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Abstract

Locomotion, that is active propulsive movement of the body in space, is a vital motor function. 

Intensive studies of the main, for the majority of living beings, form of locomotion, forward 

locomotion, have revealed essential features of the organization and operation of underlying neural 

mechanisms. However, animals and humans are capable to locomote not only forward but also in 

other directions in relation to the body axis, e.g. backward, sideways, etc. Single steps in different 

directions are also used for postural corrections during locomotion and during standing. Recent 

studies of mechanisms underlying control of locomotion in different directions have greatly 

expanded our knowledge about locomotor system and can contribute to improvement of 

rehabilitation strategies aimed at restoration of locomotion and balance control in patients. This 

review outlines recent advances in the studies of locomotion in different directions in lower and 

higher vertebrates, with special attention given to the neuronal locomotor mechanisms.
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Introduction

Locomotion is an evolutionary old basic motor function. Neural mechanisms for control of 

the main form of locomotion, forward locomotion, have been studied in different species 

from simple animals to humans [1]. These studies revealed basic principles in the 

Address for correspondence: Dr. T. G. Deliagina, Department of Neuroscience, Karolinska Institute, SE-17177, Stockholm, Sweden, 
Phone: +(46) 8-5248 6915. FAX: +(46) 8 34 95 44. Tatiana.Deliagina@ki.se. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Conflict of interest statement
Nothing declared.

HHS Public Access
Author manuscript
Curr Opin Physiol. Author manuscript; available in PMC 2020 April 01.

Published in final edited form as:
Curr Opin Physiol. 2019 April ; 8: 7–13. doi:10.1016/j.cophys.2018.11.010.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



organization and operation of these mechanisms common for phylogenetically remote 

species.

Most vertebrates can locomote not only forward but also in other directions. Thus, lower 

vertebrates exhibiting axial locomotion can swim backward [2,3], and legged higher 

vertebrates can walk in any direction in relation to the body axis [4,5,6•]. These forms of 

locomotion are usually generated in the context of avoidance behavior (called “escape” in 

the lamprey and “struggling” in the zebrafish and Xenopus tadpole). Also, single steps in 

different directions are used for postural corrections during locomotion [7,8] and during 

standing [9•,10,11].

This review outlines recent progress in understanding the neural mechanisms underlying 

control of locomotion in different directions in lower and higher vertebrates.

Forward and backward locomotor movements

In general, backward locomotion could be considered as reversed forward locomotion. Thus, 

in low vertebrates during backward swimming the waves of periodic lateral body flexion 

propagate in a caudo-rostral direction during forward locomotion, while in a rostro-caudal - 

during backward locomotion [2,3]. In higher vertebrates and humans during stance and 

during swing phases of backward locomotion, a limb moves in directions opposite to those 

during forward stepping [4,5]. Although in both lower and higher vertebrates the muscle 

activity patterns of forward and backward locomotion differ, analysis of these patterns in 

higher vertebrates and humans revealed similar basic flexor-extensor synergies [6•,12,13]. 

This led to a suggestion that there are some common direction-independent neuronal 

mechanisms contributing to generation of both forward and backward locomotion.

Organization of spinal networks

In both lower and higher vertebrates, the neuronal mechanisms generating locomotion in 

different directions reside in the spinal cord [14,15,16,17]. The axial locomotor rhythm is 

generated by a chain of coupled segmental oscillators (Fig. 1a,b; [18,19,20]). Each oscillator 

generates rhythmically alternating bursts of activity in the right and left hemisegments. 

Recording of individual spinal interneurons during forward and backward swimming in the 

tadpole and larval zebrafish, revealed a group of excitatory interneurons with activity 

modulated in locomotor rhythm during swimming in both directions [3,21,22]. This suggests 

the presence of a core rhythmogenic kernel that is active independently of the particular 

direction of locomotion. In the tadpole, these neurons exhibit mutual excitation [22] and 

form two subpopulations preferentially active during forward and backward swimming, 

respectively [21]. Differences in biophysical properties of these subpopulations may explain 

differences in parameters of forward and backward rhythms [21,23•]

Two models have been proposed to explain the change in the direction of locomotor waves. 

The trailing-oscillator model with symmetrical intersegmental connections [24] suggests that 

the direction of propagation of locomotor waves is determined by a gradient of excitability 

of individual oscillators along the chain. In isolated lamprey spinal cord this gradient is 

rostrocaudal. In the tadpole, ascending glycinergic inhibitory interneurons are involved in 
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the locomotor wave reversal [25,26] and presumably inverse this gradient (I in Fig. 1b) [27]. 

