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Astrocytes are essential for CNS health, regulating homeostasis, metabolism, and syn-

aptic transmission. In addition to these and many other physiological roles, the path-

ological impact of astrocytes (“reactive astrocytes”) in acute trauma and chronic

disease like Alzheimer's disease (AD) is well established. Growing evidence supports

a fundamental and active role of astrocytes in multiple neurodegenerative diseases.

With a growing interest in normal astrocyte biology, and countless studies on changes

in astrocyte function in the context of disease, it may be a surprise that no therapies

exist incorporating astrocytes as key targets. Here, we examine unintentional effects

of current AD therapies on astrocyte function and theorize how astrocytes may be

intentionally targeted for more efficacious therapeutic outcomes. Given their integral

role in normal neuronal functioning, incorporating astrocytes as key criteria for AD

drug development can only lead to more effective therapies for the millions of AD

sufferers worldwide.

LINKED ARTICLES: This article is part of a themed section on Therapeutics for

Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view

the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/

bph.v176.18/issuetoc
1 | INTRODUCTION

Alzheimer's disease (AD) is the most common neurodegenerative disor-

der and cause of dementiaworldwide. Characterized by progressive lan-

guage, memory, and cognitive loss, AD has been historically categorized

as a disease of proteopathic stress caused by abnormal amyloid‐β (Aβ)

and tau aggregation with primary toxic consequences affecting neuro-

nal health and function (De Strooper & Karran, 2016; Ginsberg, Che,

Counts, &Mufson, 2006; Harding et al., 2018;Mattsson, Schott, Hardy,

Turner, & Zetterberg, 2016; Yue& Jing, 2015).More recently, a growing

interest has focused on other non‐neuronal CNS cell types and their

potential roles in AD aetiology and progression. Of particular interest
tor; AD, Alzheimer's disease; APP

n barrier; BDNF, brain‐derived ne

tein; GLT, glutamate transporter;

wileyonlinelibrary.com/journ
are astrocytes, given their fundamental roles as regulators of homeosta-

sis, metabolism, and clearance as well as modulators of synaptic plastic-

ity and transmission. Recent evidence established a clear link between

immune cell‐induced reactive astrocyte function that leads to neuronal

and oligodendroglial cell death. Most strikingly, reactive astrocytes are

localized to regions of degeneration in human AD patient post‐mortem

tissue (Liddelow et al., 2017), mouse models of tauopathy (Shi et al.,

2017), and many other neurodegenerative diseases (Liddelow et al.,

2017; Rothhammer et al., 2018; Yun et al., 2018). Given this integral

and active role of astrocytes in neurodegeneration, this reviewwill eval-

uate how current AD pharmacological agents affect astrocyte function

and will hypothesize how astrocytes may be targeted for future drug
, amyloid precursor protein; APPswe/PS1, APP Swedish mutation/presenilin 1;

urotrophic factor; BuChE (Bche), butyrylcholinesterase; GDNF, glial cell‐derived
NGF, nerve growth factor.
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development. We also use the term “reactive astrocyte” or “reactivity”

to encompass all AD pathological states of astrocytes. It should be

noted that it is unknown exactly how many different states of astro-

cytes are present during different states of AD progression, or if each

state represents a bona fide “reactive astrocyte” or an intermediary

and transient state change that may be responsive to, rather than

inducive of, AD pathology. This review will not encompass discussions

on bioavailability or mode of transport of drug candidates; rather, we

will focus on astrocyte targets and the functional changes predicted to

occur if they are effectively modulated.
1.1 | Effect of AD therapeutics on astrocyte function

