seen con-

text outside the brain during training because it is excluded in

most cases in which the masks are correctly computed. We did not

manually fix the brain masks because we wanted to evaluate a

fully-automated approach. Refining the automated brain extrac-

tion step will likely further improve our algorithms.

There were several limitations to this study. One is the retro-

spective nature of our analysis, which resulted in variable MR

imaging acquisition protocols that changed across the years with

clinical practice. However, this is also a strength because our ap-

proach will likely be more generalizable to real-world clinical sit-

uations and not dependent on a specific MR imaging protocol,

which is often used in clinical trials. This may also explain why the

thresholding approach performed poorly on our data compared

with other studies for which MR imaging acquisition was harmo-

nized as part of a trial.19 Another potential limitation is that a

different reader created the manual outlines used for the Evalua-

Table 3: Dependency of automated segmentation performance on MLVa

Group Thresholds Dice Precisionb Sensitivity Correlation
I-A MLV � 1 cm3 (n � 22) 31.0 (0–50.0) 29.6 (3.4–54.9) 57.5 (0–90.0) � � 0.09, P � .68
I-B MLV � 1 cm3 (n � 129) 83.5c (71.2–89.3) 84.9c (70.3–92.9) 87.6d (75.8–92.9) � � 0.90, P � .001
II-A MLV � 21 cm3 (n � 100) 71.2 (45.8–84.8) 71.6 (38.7–84.9) 81.3 (59.8–92.5) � � 0.79, P � .001
II-B MLV � 21 cm3 (n � 51) 89.4c (85.4–92.5) 92.3c (85.6–96.1) 89.3e (83.0–92.2) � � 0.97, P � .001
III-A MLV � 31 cm3 (n � 113) 73.6 (48.0–85.8) 77.2 (46.3–85.7) 82.5 (62.8–92.1) � � 0.83, P � .001
III-B MLV � 31 cm3 (n � 38) 90.6c (87.3–93.2) 94.7c (88.4–96.8) 89.4e (82.8–93.6) � � 0.96, P � .001
IV-A MLV � 51 cm3 (n � 124) 75.0 (48.9–86.8) 78.1 (49.2–86.5) 83.3 (65.2–92.5) � � 0.87, P � .001
IV-B MLV � 51 cm3 (n � 27) 91.5c (89.1–93.6) 95.9c (92.2–97.5) 89.2 (83.5–92.2) � � 0.92, P � .001
V-A MLV � 70 cm3 (n � 131) 77.2 (51.5–87.0) 79.9 (54.2–87.0) 84.0 (67.8–92.6) � � 0.88, P � .001
V-B MLV � 70 cm3 (n � 20) 91.8c (89.4–93.9) 96.0 (93.0–96.9) 89.6 (85.0–92.0) � � 0.83, P � .001

a Performance metrics are in median (IQR) and percentages. Results of E3 applied to the Evaluation Cohort are shown as a function of different volume thresholds.
b Excludes 2 subjects in group A with automatically segmented lesion volumes of zero because precision is undefined in this circumstance.
c P � .001.
d P � .01.
e P � .05 group A versus group B, where Group A is the group meeting the threshold criteria and Group B is the group not meeting the threshold criteria.
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tion Cohort from the Training Cohort. However, the accurate

segmentation results in both cohorts suggest that the model is not

overfitted to 1 particular reader. Another benefit of an automated

approach is that it is reproducible and not dependent on the ex-

pertise of the reader.

To evaluate the impact of different diffusion maps on segmen-

tation performance, we kept the CNN architecture constant

throughout all experiments. In addition to changing the combi-

nations of inputs, we chose to build an ensemble from several

CNNs because ensemble learning is known to boost the perfor-

mances of single-classifier algorithms.8,24 DeepMedic samples

randomly from the Training Cohort (ie, both the selected subjects

and extracted samples differ in each training epoch). Although

DeepMedic is very robust in its performance, the variation in

sampling inherently results in slightly different models, even

when trained with the same architecture. Merging the segmenta-

tions of several models reduces false-positives and improves over-

all performance. Although strong single networks are desired and

necessary to create a high-performing ensemble, our CNNs may

come with bias specific to DeepMedic. Building an ensemble of

different CNN architectures might further enhance the perfor-

mance. Future investigation will need to analyze the benefits of

merging more diverse networks to cancel out each other’s inher-

ent biases.8 This diversity of models could be achieved by chang-

ing the hyperparameters of DeepMedic using completely different

architectures or training on a different dataset.

CONCLUSIONS
Ensembles of CNNs trained on multiparametric diffusion MR

imaging improved automated segmentation of acute infarcts in

comparison with individual CNNs trained on solo diffusion

maps, producing results that are comparable with manual lesions

drawn by experts.
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