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Abstract

During social interaction, the brain has the enormous task of interpreting signals that are fleeting, 

subtle, contextual, abstract, and often ambiguous. Despite the signal complexity, the human brain 

has evolved to be highly successful in the social landscape. Here, we propose that the human brain 

makes sense of noisy dynamic signals through accumulation, integration, and prediction, resulting 

in a coherent representation of the social world. We propose that successful social interaction is 

critically dependent on a core set of highly connected hubs that dynamically accumulate and 

integrate complex social information and, in doing so, facilitate social tuning during moment-to-

moment social discourse. Successful interactions, therefore, require adaptive flexibility generated 

by neural circuits composed of highly integrated hubs that coordinate context-appropriate 

responses. Adaptive properties of the neural substrate, including predictive and adaptive coding, 

and neural reuse, along with perceptual, inferential, and motivational inputs, provide the 

ingredients for pliable, hierarchical predictive models that guide our social interactions.
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Consider a typical day-to-day social interaction between one speaker (Speaker 1) and 

another speaker (Speaker 2; Fig. 1). Speaker 1’s actions depend on the identity of Speaker 2 

(e.g., the boss or intern), the context (e.g., work or a bar), and Speaker 1’s emotional state 

(e.g., nervous or excited). During these interactions, a complex exchange occurs: Speaker 1 

and Speaker 2 play a game of social chess, in which Speaker 2 infers what Speaker 1 is 
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thinking or intending, what Speaker 2 believes Speaker 1 believes Speaker 2 is thinking, and 

the social norms that indicate what Speaker 2 should be thinking. Speaker 1 and Speaker 2 

continually integrate multiple signals while attempting to produce coherent responses. These 

signals are conveyed via multiple channels, such as vocal intonation, posture, expression, 

and eye direction, and the symmetry of this information determines the basis for 

understanding others. Speaker 1 and Speaker 2 may hide the contents of undesirable 

thoughts from one another or may suggest the existence of beliefs while strategizing to 

promote a desired image. These and possibly many other parallel processes initially occur 

subconsciously on the millisecond timescale, are subject to conscious adjustments, and 

involve complex integration and accumulation of multiple dynamic channels of information 

that result in the emergence of coherent social behavior.

For two decades, research in the field of social neuroscience has mapped out a set of 

consistent brain regions involved in social cognition (Frith & Frith, 2010; Stanley & 

Adolphs, 2013). To date, more than a dozen discrete brain areas have been implicated in 

various aspects of social cognition (Fig. 2). Social processing occurs through coalitions of 

structures involved in sensory aspects of stimuli (e.g., fusiform face area, or FFA, superior 

temporal sulcus, or STS), emotional status of the social stimulus (e.g., amygdala), inferences 

concerning internal states and motives of agents (e.g., temporal parietal junction, or TPJ, 

ventromedial prefrontal cortex, or vmPFC), and social context (e.g., temporal pole). Medial 

prefrontal cortex (mPFC) may play a special role in social cognition, guiding, computing, 

and directing moment-to-moment aspects of social interaction. However, no theory currently 

exists to explain how these social brain areas work together to produce coherent social 

discourse.

We propose a dynamic-integration theory (DIT) to describe the social brain. DIT proposes 

that the neural systems supporting social cognition reflect dynamic integration of inferential 

and sensory social information. The theory is based on three key elements. First, social 

behavior involves complex interaction between multiple neural circuits operating in parallel, 

involving extensively connected brain hubs, and social tuning reflects integration of dynamic 

interactions among these circuits toward metastable states (e.g., context-dependent stability 

that persists longer than most states but is shorter than a stable state) that map onto those of 

an interaction partner. Second, hyperconnected brain hubs play a role in orchestrating 

network flexibility that underwrites adaptive behaviors. Third, generative models govern a 

dynamic prediction process using internal knowledge, states, motivations, and goals that 

integrate with external cues to support context-apposite interaction, including the generation 

of inferences used to respond during social discourse. We move beyond the discrete 

mapping of the social brain to an understanding of how the network machinery might work 

during real-time social interactions.

Toward a DIT of the Social Brain

The social brain accumulates and integrates dynamic signals in real time through use of 

hyperconnected (the capacity to functionally connect with a significant number of nodes), 

flexible nodes with the capacity to dynamically reconfigure into different circuits. Activity 

over these circuits relays signals that produce time-sensitive and appropriate social 
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behaviors. We highlight two problems the brain must overcome during real-time social 

discourse: (a) integration of internal states and external sensory information and (b) rapid 

social tuning.