1.1.1 | AChE inhibitors

In the 1970s, initial biochemical analysis of AD patient brains identi-

fied substantial cholinergic deficits, including decreased choline ace-

tyltransferase levels, decreased ACh uptake, decreased ACh release,

and fewer cholinergic neurons (among other stereotypical AD pathol-

ogies; Francis, Palmer, Snape, & Wilcock, 1999). Paired with emerging

knowledge that ACh is critical for learning and memory, the “choliner-

gic hypothesis of AD” was established (Bartus, Dean, Beer, & Lippa,

1982; Pabst et al., 2016; Revathikumar et al., 2016). This model

describes degenerating cholinergic neurons directly causing cognitive

dysfunction. In response, AChE inhibitors (AChEIs) were introduced

as a means to improve cholinergic neuronal function. Currently, three

out of the four current FDA‐approved AD treatments are AChEIs:

donepezil, rivastigmine, and galantamine (Alzheimer's Association,

2017). The final non‐AChEI FDA‐approved AD therapy is memantine,

which targets glutamate overactivity (discussed below). Regardless of

varying modes of action (Supporting Information Table S1), these

AChEIs function by delaying breakdown of ACh in the synaptic cleft,

increasing the time ACh remains at the synapse, elongating potential

for cholinergic neurotransmission (Birks, 2006; Tabet, 2006).

Astrocytes have functional nicotinic andmuscarinic receptors and

(controversially) may express butyrylcholinesterase (Bche/BuChE) and

Ache. Levels of expression and catalytic function appear to vary

depending on the stage of development/age and species investigated

(Anderson et al., 2008; Elhusseiny, Cohen, Olivier, Stanimirovic, &

Hamel, 1999; Pabst et al., 2016; Revathikumar et al., 2016; Teaktong

et al., 2003; Thullbery, Cox, Schule, Thompson, & George, 2005). In

AD pathology, the number of glial fibrillary acidic protein (GFAP)

immunopositive astrocytes in the hippocampus and cortex with nico-

tinic receptor subtype α7 (α7 nAChR)‐immunoreactivity is increased

from 40 –100% in sporadic AD and 50–60% in Swedish amyloid pre-

cursor protein (APPswe) 670/671 AD cases, compared to less than

50% in non‐symptomatic patient controls (Teaktong et al., 2003; Yu,

Guan, Bogdanovic, & Nordberg, 2005). It should be noted however that

this co‐immunofluorescence does not provide significant resolution for

spatial localization of receptors within GFAP+ astrocytes. Therefore,

increased nicotinic receptor presence in GFAP+ astrocytes may be

due to astrocyte‐specific up‐regulation of these receptors and/or may

be an artefact from astrocyte‐mediated synapse elimination, a well‐
defined early hallmark of AD (Chung, Welsh, Barres, & Stevens, 2015;

Clarke & Barres, 2013; Eroglu & Barres, 2010; Hong et al., 2016). Addi-

tionally, global cholinesterase activity is markedly changed in AD, with

decreased AChE and increased BuChE activity (Giacobini, 2004; Perry,

Perry, Blessed, & Tomlinson, 1978). Although less commonly expressed

in the brain (representing ~20% of all cholinesterase activity), reports of

astrocyte BuChE (Giacobini, 2004; Revathikumar et al., 2016) and

increased BuChE may be correlated with astrocyte reactivity (Kadir

et al., 2011). Such reports are based on in vitro culture experiments

from human fetal material in the presence of serum and therefore

may not be representative of either physiological or aged pathological

state of astrocytes. Given the prevalence and active role of astrocytes

in AD pathology, how do AChEIs and the subsequent increase in ACh

affect astrocyte function?

Standard morphological characterization using GFAP immuno-

staining reveals a loss of traditional astrocyte morphology. This cellular

hypertrophy is a standard measurement of astrocyte “health” and is

often used to measure cellular atrophy and loss of function in a wide

range of neurological disorders including AD (see Pekny et al., 2016

and Verkhratsky, Marutle, Rodriguez‐Arellano, & Nordberg, 2015 for

comprehensive review of this topic). Often used as a proxy of multiple

forms of astrocyte reactivity, GFAP+ hypertrophied astrocytes return

to a physiologically “normal” morphology after AChEI treatment (Liu

et al., 2015; Mohamed, Keller, & Kaddoumi, 2016; Unger, Svedberg,

Yu, Hedberg, & Nordberg, 2006; Wu, Zhao, Chen, Cheng, & Zhang,

2015)—suggesting a return to physiologically astrocyte functions.