Such inhibitory interneurons (active only during backward locomotion) have been found in 

the zebrafish [3]. A model with asymmetrical intersegmental connections explains the 

reverse of the wave propagation from rostro-caudal to caudo-rostral by switching from 

activation of the descending coupling to activation of the ascending one [28].

Functional organization of networks generating stepping in different directions was studied 

by analyzing locomotor movements evoked by direct unspecific activation of these networks 

by epidural stimulation of the spinal cord in the decerebrate cat [29••]. It was demonstrated 

that during stimulation of certain sites, the direction of locomotion is determined by the 

direction of the treadmill belt motion, and on immobile surface or in the air, in-place 

stepping is observed, suggesting that the locomotor system includes two principal 

mechanisms (Fig. 1c,d). One mechanism generates the vertical component of step (VC, limb 

elevation and lowering), and the other generates the horizontal component (HC, limb 

transfer from one extreme point to the other). The latter includes networks generating the 

horizontal component of step in different directions. These circuits receive sensory input 

signaling limb motion in stance; reaching an extreme position triggers the limb lifting and 

transfer in the opposite direction. One can suggest that VC-mechanism contains rhythm-

generating while HCmechanism – pattern formation networks.

Analysis of kinematics and EMG patterns of single corrective steps in different directions 

generated in response to postural disturbances during standing, revealed their similarity with 

those of locomotor steps in the corresponding direction [9•]. It was proposed that a 

corrective step is generated by the same (VC and HC) mechanisms, which generate 

locomotor steps in corresponding direction, but they are activated by sensory information 

caused by postural disturbance and signaling deviation of the limb in relation to the trunk. 

This hypothesis is supported by finding that training locomotion in different directions 

improves balance control in spinal cord injured and stroke subjects [17,30,31].

Mapping the efficacy of epidural stimulation of different sites of the lumbosacral 

enlargement to evoke forward and backward locomotion combined with c-Fos 

immunostaining [32•] led to a suggestion that networks generating the VC of steps and the 

HC for forward stepping are distributed throughout the whole lumbosacral enlargement, 

while the network generating the HC for backward stepping is confined to a zone from 

caudal L5 to L7 (Fig. 1e). Recording of the same individual spinal interneurons in L5-L6 

during both forward and backward locomotion, revealed neurons with activity phase in the 

locomotor cycle independent of the locomotion direction and those modulated during 

forward or during backward locomotion only, presumably belonging to the VC and 

corresponding HC networks, respectively [33].

Though the basic principles of organization of axial and legged locomotor networks are 

similar, their neuronal compositions are different. In the zebrafish, spinal glutamatergic V2a 

interneurons are necessary and sufficient for the locomotor rhythm generation [34]. In 

contrast, in mice, glutamatergic non-V2a spinal interneurons contribute to generation of 

locomotor rhythm [35,36•], while V2a interneurons are involved in interlimb coordination 

[37]. In the zebrafish, an increase in the locomotor speed is associated with recruitment of 
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new modules of locomotor network containing only excitatory (V0v) commissural 

interneurons [38]. By contrast, in mice, inhibitory V0d interneurons determine the left-right 

limb alternation at low frequencies characteristic for slow forward walking, while excitatory 

V0v interneurons – at higher frequencies characteristic for both fast forward and backward 

locomotion [39,40,41]. These findings suggest that though some populations of genetically 

identified spinal interneurons are elements of both axial and legged locomotor networks, 

they have different specific functional role in generation of locomotion. Most likely, the 

legged locomotor network cannot be considered as axial network updated with some new 

populations of neurons, and thus the axial network does not represent the core of the legged 

one.

Supraspinal control

In all studied vertebrates, forward locomotion can be elicited and the speed of progression 

controlled from mesencephalic locomotor region (MLR), which represents a command 

center for forward locomotion only [29••,42]. Its activation leads to formation of 

reticulospinal commands, which selectively activate a part of spinal locomotor networks 

necessary for generation of forward locomotion (Fig. 1a,c). Recent study in mice 

demonstrated that activation of glutamatergic neurons of MLR located in both the cuneiform 

(CnF) and the pedunculopontine nucleus evokes slow, alternating-gait locomotion, whereas 

activation of those in the CnF – high-speed synchronous-gait locomotion [43•]. One can 

hypothesize that some other forms of locomotion (e.g. backward and sideward) also have 

their command centers.

