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Gene set enrichment analysis (GSEA) is a popular tool to 
identify underlying biological processes in clinical samples 
using their gene expression phenotypes. GSEA measures the 
enrichment of annotated gene sets that represent biological 
processes for differentially expressed genes (DEGs) in clinical 
samples. GSEA may be suboptimal for functional gene 
sets; however, because DEGs from the expression dataset 
may not be functional genes per se but dysregulated genes 
perturbed by bona fide functional genes. To overcome this 
shortcoming, we developed network-based GSEA (NGSEA), 
which measures the enrichment score of functional gene sets 
using the expression difference of not only individual genes 
but also their neighbors in the functional network. We found 
that NGSEA outperformed GSEA in identifying pathway 
gene sets for matched gene expression phenotypes. We also 
observed that NGSEA substantially improved the ability to 
retrieve known anti-cancer drugs from patient-derived gene 
expression data using drug-target gene sets compared with 
another method, Connectivity Map. We also repurposed 
FDA-approved drugs using NGSEA and experimentally 
validated budesonide as a chemical with anti-cancer effects 
for colorectal cancer. We, therefore, expect that NGSEA will 
facilitate both pathway interpretation of gene expression 
phenotypes and anti-cancer drug repositioning. NGSEA is 
freely available at www.inetbio.org/ngsea.
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INTRODUCTION

Molecular phenotypes of clinical samples have proven useful 

in disease diagnosis, patient stratification, and drug discov-

ery. Gene expression profiling is probably the most accessible 

strategy for molecular phenotyping of clinical samples. DNA 

chip technology and RNA sequencing have been widely used 

for molecular profiling of patient-derived primary cells and 

cell lines. Numerous gene expression profiles of clinical sam-

ples are now freely available from public data repositories 

such as the Gene Expression Omnibus (GEO) (Barrett et al., 

2013) and the National Cancer Institute Genomic Data Com-

mons (NCI GDC) (Jensen et al., 2017). Functional analysis 

of genome-wide expression phenotypes is generally more 

interpretable with annotated gene sets rather than individual 

genes; therefore, many bioinformatics methods for gene set 

analysis have been developed over the past several years (de 

Leeuw et al., 2016). For clinical samples, the general purpose 

of gene set analysis of genome-wide expression profiles is to 

identify underlying disease-associated molecular processes, 

which can facilitate disease diagnosis and therapeutic inter-
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vention.

	 Two major approaches for gene set analysis of gene 

expression phenotypes are available: over-representation 

approaches and aggregate score approaches (Irizarry et al., 

2009). In the over-representation approach, a set of differ-

entially expressed genes (DEGs) from the expression data set 

is selected, and then the significance of the over-representa-

tion of each annotated gene set among the selected DEGs is 

computed through a statistical test such as the hypergeomet-

ric test (Huang da et al., 2009). This approach is reasonable 

but has some shortcomings (Irizarry et al., 2009; Pavlidis et 

al., 2004). For example, in this approach, less-significant 

genes are treated as insignificant genes in the expression 

phenotype; the results, therefore, are highly dependent on 

the cutoff used for selecting DEGs. In addition, relative order 

information among the significant genes is not considered.

	 The analytical limitations of over-representation approach-

es can be overcome by aggregate score approaches, which 

assign scores to each annotated gene set based on all the 

gene-specific scores of the member genes. Gene set en-

richment analysis (GSEA) (Subramanian et al., 2005) is the 

most popular aggregate score approach available to date. In 

GSEA, genes for the expression profile are first rank-ordered 

by the gene-specific scores based on the expression differ-

ence, and then the enrichment score of each annotated gene 

set is computed based on a modified Kolmogorov–Smirnov 

(K–S) test. Despite its popularity, however, GSEA also has 

some shortcomings. For example, GSEA was designed to 

identify sets of genes that are differentially regulated in one 

direction, i.e., either up-regulated or down-regulated. If a 

gene set has matched genes for DEGs in which up-regulation 

and down-regulation are equally distributed, then its associ-

ation with the expression phenotype may not be detected by 

GSEA. To overcome this limitation, a modified GSEA called 

absolute enrichment (AE) was developed that computes the 

absolute values of gene scores for both up- and down-regu-

lated genes (Saxena et al., 2006).