Though not an effective measure of astrocyte pathology, there is a

gross morphological change in reactive astrocytes upon entering a

pathological state (such methods of describing reactive astrocytes lack

required fidelity to determine level or state of a reactive phenotype).

After 2 months of rivastigmine treatment, a 50% decrease in GFAP

levels was detected by fluorescence intensity in the hippocampi of

APPswe mice (Mohamed et al., 2016). These mice express human

APPswe double mutations (K670N and M671L) that result in signifi-

cant amyloid plaque deposition by 9 months of age (Hsiao et al.,

1996). Similarly, APPswe/presenilin 1 (APPswe/PS1) mice—which

express both the human Swedish mutation and have a deletion of

PS1, causing significant behavioural deficits, accelerated plaque depo-

sition, and increased inflammation (Holcomb et al., 1998; Jankowsky

et al., 2004)—display decreased astrocyte responses, as identified by

morphological changes (i.e., fewer swollen, hypertrophic processes)

and decreased GFAP levels, after long‐term galantamine treatment

(Wu et al., 2015). AChEIs also reduce astrocyte production of ROS

and inhibit oxidative stress‐related apoptosis (Liu et al., 2015; Makitani,

Nakagawa, Izumi, Akaike, & Kume, 2017). Protective mechanisms are

postulated to be due to nicotinic receptor interaction and subsequent

activation of the PI3K–Akt pathway (Makitani et al., 2017).

Astrocytes are also key modulators of neuroinflammation in the

CNS, secreting pro‐inflammatory and/or anti‐inflammatory cytokines

depending on the stimulus/mode of injury (Anderson et al., 2016;

Zamanian et al., 2012). Choline receptor stimulation via AChEIs or nic-

otine agonists can reduce many pro‐inflammatory signals (Tabet,

2006)—making them an appealing target. When activated by IL‐1β,
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cultured fetal human astrocytes up‐regulated many pro‐inflammatory

cytokines (Revathikumar et al., 2016). Pretreating cultures with

nicotine prior to IL‐1β stimulation leads to a reduction in IL‐6, TNF‐α,

IL‐1β, IL‐8, and IL‐13 production. However, this decreased level of

cytokine production never returned to non‐stimulated baselines,

suggesting ACh stimulation may only modestly attenuate pro‐

inflammatory responses. Additionally, no differences were detected

for IFNγ, IL‐2, IL‐44, IL‐10, and IL‐12p70 secretion, and therefore,

modulation of these inflammatory cytokines may not be universal

(Revathikumar et al., 2016). One should also be wary of such investi-

gations completed in serum‐containing culture conditions, as astrocyte

cultures maintained in serum‐containing growth media irreversibly

change the transcriptome and several functions of astrocytes (Foo

et al., 2011). Although these results may indeed be indicative of bona

fide astrocyte responses in vivo, they should be reproduced under

more physiological conditions that replicate true astrocyte function.

Treating aged APPswe/PS1 mice with galantamine for 2 months also

decreases astrocyte production of pro‐inflammatory cytokines,

TNF‐α and IL‐6 (Wu et al., 2015). In comparison, bulk hippocampal

levels of TNF‐α and IL‐6, as assessed by ELISA, do not change with

AChEI treatment (Wu et al., 2015). These discrepancies are likely

due to differences in cell type‐specific contributions masked by

analysing bulk tissue preparations, as multiple cell types (e.g., microg-

lia, astrocytes, neurons, and endothelial cells) secrete these cytokines

(Zhang et al., 2014). Follow‐up studies using single‐cell transcriptomics

are essential to understand nuances of how different cells may con-

tribute to a phenotype (i.e., heterogeneity between cell types and het-

erogeneity of response within a specific cell type) as a means to better

understand the phenotype of interest and subsequently develop more

efficacious drug targets that take this information into consideration.