Combining sensory and inferential systems

Social communication and perception require robust recognition and inferential systems, 

including FFA and STS, to integrate often subtle and disparate cues. The social sensory 

landscape is multimodal and sensitive to facial, vocal, postural, and gestural cues that may 

generate different interpretations depending on temporal occurrences during social 

interaction, depending on context, and across cultures (e.g., nodding vs. shaking of the head 

to indicate approval). Humans developed finely tuned cognitive-perceptual-inferential 

systems to discern “differences that make a difference” (Tononi, 2012, p. 293) and extract 

meaning from information by integrating external signals in the environment with internal 

knowledge, internal states, and ongoing predictions to form an integrated representation 

(Tononi, 2012; Tononi & Koch, 2015). This ability depends on highly sensitive and tuned 

neural machinery, including TPJ, vmPFC, posterior cingulate cortex (PCC)/precuneus, and 

temporal pole, that can efficiently and instantaneously categorize information for adaptive 

use in ongoing social interactions via mentalizing and simulation. Our model predicts that 

the integration of sensory information with internal representational and predictive models 

leads to convergence on a set of prioritized network transitions that evolve into a set of 

metastable states as an individual learns the social environment. Consistent network 

transition trajectories in response to similar cues and social situations produce reliable, 

context-appropriate behavioral output.

Social tuning, shared reality, and coherent social discourse

Effective social interaction involves communication of goals and motives that can be quickly 

and accurately understood (i.e., the individuals are “on the same page”). It also depends on 

social tuning, that is, the convergence of attitudes or more broadly an agreeable focus of 

attention (Shteynberg, 2010). Tuning is a prerequisite for achieving shared reality, a state in 

which individuals are motivated and successful in achieving shared and meaningful 

understanding, which should produce correlations with respect to synchronization or 

coupling of neuronal firing between such individuals. Shared-reality theory hinges on the 

perception of mutual sharing and the ability to communicate an experience or information 

about a target via motivationally aligned internal states (Echterhoff, Higgins, & Levine, 

2009). Individuals with greater neuronal synchronization during shared reality are predicted 

to share more similar memories of events and detail, compared with individuals with less 

synchronization (Chen et al., 2017). Shared reality reinforces the confidence in perceptions 

and the underlying reality of both the social and physical worlds, leading to an increased 

likelihood of cohesive social interactions (McNally, Brown, & Jackson, 2012).

Three Principles of a DIT of the Social Brain

Social hubs as hyperconnected networks

Anatomical models describing the social brain reveal several regions that overlap with the 

default mode network (DMN), forcing a reconsideration of the functions of these nodes. The 
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DMN is traditionally described as a network active in the absence of performing tasks. Some 

of these extensively connected overlapping hubs include PCC; precuneus; retrosplenial 

cortex; temporal pole (TP); inferior parietal lobule (IPL), including TPJ; and mPFC, many of 

which are active during mind wandering, self-processing, and examining the contents of 

episodic memory (Corbetta, Patel, & Shulman, 2008; Mars et al., 2012; Schilbach, Eickhoff, 

Rotarska-Jagiela, Fink, & Vogeley, 2008). These social hubs reduce their connectivity when 

internal attention is reoriented toward external objects or events. Densely connected nodes 

may direct or govern information gating and flow by tuning oscillatory activity, coupling 

field potentials, and establishing channels of synchrony (Fingelkurts & Fingelurts, 2017). 

The brain exploits phase locking, or synchrony, to efficiently communicate information 

across the brain. Synchrony is also observed between individuals, and is a reliable predictor 

of successful tuning (Stephens, Silbert, & Hasson, 2010). PCC/precuneus, mPFC, and IPL 

are strongly connected, but less connected with hippocampus and TP. Precuneus/PCC stands 

alone as the hub that interacts with all major DMN nodes, situating it as a major integrative 

center of high-order processing and a potential conductor of neural traffic associated with 

self-related processing and subjective self-awareness (Fransson & Marrelec, 2008). 

Precuneus/PCC forms a network with the amygdala associated with emotional states, which 

bear on the perceptions and orientation of an agent toward other social agents and may 

significantly drive the content and outcome of social interaction (Fang et al., 2013).