	 Another shortcoming of GSEA is that DEGs do not nec-

essarily represent the functional genes that are responsible 

for the molecular processes represented by the gene sets. 

Instead, observed DEGs may be dysregulated genes per-

turbed by genuine functional genes in the molecular process 

of interest. Given that GSEA assigns a score to each gene 

set based on the scores of significant DEGs, a gene set com-

prising bona fide functional genes that exhibit no significant 

expression changes would not be captured by this method. 

This analytical limitation may be partially overcome by using 

annotated gene sets that are based on expression signatures 

rather than functional genes. For example, MSigDB, which 

was designed explicitly for use with GSEA, contains many sig-

nature gene sets derived from gene expression data (Liberzon 

et al., 2011). The majority of databases of annotated genes 

for biological processes and diseases, however, are based on 

functional genes, such as disease-causing genes.

	 Network-based analysis of differential gene expression 

has been used to prioritize disease-causing genes (Nitsch et 

al., 2009) and essential genes of cancer cell lines (Jiang et 

al., 2015). These methods are based on the idea that func-

tional genes for disease processes, such as tumorigenesis, 

tend to be surrounded by DEGs for that disease condition 

in the functional network. We, therefore, hypothesized that 

ordering genes by the differential expression of their local 

subnetworks (i.e., networks connecting each gene and its 

neighbors) will improve the ability to capture functional gene 

sets associated with the relevant biological processes. In this 

study, we present a network-based GSEA (NGSEA) that 

measures the enrichment scores of functional gene sets by 

utilizing the expression difference of not only individual genes 

but also their neighbors in the functional network. Although 

several network-based gene set analysis methods already 

have been proposed, these methods are modified from the 

over-representation approach, which identifies associations 

between two pre-selected gene sets, annotated gene sets 

from databases, or query gene sets from experiments based 

on relative closeness within the molecular network (Alex-

eyenko et al., 2012; Glaab et al., 2012; McCormack et al., 

2013; Wang et al., 2012). To the best of our knowledge, NG-

SEA is the first network-based gene set analysis method that 

applies the aggregate score approach.

	 We found that NGSEA outperformed GSEA in retrieving 

KEGG pathway gene sets (Kanehisa et al., 2017) for matched 

gene expression data sets. We also applied NGSEA to drug 

prioritization for several diseases and found that NGSEA per-

formed substantially better than Connectivity Map (CMap) 

(Lamb et al., 2006) in the ability to retrieve known drugs 

for matched cancer-associated gene expression data sets. 

We analyzed FDA-approved drugs to determine whether 

they had anti-cancer effects on colorectal cancer using NG-

SEA and experimentally validated the anti-cancer effect of 

budesonide, a chemical that is currently used as an anti-in-

flammatory drug. NGSEA is freely available for use as web-

based software (www.inetbio.org/ngsea).

MATERIALS AND METHODS

Gene expression profiles, annotated gene sets, and a 
functional human gene network
To evaluate the gene set analysis performance for gene 

expression phenotypes, we used a gold-standard expres-

sion dataset composed of expression profiles in which their 

matched KEGG pathway terms are already annotated. We 

used KEGG disease datasets from GEO (KEGGdzPathways-

GEO) obtained from Bioconductor (https://bioconductor.

org/packages/release/data/experiment/html/KEGGdzPat-

hwaysGEO.html) as our gold-standard dataset to evaluate 

GSEA methods. This collection includes 24 expression data 

sets based on an AffyMetrix HG-U133a chip for which the 

phenotype is a disease with a corresponding pathway in the 

KEGG database (Supplementary Table S1A). For example, 

the GSE21354 dataset of KEGGdzPathwaysGEO was anno-

tated by the KEGG pathway term ‘glioma’ (hsa05214) and 

contains microarray-based gene expression data comprised 

of 14 samples from tumor tissues and four samples from 

normal tissues. These datasets have been previously used as 

a gold-standard dataset in comparing the performance of 16 

gene set analysis methods (Tarca et al., 2013).