Stimulation of nicotinic receptors on striatal hydrogen peroxide‐

treated murine astrocytes in vitro suppresses caspase‐9 (Casp9)

expression and subsequently inhibits mitochondrial‐dependent apo-

ptotic pathways, permitting maintenance of mitochondrial membrane

integrity/pressure and BAX/Bcl‐2 ratios (Liu et al., 2015). LPS‐stimu-

lated neonatal murine astrocytes treated with GTS21, a nicotinic ago-

nist, provide additional support for an astrocyte role in modulating

neuroinflammation—decreasing pro‐inflammatory cytokine production

measured by NF‐κB pathway inhibition (Patel, McIntire, Ryan, Dunah,

& Loring, 2017). In addition to primary effects of AChEIs on astrocyte

function, one should consider potential secondary effects—for exam-

ple, how do AChEIs affect microglia, the resident immune cells of

the brain? Neurotoxic astrocyte reactivity is dependent on microglia

activation (Liddelow et al., 2017). Therefore, if microglia‐related

inflammation decreases, so too would astrocyte reactivity (Liddelow

et al., 2017; Yun et al., 2018). Given that ACh attenuates microglial

cytokine production, anti‐inflammatory and neuroprotective pathways

would be promoted (Liu et al., 2015; Revathikumar et al., 2016; Tabet,

2006). Under these parameters, the cholinergic system may be consid-

ered a modulator of astrocyte‐associated neuroinflammation both

directly and indirectly (Revathikumar et al., 2016).

Astrocytes provide significant neuronal support through secretion

of neurotrophic factors, and choline receptor stimulation, via AChEIs
or ACh agonists, and may promote secretion of these factors. As an

example, treatment with metrifonate, an irreversible AChEI, up‐

regulates secretion of neurotropic factors nerve growth factor (NGF)

and brain‐derived neurotrophic factor (BDNF) in cultured rat cortical

astrocytes through nicotinic receptor interactions (Mele & Juric,

2014). Additionally, stimulation of nicotinic ACh receptors on

oxidative‐stressed midbrain murine astrocytes ameliorates glial cell‐

derived neurotrophic factor (GDNF) secretion (Liu et al., 2015).

Therefore, activation of astrocyte choline receptors under pathological

conditions may provide added support for neighbouring output cells.
1.1.2 | NMDA receptor antagonists

Glutamate is the primary excitatory neurotransmitter in the CNS and

is critical for learning and memory (Dzamba, Honsa, & Anderova,

2013; Verkhratsky & Kirchhoff, 2007). Overstimulation of NMDA

receptors by glutamate is well documented in many neurodegenera-

tive diseases including AD (Reisberg et al., 2003). This overstimulation

promotes excessive Ca2+ influx, resulting in free radical production,

activation of proteolytic processes, and ultimately cell death (Lee

et al., 2010; Lipton, 2006). Modulating glutamate‐mediated NMDA

receptor stimulation however is a significant challenge, as glutamate

receptor activity is imperative for normal neurotransmission (Lipton,

2006; Suhs et al., 2016). Memantine, an uncompetitive NMDA recep-

tor antagonist that is FDA‐approved for treatment of AD, meets these

selective binding requirements by preferentially binding to NMDA

receptors when glutamate activates the channel for a significant

period of time (Lipton, 2004). In this manner, memantine modulates

excessive activation by glutamate without interfering with normal

levels of glutamate‐based synaptic transmission (Lipton, 2006;

Reisberg et al., 2003).

Understanding astrocyte NMDA receptor expression and func-

tionality is complex due to incomplete understanding of variations in

expression levels and functionality between species, at different

developmental stages, and in different brain regions (Lee et al.,

2010; Suhs et al., 2016). For instance, adult rat CA1 hippocampal

astrocytes appear not to express NMDA receptors (Krebs, Fernandes,

Sheldon, Raymond, & Baimbridge, 2003), while NMDA receptors are

abundant in astrocytes from post‐mortem human cortex (Conti,

Barbaresi, Melone, & Ducati, 1999). This may be due to species differ-

ences in the transcriptome, and presumably function, of CNS cells

(e.g., see Zhang et al., 2016 for comparison of rodent and human glial

cells) or areas of the brain assessed. Analysis of astrocyte tran-

scriptome data from the aged mouse in different brain regions how-

ever suggests that any difference is more likely species‐dependent

(Boisvert, Erikson, Shokhirev, & Allen, 2018; Clarke et al., 2018). More

recent single‐cell transcriptome analyses show that many NMDA

receptor transcripts are indeed highly expressed by individual astro-

cytes in particular brain regions (Saunders et al., 2018). Grin2c, for

instance, is highly localized to astrocytes in the posterior cortex and

striatum, while Grin2b is more equally expressed by other cell types

in the same brain regions.
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NMDA receptors can be composed of varying subunits: GluN1,