The tendency of these circuits to be active in social contexts, to display dense 

interconnectivity, and to shift toward a frontal bias (as found by Mars et al., 2012) suggests 

that intrinsic dynamics in the human brain are skewed toward considerations of the self and, 

in particular, self–other relations. Processing underwriting these capabilities is complex, 

especially in humans, with differences in cortical properties, including neuronal density and 

connectivity strength, corresponding to variation in high-level cognitive processes and social 

understanding (Lewis, Rezaie, Brown, Roberts, & Dunbar, 2011). TPJ and inferior parietal 

areas are critical components of networks that facilitate links and understanding between the 

signaler and the environment, given these regions’ putative role in mentalizing, action 

understanding, and interpretation (Ramsey, Cross, & Hamilton, 2011).

State transitions: context, states, and flexibility

Signals, contexts, and motivational and affective states determine the orientation to social 

information and guide organization and tuning of neural activity. These processes result in a 

sequence of states that promote flexible social behaviors (Fig. 3). Accurate real-time 

prediction requires dynamic integration of multimodal information that is fed into an 

efficient simulation system capable of generating swift representations available for 

conscious inspection (e.g., to form hypothetical scenarios and counterfactuals to aid in 

developing optimal responses and enhance learning rates). Under this framework, context 

dictates the appropriateness of the same behavior in different circumstances, for example, 

inhibiting physical contact during a business meeting while facilitating contact at social 

events.

Brain-state transitions require goal-oriented organizational principles that drive transition 

probabilities into transient, metastable states in network space. Some researchers have 
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proposed psychological dimensions that map onto brain networks—such as valence, social 

domain, human specific, arousal, and agentic versus affiliative—and subdimensions 

including social warmth, competence, aggressiveness, self-focus, and empathy, among 

others (Fiske, Cuddy, & Glick, 2007; Grodin & White, 2015; Tamir, Thornton, Contreras, & 

Mitchell, 2016). Dimensional theories do not incorporate effects of dynamic contextual 

factors, which may contribute to state transitions, providing selection constraints on possible 

states. The organizational principals that govern adaptive and flexible transitions derive from 

relationships between an adaptively flexible system capable of processing a diverse range of 

inputs and affordances perceived in the environment subject to constraints imposed by 

available processing resources and current goals (Smith & Thelen, 2003).

Social interactions demand a distinct kind of adaptive flexibility from nonsocial complex 

cognitive operations as a result of the nature of the inputs processed. Predicting (often 

irrational) human beings is more complex than predicting physical (nonhuman) systems that 

consistently obey the same rules and the laws of physics, thus the processes necessary to 

successfully interact with human beings are more complex. We propose the added layer 

required to account for motivations and intentions of agents recruits additional nodes not 

recruited for other processes such as complex nonsocial decision making. Further, the 

inability to access the contents of other minds, the enormous state space of possible 

configurations and real-time reconfiguration of brain states presents a prediction challenge 

unique to social interaction. However, we propose nothing magical about the principles 

underlying social processing, as the flexible hub account has been stipulated for language 

(Fedorenko & Thompson-Schill, 2014) and cognition (Cole et al., 2013), more generally 

suggesting that certain principles are conserved across disparate functions.

Generative models, prediction, and learning in the social brain

Contemporary accounts of social learning increasingly refer to model-based processes, 

which assume explicit, cognitive understanding of the structure and causal mechanisms of an 

environment (Dunne, D’Souza, & O’Doherty, 2016). Recent evidence indicates that social 

learning is mediated by different neuromodulatory systems, which interact to improve the 

accuracy of a cognitive model. These systems contribute to hierarchical updating processes 

by representing prediction errors used by higher order cortical areas to assess ongoing binary 

true/false judgments and comprehensive traits such as trustworthiness (Diaconescu et al., 

2017). While the model-based account is more effective than competing constructs, in its 

conventional form it will likely fall short as an adequate model when applied to ecological 

social situations. This is because internal states, including emotion, motivation, and ongoing 

processing more generally, are not always explicitly modeled.