	 We also compiled in-house gold-standard expression 

dataset composed of RNA-seq data from Expression Atlas 
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(https://www.ebi.ac.uk/gxa/home as of April 2019) (Papa-

theodorou et al., 2018) and gene sets for their matched dis-

eases by DisGeNET (http://www.DisGeNET.org as of June 8, 

2018) (Pinero et al., 2017) (Supplementary Table S1B).

	 We obtained pathway gene sets from human KEGG 

pathways (https://www.genome.jp/kegg/pathway.html 

as of June 2016) (Kanehisa et al., 2017) and drug-target 

gene sets from DSigDB version 1 (http://tanlab.ucdenver.

edu/DSigDB/DSigDBv1.0/) (Yoo et al., 2015) D1 data. Gene 

sets containing less than 15 genes were excluded from the 

analysis; this same criterion is used in the default parameter 

setting for GSEA. For data derived from DSigDB, drug names 

were mapped to the compound ID (CID) from the PubChem 

database (ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/

Extras/). A total of 276 KEGG pathway gene sets and 165 

DSigDB gene sets were used in our final analysis. We used 

the following additional gene sets for web server construc-

tion: Gene Ontology biological process annotations (http://

www.geneontology.org as of April 4, 2018) (Ashburner et 

al., 2000), curated annotations of DisGeNET, and disease 

gene annotations with more than three-star scores in DIS-

EASES (https://diseases.jensenlab.org) (Pletscher-Frankild et 

al., 2015).

	 To benchmark the ability to retrieve drugs for diseases, we 

compiled 17,063 links between 2,109 diseases and 1,481 

chemicals based on a direct evidence of association as de-

termined from the ‘therapeutic’ category of the Comparative 

Toxicogenomics Database (CTD) (http://ctdbase.org/ as of 

October 4, 2016) (Davis et al., 2017). We combined informa-

tion for drugs with synonyms in the CID.

	 For network-based analysis of the differential expression 

of genes, we employed a genome-scale functional gene net-

work, HumanNet-EN (Hwang et al., 2019), which is available 

from www.inetbio.org/humannet. Briefly, HumanNet-EN 

was constructed by integrating the functional associations 

between genes inferred not only from protein-protein inter-

actions but also from diverse types of omics data using Bayes-

ian statistics. The HumanNet-EN contains 424,501 functional 

links between 17,790 human genes (i.e., 94.6% of the cod-

ing genome). We also included a functional gene network for 

mouse, MouseNet (www.inetbio.org/mousenet), which con-

tains 788,080 links between 17,714 mouse genes (i.e., 88% 

of the coding genome) (Kim et al., 2016), to allow users to 

analyze mouse gene expression phenotypes with NGSEA.

Running GSEA, AE, and NGSEA
We obtained the freely available software program javaGSEA 

version 3.0 from the Broad Institute (http://software.broadin-

stitute.org/gsea/downloads.jsp) and used it for the analyses 

and web server implementation. javaGSEA can analyze the 

input data as either a gene expression matrix (GSEA) or a 

pre-ranked list of genes (GSEA-preranked). The gene expres-

sion matrix needs to contain both control samples and case 

samples. One goal of our analysis was to improve GSEA by 

modifying the rank-order of genes; therefore, we used the 

GSEA-preranked function for the analyses in this study. In 

particular, we used ‘weighted GSEA-preranked’ with the de-

fault parameters. The original GSEA ranked genes based on 

either gene-based scores, the signal-to-noise ratio (SNR), or 

the log base 2 of the expression ratio (i.e., log2(Ratio)) from 

the most upregulated gene. SNR is calculated as the average 

expression value difference between the case samples and 

control samples divided by the sum of the standard devia-

tions of each group of samples. The log2(Ratio) is computed 

by taking the logarithm (base 2) of the ratio between the av-

erage expression value of the case samples and the average 

expression value of the control samples.

	 In NGSEA, the original gene-based score, log2(Ratio), was 

modified via network-based integration of the gene-based 

scores for network neighbors. We assigned a network-based 

score (NS) for each gene by integrating the absolute value 

of its gene-based score with the mean of the absolute value 

of the gene-based scores of its network neighbors using the 

following equation:
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where ni is the number of network neighbors of the ith gene 

and xi represents the score of the ith gene. If a gene has no 

expression data, then we assigned the gene-based score to 

be zero. We initially tested both SNR and log2(Ratio), and 

found that the log2(Ratio) performed better in general; there-

fore, all the results presented in this report were based on the 

log2(Ratio). For the AE analysis, we ordered genes based on 

the absolute values of the log2(Ratio).