GluN2, and GluN3. Two GluN1 subunits are essential for membrane

trafficking, while GluN2 and/or GluN3 subunits vary and will

subsequently determine pharmacological properties of the receptor

(e.g., glutamate affinity and cation permeability), as well as regional

and developmental specificity (Dzamba et al., 2013; Palygin, Lalo, &

Pankratov, 2011). NMDA receptors present on non‐electrically excit-

able cells, including those on glia, are postulated to be non‐functional

at physiological resting potentials due to extracellular Mg2+ acting as a

block on cation influx (Palygin et al., 2011). However, due to glial

NMDA receptor subunit differences, these receptors are only weakly

sensitive to extracellular Mg2+ and therefore may be activated even

at negative resting membrane potentials (Dzamba et al., 2013; Palygin

et al., 2011; Verkhratsky & Kirchhoff, 2007). As there is limited Mg2+

block on astrocyte NMDA receptors, these cells may be even more

vulnerable to NMDA‐associated excitotoxicity because they do not

require depolarization for glutamate binding (Verkhratsky & Kirchhoff,

2007). Consequently, astrocytes may be more sensitive to NMDA

receptor antagonists (Palygin et al., 2011). It is therefore important

to assess how NMDA receptor antagonists affect astrocyte function

in the treatment of AD, and much work going forward will be required

to determine the effect of such drugs in non‐neuronal cells with

grossly different receptor structure.

NMDA receptor antagonists do not significantly alter gene

expression profiles of AD‐associated astrocytes. After 5 months of

treatment with riluzole, another NMDA receptor antagonist, 5X famil-

ial AD mice, which have five familial‐associated AD mutations includ-

ing amyloid precursor protein (APP; K670M/N671L, 1716V, and

V717I) and PS1 (M146L and L286V) mutations and result in a highly

robust AD phenotype (Oakley et al., 2006), have significant reductions

of Aβ pathology (including decreased APP, Aβ40, Aβ42, and Aβ oligo-

mer production as well as decreases in both the number and size of

plaques) and improved memory performance (Okamoto et al., 2018).

However, bulk RNA sequencing of brains from treated mice reveals

only a modest return towards physiological astrocyte‐specific

transcriptomic expression levels. Disease‐associated microglial‐

specific expression is reduced towards normal baselines (Keren‐Shaul

et al., 2017), which may indirectly reduce astrocyte reactivity through

inhibition of microglia‐mediated neuroinflammation. Although cell

type specificities were determined post hoc in these analyses, results

suggest that NMDA receptor antagonists have limited ability to mod-

ulate reactive astrocytes (Okamoto et al., 2018). In agreement with

these findings, memantine treatment over 10 days in 10‐month‐old

APPswe mice does not decrease intensity of GFAP+ immunoreactiv-

ity, a generic metric of astrocyte reactivity, associated with Aβ plaques

(Unger et al., 2006).

Although the primary pharmacological function of NMDA recep-

tor antagonists is associated with blocking cation voltage channels

and consequent inhibition of glutamate release, treatment may also

increase neurotrophic factor secretion (through unknown mecha-

nisms). Conditioned medium from striatal neonate rat astrocyte cul-

tures exposed to riluzole provides trophic support to motor neuron

cultures (Peluffo, Estevez, Barbeito, & Stutzmann, 1997). Additionally,
NGF, BDNF, and GDNF synthesis and secretion increase by 109‐, 2‐,

and 3.1‐fold, respectively, when cultured murine astrocytes are

exposed to riluzole (Mizuta et al., 2001). However, these results may

not be directly extrapolated to disease‐relevant treatments, as doses

provided in this study were 500 times higher than the maximal plasma

concentration of a therapeutic dose.