We propose that model-based social learning can be described in terms of a generative 

model. Generative models can generate data and are based on Bayesian principles, updating 

a model of joint probabilities, possible outcomes, and input using a hierarchical and iterative 

process. Under this formulation, predictive coding is based on prediction errors signaled and 

integrated back into the model as part of a dynamic and flexible recalibration process to 

achieve greater accuracy. The model takes into account episodic information and is 

continuously updated on the basis of observed contingencies and exploratory outcomes via 
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simulation. Humans are capable of “simulated prediction” in the absence of external sensory 

input, instead using internally defined inputs to generate novel outputs that in humans can be 

consciously inspected, manipulated, and fed back into generative models to make different 

meta simulated predictions. These predictions aid in the uniquely difficult task of online 

social decision making.

Social interactions are essentially social decision-making problems. These decision 

processes differ from nonsocial decision processes in that the consequences, or outcomes are 

of a different character than decisions for which the certainty of outcomes may near unity. 

For example, deciding which car to buy among several choices involves explicit calculations 

that yield specific and consistent results. If we provide the same inputs into the decision-

making problem today, tomorrow, and the next day, we will invariably arrive at the same 

answer. This is not necessarily true about social interaction. The same behavioral and 

perceptual inputs (e.g., a similar interaction with another agent) may probabilistically yield a 

range of responses, resulting in a more complex decision system that involves moving 

targets for which the brain attempts to compensate. The two-way interaction with another 

agent (a) requires real-time updating of value based on feedback and (b) a mechanism to 

account for and dynamically predict the effects one’s behavioral output has on another 

agent.

How Do Dynamic Interactions Between Social Brain Circuits Tune Social 

Interaction?

What are the fundamental mechanisms by which the brain dynamically reconfigures to 

create social meaning? We suggest that social tuning depends on synchrony among 

interaction partners underwritten by dynamic and flexible interactions between large-scale 

neural circuits, a process made mathematically concrete using the emerging conceptual 

framework of network neuroscience (Bassett & Sporns, 2017). In this view, brain regions are 

treated as nodes in a graph, connected by edges that encode structural links (via white 

matter) or functional connections (estimated by similarity in time-varying patterns of activity 

measured by functional MRI, or fMRI; Bullmore & Bassett, 2011). A common and highly 

reproducible finding in these network representations of brain structure and function is the 

presence of network modules: groups of brain regions that tend to be connected to one 

another in fMRI-measured functional circuits that perform specific types of processes. 

Examples of network modules present at rest include the visual, auditory, motor, default 

mode, fronto-parietal, cingulo-opercular, salience, and dorsal/ ventral attention systems. 

Network modules present during tasks can differ from those present during rest, and indeed, 

different tasks can be associated with different levels of integration or segregation between 

resting-state modules (Mattar, Cole, Thompson-Schill, & Bassett, 2015).

Recent work has extended this general notion to track brain networks over time, as patterns 

of connectivity change in response to the external world (Medaglia, Lynall, & Bassett, 2015) 

or to internal reflections (Hutchison et al., 2013). The mathematics of temporal networks is 

used to describe the evolution of these networks (Holme & Saramaki, 2012; Mucha, 

Richardson, Macon, Porter, & Onnela, 2010). Network flexibility is mathematically defined 
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as the frequency with which brain regions switch allegiance to different network modules, or 

putative cognitive systems, by changing their pattern of fMRI-measured functional 

connections (Bassett et al., 2011). Individual differences in network flexibility are associated 

with attention (Shine et al., 2016), working memory (Braun et al., 2015), learning (Bassett et 

al., 2011; Bassett et al., 2013), linguistic processing (Chai, Mattar, Blank, Fedorenko, & 

Bassett, 2016), and mood, arousal, and fatigue (Betzel, Satterthwaite, Gold, & Bassett, 2017) 

and can be modulated by task (Telesford et al., 2016), drugs, and disease (Braun et al., 

2016). Network flexibility is also positively correlated with individual differences in 

cognitive flexibility (Braun et al., 2015), suggesting a potential role in the state transitions 

that promote adaptive social behaviors.