	 We performed GSEA, AE, and NGSEA with a gene list 

ordered by the log2(Ratio) value, the absolute value of the 

log2(Ratio), and the NS, respectively, using the GSEA-pre-

ranked function, from which we computed enrichment 

scores (ES), normalized enrichment scores (NES), P values, 

and false discovery rate (FDR) values for each gene set based 

on a modified K–S test. To evaluate gene set recovery perfor-

mance, we prioritized gene sets based on their absolute NES; 

this measure was used because gene sets with high scores 

for both positive and negative directions are equally weighted 

in GSEA.

Drug repositioning using CMap
We prioritized FDA-approved drugs for the 24 KEGG disease 

gene expression datasets using the CMap web server (https://

portals.broadinstitute.org/cmap). CMap requires up and 

down tag lists (AffyMetrix HG-U133a probe ID) as input data; 

therefore, we selected the 50 highest up- and down-regu-

lated probe IDs from each of the 24 disease expression data 

sets. If input genes were not based on AffyMetrix HG-U133a 

probe IDs, then we converted them to AffyMetrix HG-U133a 

probe IDs to run the CMap analysis.

Anti-cancer activity analysis using a cell viability assay
We conducted MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-car-

boxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) 

assays to measure cell viability following drug treatment. We 

used two colorectal cancer cell lines, HCT116 and HT-29, 

which were obtained from the Korean Cell Line Bank, for the 

assay. We purchased two candidate drugs, dobutamine, and 

budesonide, from Sigma (USA). We dissolved chemicals in di-

methyl sulfoxide (DMSO) prior to treatment. Cells were treat-
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ed with the candidate drugs at concentrations ranging from 

50 to 250 μM for 24, 48, and 72 h. MTS reagents then were 

added to the cells. The number of viable cells was counted 

based on the absorbance at 490 nm on an ELISA microplate 

reader (Molecular Devices, USA), and the cell viability per-

centage was calculated. All experiments were repeated six 

times.

RESULTS

Overview of NGSEA
As summarized in Figure 1, NGSEA differs from GSEA in the 

method of scoring genes, resulting in different gene orders 

between the two methods. The list of genes generated by 

GSEA is ordered by the log2(Ratio) gene score. In contrast, 

the list of genes generated by NGSEA is ordered using a 

network-based score. This score was based on two assump-

tions. The first assumption is that the annotated gene set for 

biological processes that are truly associated may contain 

both up- and down-regulated genes. Whereas GSEA was 

designed to find gene sets that are regulated in one direc-

tion, groups of genes or systems are often regulated in both 

directions. To address this problem, NGSEA uses the absolute 

value of the log2(Ratio) for analyses; a similar approach was 

employed previously in an AE analysis (Saxena et al., 2006). 

The second assumption is that the expression perturbation 

of gene regulators may cause severe dysregulation of their 

downstream genes such that the functional importance of 

a regulator for a given biological context would, in fact, be 

much greater than estimated by its own expression change. 

Thus, we expected that the expression difference in the local 

subnetwork would assign higher scores than the original 

gene-based score to truly functional genes. To address this 

problem, NGSEA integrated the mean of the absolute value 

of the log2(Ratio) for the network neighbors of each gene to 

account for the regulatory influence on its local subsystem.

Fig. 1. Overview of NGSEA. In the original GSEA, genes of a given expression dataset are ordered by gene-based scores (e.g., signal-to-

noise ratio [SNR] or log2(Ratio)) based on the gene expression difference between control and case samples. In NGSEA, the genes are 

ordered by network-based scores, which integrates the gene-based score with the mean of the scores of its neighbors in the functional 

gene network. This method is based on the observation that functional genes tend to cause expression changes in their network 

neighbors and therefore are more likely to be correlated with network-based scores.
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NGSEA outperformed GSEA and AE in identifying KEGG 
pathways for matched disease expression data sets
We evaluated the ability of GSEA, AE, and NGSEA to retrieve 

annotated gene sets for matched gene expression data sets. 