In both lower and higher vertebrates, backward locomotion can be initiated by continuous 

stimulation of the skin mechanoreceptors of the head [2,3,15,41]. Signals from these 

receptors are transmitted by specific populations of trigeminal nerve afferents [2].

In the lamprey and tadpole, reticulospinal neurons active exclusively during forward 

(Fgroup) or during backward locomotion (B-group), or active both during forward and 

backward locomotion (FB-group), were revealed [21,27]. It was suggested that the FB-group 

activates segmental oscillators during forward and during backward swimming (Fig. 1a,b; 

[27]). In the framework of the trailing-oscillator model with symmetrical intersegmental 

connections [24], activation of FB-group alone (due to intrinsic rostro-caudal gradient of 

excitability in the chain of segmental oscillators) evokes forward swimming. The F-group 

can contribute to stabilization or (in the framework of the model with asymmetrical 

intersegmental connections [28]) creation of the rostro-caudal gradient of excitability. The 

Bgroup inverses the excitability gradient in the chain of segmental oscillators presumably 

through the ascending inhibitory interneurons (I in Fig. 1b), and thus, co-activation of 

Bgroup and FB-group results in backward swimming. One may hypothesize that in higher 

vertebrates, signals from MLR and skin mechanoreceptors activate VC mechanism via 

FBgroup of reticulospinal neurons, and specific HC circuits determining forward and 

backward direction of locomotion via F- and B-populations of reticulospinal neurons, 

respectively (Fig. 1c,d).
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Besides populations of reticulospinal neurons contributing to activation of locomotion [44••,

45,46•], reticulospinal neurons terminating forward locomotion were found in both lower 

and higher vertebrates [44••,47,48,49••]. In lampreys and tadpoles, glutamatergic and 

GABA-ergic reticulospinal neurons terminate forward locomotion, respectively. It was 

demonstrated that in tadpoles they do not stop backward locomotion. In mice, glutamatergic 

V2a reticulospinal neurons in the rostral medulla terminate forward locomotion through 

inhibition of interneurons of the rhythm-generating network [49••]. One can expect that they 

stop locomotion in other directions as well.

While supraspinal control of forward locomotion in higher vertebrates was studied in a 

considerable detail [1], only activity of corticospinal neurons was investigated during 

locomotion in different directions [50]. In intact cat, activity of almost all corticospinal 

neurons is phasically modulated in the rhythm of stepping during both forward and 

backward locomotion. However, the modulation pattern is direction-dependent. It is caused 

by inputs only from locomotor mechanisms of the projection girdle when this girdle is 

leading, and from locomotor mechanisms of both girdles when this girdle is trailing. This 

suggests flexibility of functional roles of individual corticospinal neurons during different 

forms of locomotion. Involvement of motor cortex in control of both backward and forward 

locomotion was also demonstrated in humans [51].

Sensory feedback

In lower vertebrates, a specific movement-related sensory feedback can be provided by 

intraspinal mechanoreceptors (stretch receptor neurons (SRNs) in the lamprey [52] and 

cerebrospinal fluid contacting neurons (CSF-cNs) in zebrafish [53]), while in higher 

vertebrates – by proprioceptors and cutaneous afferents [54].

Recent studies demonstrated that in the lamprey, the spinal reflex to body bending during 

forward swimming mediated by SRNs observed during forward locomotion is reversed 

during backward locomotion [55•]. This reflex reversal is aimed at reinforcement of the 

movements generated in each of these behaviors. It assists in initiation of contralateral 

bending during forward swimming and augments the body undulations amplitude during 

backward locomotion. A population of reticulospinal neurons transmitting commands 

causing modification of unilateral spinal networks processing signals from SRNs, which 

lead to the reflex reversal, has been revealed. They are activated by trigeminal nerve 

stimulation causing backward swimming and presumably belong to B-group. It was found 

that in the zebrafish CSF-cNs increase speed of forward locomotion [53], however, their role 

in control of backward swimming is unknown.