Intuitively, a flexible network is capable of integrating complex information in a dynamic 

manner to enable adaptive functions. This capability, underwritten in part by neural reuse, or 

the idea that a brain node or region participates in multiple functions depending on context 

and availability, is critically necessary for successfully navigating the complexities of social 

interactions (Anderson, 2010). Across nonsocial task contexts, flexible regions are largely 

located in association areas (particularly in frontal cortex) and subcortical structures (Bassett 

et al., 2011) thought to be critical for large-scale cognitive computations beyond simple task 

performance (Bassett et al., 2013). Flexible regions may form a dynamic “periphery” of 

domain-general areas that change patterns of coactivation with other regions depending on 

task demands, while rigid regions form a dynamic “core” of domain-specific areas that 

consistently coactivate with each other across tasks (Fedorenko & Thompson-Schill, 2014), 

While these approaches and theories have yet to be applied to neuroimaging data acquired 

during the performance of tasks requiring social cognition, they offer simple and appropriate 

putative mechanisms for brain dynamics supporting social meaning and tuning, which could 

be directly tested in future experiments.

Concluding Remarks

The brain is not a passive processing machine like a computer waiting for input but rather an 

ongoing simulating, searching, and predicting machine that refines its structural and 

functional architecture to optimize learning and predictive processes according to 

environmental demands. We propose that during social interaction, neural circuits must be 

dynamic, predictive, and contextually nuanced. They must include core systems and 

processes including motivation systems, metacognitive awareness, the ability to signal 

internal states, and the ability to guide decision processes that determine when to socially 

tune or antitune. The inputs to these systems shape its development and optimization 

parameters, and include cultural, familial, and interpersonal environments and relationships 

that act as strong filters with respect to social information processing. Specifically in 

humans, social reasoning and circuit recruitment appears to be context dependent: whether 

or not the subject of an interaction possesses or is perceived to possess relevance for current 

or future social actions (Carter, Bowling, Reeck, & Huettel, 2012).

Gaining a better understating of the dynamics of the social brain might lead to a further 

understanding of the social impairments observed in autisms disorders. For example, central-

coherence theory proposes that people diagnosed with autism tend to fragment the world 
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into small parts and “cannot see the forest for the trees” (Frith, 1989; Happe, 1999). 

According to DIT, the central hubs of connectivity and stable nodes are different from those 

of normal individuals, manifesting greater coherence within local nodes, providing enhanced 

processing within the local domains such as spatial, numerical, and abstract computation, at 

the cost of the ability to efficiently integrate information from other more remote nodes to 

generate (e.g., theory of mind). The inability to update in proportion to information content 

results in impairments in cognitive flexibility manifest as difficulty in shifting resources and 

adapting to dynamic environments that require coordinated activity in attention, 

representation, and planning circuits (Dajani & Uddin, 2015; Yahata et al., 2016). Too much 

flexibility as observed in schizophrenia, characterized by inappropriate or abnormal network 

connectivity and switching dynamics during working memory, results in aberrant 

interpretation of both external and internal inputs and inability to exert cognitive control, 

leading to inappropriate social (and other) behavioral profiles (Braun et al., 2016).
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Fig. 1. 
Representation of components and processes during a conventional social exchange. Speaker 

1 (S1), the sender, provides multimodal information in the form of sensory cues such as 

intonation, language, intensity, timing of verbal exchange and movements, posture, and gaze 

as signals. Speaker 2 (S2), the receiver, must recruit perceptual, inferential, learning, and 

other domain-general systems to generate and operate on an accurate interpretation of the 

signals. External influences such as context and internal influences, including goals and 

affective and motivational states, modulate processing in domain-general and social-

cognitive systems.
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Fig. 2. 
Brain networks proposed to underlie separate processes that characterize the social brain, 

including affective, simulation, empathy, and mentalizing processes (a), and overlap of 

social networks with nodes of the default mode network (DMN) during active social 

cognition, contemplation of social interaction, and theory-of-mind processing (b). In (b), 

colors represent activation in the labeled networks. ICA = independent component analysis. 

Panel (a) reprinted with permission from Stanley and Adolphs (2013) and panel (b) reprinted 

with permission from Mars et al. (2012).
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Fig. 3. 
Reconfiguration of network modules: schematic illustrating how patterns of connectivity can 

change over time as someone learns. Each circle represents a node, and different node colors 

indicate membership to different modules. For example, network modules can separate (as 

the orange and yellow modules do) or coalesce (as the blue and yellow modules do). 

Reconfiguration can also occur at the level of single nodes, which might initially be part of 

one module, and then change to be part of another module (as indicated by the change in the 

node from the second to third frames, which starts off being affiliated with the orange 

module and ends being affiliated with the yellow module). Figure adapted with permission 

from Bassett and Mattar (2017).
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