For this analysis, we used gold-standard gene expression 

datasets from the Bioconductor’s KEGGdzPathwaysGEO 

package. We used a total of 24 expression data sets associ-

ated with 12 different diseases (Supplementary Table S1A), 

which were previously used as gold-standard datasets in 

comparing the performance of 16 gene set analysis methods 

(Tarca et al., 2013). We scored 276 human KEGG pathway 

gene sets (Kanehisa et al., 2017) that contained more than 

15 member genes for each of the 24 expression datasets 

with GSEA, AE, and NGSEA, with an aim of retrieving the 

associated KEGG pathway term for each disease expression 

data set within the top predictions.

	 We observed a significantly higher rank distribution using 

NGSEA compared with GSEA and AE (P = 2.35e-3 and P = 

4.0e-3, respectively, by Wilcoxon signed-rank test) (Fig. 2A). 

The ranks for matched KEGG pathway terms were improved 

in NGSEA compared with GSEA in 18 of the 24 (75.0%) 

tested disease expression datasets (Fig. 2B). For example, 

the KEGG pathway term for ‘Glioma’ was ranked as 131 via 

GSEA but as 18 by NGSEA for a gene expression dataset de-

rived from glioma samples (GSE21354). To confirm that the 

observed superiority of NGSEA to GSEA in predicting diseases 

matched for the given expression profiles was not due to the 

dataset bias, we compiled an in-house gold-standard data-

set using disease-associated RNA-seq data from Expression 

Atlas and disease gene sets from DisGeNet (Supplementary 

Table S1B). We found that NGSEA outperformed GSEA in 

prediction for 4 out of 5 tested disease-associated RNA-seq 

datasets (Supplementary Fig. S1). Notably, the performance 

of the AE method was not significantly improved from GSEA 

(P = 0.11 by Wilcoxon signed-rank test). These results clearly 

indicate that the major factor contributing to the improve-

ment in NGSEA was the network-based analysis of the gene 

expression data.

Fig. 2. Recovery of KEGG pathways for matched disease expression datasets by GSEA, AE, and NGSEA. (A) Rank distribution of the 

matched KEGG pathway terms (out of 273 terms in total) for each of 24 gold-standard expression datasets from KEGGdzPathwaysGEO 

using GSEA, AE, and NGSEA. The significance of the difference in the rank distribution was assessed by Wilcoxon signed-rank test 

(*P < 0.05). (B) Rank comparison of the matched KEGG pathway terms between GSEA and NGSEA for each of the 24 gold-standard 

expression data sets. (C) Distribution of the Pearson’s correlation coefficient (PCC) of the normalized enrichment scores (NES) between 

the same diseases and different diseases. The significance of the difference in the rank distributions was assessed by Wilcoxon rank-sum 

test (*P < 0.05). (D) Subnetworks for the KEGG pathway terms ‘Alzheimer’s disease’ (HSA05010) and ‘Staphylococcus aureus infection’ 

(HSA05150). The difference between the ranks assigned by GSEA and NGSEA is indicated by the color code (red and blue for higher 

ranking by NGSEA and GSEA, respectively) for each pathway member gene. (E) Subnetworks for the KEGG pathway terms ‘acute myeloid 

leukemia’ (HSA05221) and ‘taste transduction’ (HSA04742). The color code is the same as in (D).
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	 Next, we tested the robustness of the three enrichment 

analysis methods by comparing the assigned scores for the 

KEGG pathway terms between the different expression pro-

files for the same disease. The 24 expression data sets were 

derived from 12 diseases, and nine of the diseases have mul-

tiple expression data sets. We hypothesized that if an enrich-

ment analysis retrieved pathways based on disease-specific 

signals rather than technical variation, then scores for the 

pathways between two different expression datasets for the 

same disease should have a higher correlation than those 

for different diseases. We, therefore, computed Pearson’s 

correlation coefficients (PCC) between expression data sets 

using the NES for all the test KEGG pathways. Then, we 

compared the distributions of PCC values between the same 

diseases or between different diseases. As expected, higher 

correlations were observed between the same diseases com-

pared with different diseases for all three enrichment anal-

yses (Fig. 2C). Notably, we observed an improvement in the 

significance of the correlations difference between the same 

disease groups and different disease groups using NGSEA 

compared with GSEA (P = 2.72e-6 and P = 3.44e-5, respec-

tively, by Wilcoxon rank-sum test). These results suggest that 

the enrichment analysis conducted using NGSEA may be less 

affected by variation among expression profiles for the same 

disease processes.