It was shown that in higher vertebrates, modulation of the efficacy of the soleus H-reflex 

during locomotor cycle, as well as cutaneous afferents reflex effects, which are characterized 

by a “reversal of actions” that depends on the step cycle phase, are similar during backward 

and forward locomotion [56,57], suggesting that phase-dependent changes of these reflexes 

most likely caused by a locomotor network common for forward and backward locomotion.
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A critical point in the step cycle is onset of the swing phase. It was suggested that the swing 

onset in any direction is determined by the afferents signaling a critical limb deviation in the 

stance phase [29••,54]. One can expect that supraspinal command determining the direction 

of stepping, selects and activates a specific spinal network in HC-mechanism for processing 

this information (Fig. 1c,d).

Conclusions

The rhythm-generating part of locomotor networks, as well as neuronal mechanisms 

underlying left-right coordination are common and contribute to generation of locomotion in 

any direction. By contrast, networks determining direction of locomotion are different and 

specific for each direction. They contain neuronal mechanisms for specific processing of 

movement-related sensory feedback. A detailed analysis of these networks (including 

clarification of functional roles of genetically identified populations of neurons) and their 

interaction, is one of the major lines of future studies. Evidence of shared neuronal networks 

for locomotor and corrective steps in different directions provides a basis for rehabilitation 

strategies employing walking in different directions aimed at improvement of both 

locomotion and balance control in patients. Such strategies showed promising results 

[17,30,31]. Determining specific functions of genetically identified populations of neurons 

and subsequent well-controlled precisely targeted activation/inactivation of relevant 

populations will undoubtedly boost these efforts.
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Highlights:

• Vertebrates can locomote not only forward but also backward, sideways, etc.

• Spinal rhythm-generating locomotor network is common for locomotion in 

any direction.

• Spinal networks determining direction of locomotion are specific for each 

direction.

• Each direction-determining network specifically process sensory feedback.

• Different supraspinal commands activate rhythm-generating and direction-

determining networks.
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Hypothetical neural mechanisms for the control of locomotion in different directions. (a-d) 
Hypothetical models of the spinal locomotor network and of the descending commands 

controlling forward (a,c) and backward (b,d) locomotion in lower (a,b) and higher (c,d) 
vertebrates. (a,b) The spinal locomotor network in lower vertebrates consists of segmental 

oscillators (green circles) that excite one another and thus form a chain, along which the 

waves of activity propagate. (a) Elicitation of forward swimming. The MLR, which is a 

locomotor center for forward locomotion (LCF), activates reticulospinal (RS) neurons of 

FBgroup and F-group. FB-group activates the chain of oscillators generating the swim 

rhythm. F-group stabilizes an intrinsic rostro-caudal gradient of excitability of oscillators or 

creates this gradient (green ramp with red outline). As a result, the waves of activity 

propagate in the caudal direction. (b) Elicitation of backward swimming. Trigeminal 

afferents activate RS neurons of FB-group and B-group (possibly, through the locomotor 

center for backward locomotion, LCB). FB-group activates the chain of oscillators 
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generating the swim rhythm. At the same time, neurons of B-group activate inhibitory 

neurons (I) that invert the gradient of excitability (green ramp with blue outline). This results 

in the caudo-rostral propagation of locomotor waves. (c,d) Spinal cord of higher vertebrates 

contains two principal mechanisms, one generating the vertical component of step (limb 

elevation and lowering), and the other generating the horizontal component (limb transfer 

from one extreme point to the other). The latter includes networks generating the horizontal 

component of step in different directions (for simplicity, only the networks generating steps 

in four directions – F, forward; B, backward; R, rightward; L, leftward are shown). These 

networks receive sensory input signaling the limb motion during stance. (c) Elicitation of 

forward stepping. The MLR activates specific populations of RS neurons (presumably, FB-

group and F-group). FB-group activates a network generating the vertical component of step. 

At the same time, neurons of Fgroup activate a network generating the horizontal component 

for forward stepping. Sensory input signaling that the limb reached the extreme caudal 

position during stance (B) assists in initiation of the forward swing. (d) Elicitation of 

backward stepping. Trigeminal afferents presumably activate RS neurons of FB-group and 

B-group (possibly, through LCB). FBgroup activates a network generating the vertical 

component of step. At the same time, neurons of B-group activate a network generating the 

horizontal component for backward stepping. Sensory input signaling that the limb reached 

the extreme rostral position in stance (F), assist in initiation of the backward swing. (e) 
Rostro-caudal distribution in the lumbosacral enlargement of networks generating vertical 

component of the steps, horizontal component for forward steps, and horizontal component 

for backward steps, are shown schematically by thick green, red and blue lines, respectively.
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