	 As expected, the improved ranks for the matched KEGG 

pathways were due to improved ranks of their member genes 

in the gene list used for the enrichment analysis. For exam-

ple, the network-based scoring method improved the rank 

of the KEGG term ‘Alzheimer’s disease’ from 17th to 5th and 

reduced the rank of an irrelevant KEGG term ‘Staphylococcus 

aureus infection’ from 6th to 267th for the gene expression 

data set for Alzheimer’s disease (GSE5281_VCX). The major-

ity of relevant pathway genes were ranked higher by NGSEA 

(red color) compared with GSEA (Fig. 2D). As another exam-

ple, we observed similar trends in the rank changes between 

relevant and irrelevant pathway terms for the KEGG term 

‘acute myeloid leukemia’ (Fig. 2E). These results demonstrate 

Fig. 2. Continued.
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that the use of network-based scoring in enrichment analysis 

increases the ranks of truly functional genes within the or-

dered gene list, resulting in the assignment of higher scores 

to gene sets truly associated with the underlying biological 

process.

Application of NGSEA to drug-target gene sets improved 
retrieval of known drugs compared with CMap
GSEA is the algorithmic foundation of the most popular drug 

repositioning system, the CMap (Lamb et al., 2006). The 

previous CMap database, which was based on the AffyMe-

trix HG-U133a chip, contained more than 7,000 expression 

profiles representing 1,309 compounds. A recent release of 

CMap included a database of reference expression profiles 

with more than 1,000-fold scale-up based on L1000 platform 

technology, which is a low-cost, high-throughput reduced 

representation expression profile method (Subramanian et 

al., 2017). The CMap system prioritizes drugs for diseases 

based on an inverse relationship between disease expression 

profiles and drug treatment expression profiles. To conduct a 

web-based CMap analysis, users submit signature genes for 

a given disease (e.g., the 50 most up-regulated and 50 most 

down-regulated genes from the disease-associated gene 

expression dataset). GSEA is applied to assign scores to each 

drug based on the anti-correlation of disease signature genes 

with the genes ordered by expression changes in drug con-

dition, which represents the strength of the drug response. 

In contrast to CMap, which uses expression data from 

drug-treated samples, the NGSEA-based drug prioritization 

method uses functional genes for the drug’s mode of action; 

target genes. We used target genes for each FDA-approved 

drug as functional gene sets to test the association to diseas-

es based on a list of genes ordered by network-based scores 

computed from disease-associated expression data (Fig. 3A). 

We compiled target gene sets for drugs from drug-target 

links based on active bioassays from the Drug Signature Da-

tabase (DSigDB) (Yoo et al., 2015). We performed drug pri-

oritization using NGSEA on 24 gene expression datasets for 

12 diseases from KEGGdzPathwaysGEO and target gene sets 

for 165 FDA-approved drugs (i.e., those with more than 15 

targets) from DSigDB.

	 We compared the ability of CMap and NGSEA to retrieve 

known drugs for each of the 24 disease-associated gene ex-

pression data sets. For benchmarking, we compiled 17,063 

associations between 2,109 diseases and 1,481 chemicals 

based on direct evidence of an association from the ‘thera-

peutic’ category of the CTD (Davis et al., 2017). The perfor-

mance of both CMap and NGSEA were determined using 

the area under the receiver operating characteristic curve 

(AUROC). To avoid a biased evaluation due to differences 

in the number of drugs tested, we included only drugs that 

were considered in both CMap and NGSEA for the AUROC 

analysis. We found significantly improved AUROC for drug 

recovery using NGSEA compared with CMap (P = 9.62e-4 by 

Fig. 3. Retrieval of known drugs for matched disease expression datasets using CMap and NGSEA. (A) Overview of how NGSEA 

retrieves drugs for the matched disease of the given gene expression data. Drug A targets genes with high network-based scores, 

whereas Drug B targets genes with a wide range of network-based scores; therefore, Drug A but not Drug B will be highly ranked. If Drug 

A but not Drug B is a known drug for the given disease, the prediction performance of NGSEA, as measured by the AUROC will be high. 

(B) Comparison of the AUROC between CMap and NGSEA for the ability to retrieve known drugs for the matched disease of each gene 

expression data set.
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Wilcoxon signed-rank test). Recovery of known drugs was 

improved in 16 of 24 (66.7%) tested expression datasets 

using NGSEA compared with CMap (Fig. 3B). NGSEA was 

particularly effective for retrieving cancer drugs; we observed 

improved performance in 14 of 16 (87.5%) cancer-associat-

ed expression datasets using NGSEA compared with CMap. 

These results suggest that using NGSEA with drug-target in-

formation may be an effective approach for anti-cancer drug 

repositioning.

Identification of budesonide as a novel drug candidate to 
treat colorectal cancer
The effective retrieval of known drugs for various types of 

cancers suggested that we would be able to identify novel 

anti-cancer drugs using NGSEA. NGSEA yielded the highest 

improvement in the recovery of known anti-cancer drugs 

for colorectal cancer (GSE9348: AUROC = 0.488 and 0.775 

by CMap and NGSEA, respectively) (Fig. 4A). We, therefore 

considered it highly likely that NGSEA would be able to 

identify novel drugs to treat colorectal cancer among the 

top repurposed FDA-approved chemicals. Among the top 

30 chemicals predicted as candidates for colorectal cancer 

by NGSEA, six chemicals were currently used for the treat-

ment of colorectal cancer and three additional chemicals 

had been tested in clinical trials for colorectal cancer (https://

clinicaltrials.gov/) (Fig. 4B). We also found evidence in the 

literature (via manual examination of the PubMed database) 

for anti-cancer effects in colorectal cancer for 13 additional 

chemicals predicted by NGSEA. We, therefore, considered 

the remaining eight candidates, for which there was no prior 

evidence of an anti-cancer effect in colorectal cancer, for 

follow-up experimental validation. Among the commercially 

Fig. 4. (A) Comparison of AUROC 

between CMap and NGSEA 

for the ability to retrieve known 

drugs to treat colorectal cancer 

using a gene expression data 

set from patients with colorectal 

cancer (GSE9348). (B) The top 30 

chemicals for colorectal cancer as 

predicted by NGSEA. The color 

code indicates how the anti-

cancer effect on colorectal cancer 

was validated for each predicted 

chemical. The asterisk (*) indicates 

the two drugs tested in this study. 

(C) Cell viability in the HCT-116 cell 

line after treatment with various 

concentrations of budesonide. 

(D) Cell viability in the HT-29 cell 

line after treatment with various 

concentrations of budesonide.
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available and affordable chemicals on our candidate list, we 

were able to obtain and test both dobutamine (5th) and 

budesonide (17th). We observed that budesonide significant-

ly inhibited cell growth in two different colorectal cancer cell 

lines (HCT116 and HT-29) (Figs. 4C and 4D, Supplementary 

Table S2). Budesonide was ranked 37th by CMap compared 

with 17th by NGSEA, suggesting budesonide would not be 

identified as a treatment for colorectal cancer using existing 

drug-repositioning analyses.

Development of the NGSEA web server
To increase the usability of NGSEA, we have developed a 

web-based GSEA server (www.inetbio.org/ngsea). Users can 

prioritize functional gene sets representing biological and 

disease processes using various databases, including KEGG 

pathway (Kanehisa et al., 2017), GO biological process (Ash-

burner et al., 2000), DisGeNET (Pinero et al., 2017), and 

DISEASES (Pletscher-Frankild et al., 2015). Users can perform 

both GSEA and NGSEA simultaneously by submitting the 

gene expression phenotype. Both expression matrix (.gct for-

mat) data and the pre-scored list of genes (.rnk format) are 

allowed to be submitted as input data for the analysis. The 

default analysis runs for human genes, but enrichment anal-

ysis is also available for mouse genes using a genome-scale 

mouse functional gene network (Kim and Lee, 2017; Kim et 

al., 2016). Users also can prioritize the gene sets by ES, NES, 

and FDR. Enrichment plots also are provided as output.

DISCUSSION

In this report, we presented a network-based GSEA, NG-

SEA, which modified existing gene scoring methods by 

incorporating the differential expression information from 

neighbors in the functional gene network (Kim et al., 2019). 

We then demonstrated that NGSEA outperformed GSEA in 

retrieving both KEGG pathway terms and drugs for matched 

disease-associated gene expression data sets. Based on the 

benchmarking results, we have concluded that NGSEA will 

provide reliable functional information for interpretation of 

gene expression phenotypes of clinical samples. Most im-

portantly, NGSEA performed well with functional gene sets. 

Because the original GSEA was designed to detect relation-

ships between biological processes and chemicals based on 

expression signature genes, which are not necessarily func-

tional genes, GSEA exhibited suboptimal performance with 

functional gene sets. MSigDB was designed explicitly to pro-

vide gene sets, many of which were derived from expression 

signatures, for GSEA. There are many other public databases; 

however, that contain annotated gene sets for diseases and 

pathways, and the majority of these gene sets include func-

tional genes. We expect that NGSEA will be a useful tool for 

utilizing these available resources.

	 There are several existing methods that combine networks 

and gene set analysis. These methods measure the network 

distance between two gene sets (Alexeyenko et al., 2012; 

Glaab et al., 2012; McCormack et al., 2013; Wang et al., 

2012). Although the sensitivity to detect the relationship be-

tween two gene sets was successfully improved using these 

methods compared with over-representation approaches, 

these methods still require the user to pre-select the query 

gene set by applying what is often an arbitrary differential 

expression score cutoff. These over-representation approach-

es to gene set analysis with network-based modification are 

therefore still limited by a lack of information regarding the 

relative orders between DEGs. We hypothesized that apply-

ing the network-based modification to an aggregate score 

approach to gene set analysis, which uses the differential 

expression values for the gene set analysis, would further im-

prove the sensitivity to detect the relationship between two 

gene sets. To the best of our knowledge, NGSEA is the first 

method that combines network-based gene set analysis with 

an aggregate score approach.

	 A previously proposed method, calculation of impact factor 

(IF) for each pathway (Draghici et al., 2007), shares an idea 

with NGSEA in incorporating fold change values of DEGs 

over pathways. However, NGSEA significantly differ from IF 

analysis. NGSEA incorporates gene expression scores through 

genome-wide functional networks such as HumanNet, 

whereas IF analysis does so through topology of pathway 

knowledge such as KEGG. Therefore, NGSEA are allowed for 

all genes in the HumanNet which includes ~96% of human 

genes, whereas IF calculation can be applied to only ~35% 

of the human genes that are currently annotated in KEGG 

pathways.

	 We demonstrated that NGSEA could effectively retrieve 

known anti-cancer drugs for matched gene expression data 

sets. It is not clear why drug recovery using NGSEA was high-

ly effective for different cancer types but not for neurode-

generative diseases such as Alzheimer’s disease, Parkinson’s 

disease, or Huntington’s disease (Fig. 3B). One possibility is 

that the current human gene network model is short of pre-

dictive power for brain cells because we also observed low 

performance of NGSEA for brain cancer. We observed similar 

results using another high-quality genome-scale human gene 

network, STRING (Szklarczyk et al., 2017) (Supplementary 

Fig. S2). These findings suggest that we need to improve 

human functional gene networks before NGSEA can be 

used effectively for certain applications. Nevertheless, our 

results show that NGSEA is an effective tool for repurposing 

chemicals as anti-cancer drugs with the current functional 

gene networks. Particularly, we found an anti-inflammatory 

drug, budesonide, to inhibit proliferation of multiple colorec-

tal cancer cell lines. Given that metformin, a drug for type 2 

diabetes, is under clinical trials for cancer treatment (Quinn 

et al., 2013), it may be worth to repurpose budesonide as an 

anti-cancer drug.

Note: Supplementary information is available on the Mole-

cules and Cells website (www.molcells.org).
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