Astrocyte glutamate transporters (GLTs) are key regulators of glu-

tamate concentration in the synaptic cleft (Carbone, Duty, & Rattray,

2012; Yoshizumi, Eisenach, & Hayashida, 2012). Under excitotoxic

conditions, excessive Ca2+ influx can induce cell death in cells, includ-

ing astrocytes (Lee et al., 2010). Application of NMDA receptor antag-

onists can attenuate this glutamate‐induced toxicity (Lee et al., 2010)

and may be due to up‐regulation of GLTs, such GLT‐1 (EAA2; Slc1a2;

Carbone et al., 2012). In striatal murine astrocyte cultures, stressed by

removal of growth factor components, subsequent application of

riluzole produces a doubling in GLT‐1 protein levels and a minor

increase (~30%) in glutamate uptake (Carbone et al., 2012). However,

this increased glutamate uptake may have paradoxical effects.

Riluzole‐induced glutamate uptake by astrocytes may promote subse-

quent glutamate Ca2+‐dependent release by increasing intracellular

stores of Ca2+ via the reverse mode of Na+/Ca2+ transport (Yoshizumi

et al., 2012). This effect is likely due to low concentrations of riluzole

used, as higher concentrations would inhibit voltage‐dependent Na+

and Ca2+ channels (Yoshizumi et al., 2012). In addition, glutamate

release by astrocytes is contentious, and Ca2+‐dependent vesicular

release of glutamate may be overrepresented in in vitro models

(Nedergaard & Verkhratsky, 2012). Therefore, the relevance of this

phenomenon in AD treatment models may be minimal.

1.2 | Therapeutics in the pipeline

As of mid‐2018, the Alzforum Therapeutic Database lists ~100 drug

candidates in the clinical pipeline, ranging from Phase I to IV. The

majority of these drug agents target amyloid pathology, tau pathology,

and/or global neuroinflammation. Notably, there is limited, substanti-

ated information known assessing the effect of these drugs on astro-

cyte function (Figure 1).

1.2.1 | Amyloid β

Abnormal aggregation of Aβ is a key pathological feature of AD. Neu-

rotoxic astrocytes and pro‐inflammatory disease‐associated microglia

are spatially and biochemically associated with this Aβ pathology. As

previously discussed, reactive astrocytes localize to areas of

degeneration/Aβ plaques in AD (Liddelow et al., 2017; Shi et al.,

2017; Wisniewski & Wegiel, 1991). Additionally, astrocytes have tan-

gible levels of APP, β‐secretase (Bace1), and γ‐secretase (Aph1a), and

synthesis of these proteins increases in reactive astrocytes under

pathological conditions, such as exposure to pro‐inflammatory cyto-

kines (Hong et al., 2003) or Aβ oligomers and fibrils (Zhao, O'Connor,

& Vassar, 2011) in astrocyte cultures from APPswe transgenic mice as

well as in human AD patient samples (Hartlage‐Rubsamen et al., 2003).

More recent evidence shows a strong correlation between Aβ,
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FIGURE 1 How do Alzheimer's disease therapies affect neurons versus astrocytes? Major drug classes are listed with experimentally validated
concepts and mechanisms in black text. White text represents hypothetical effects. Aβ, amyloid‐β; AChEI, AChE inhibitor; APP, amyloid precursor
protein; GFAP, glial fibrillary acidic protein; LTP, long‐term potentiation; NMDAR, NMDA receptor; P‐tau, phosphorylated tau; ROS, reactive
oxygen species
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microglia, astrocytes, and overall neuronal health in a novel 3D culture

system (Park et al., 2018). It will be exciting to see, going forward, how

modulation of individual cell components of this system alters deposi-

tion of Aβ and ultimately neuronal viability and function. Therefore,

the effect of Aβ modifying drugs (i.e., enhanced clearance and inhibi-

tion of key enzymes) on astrocyte function should be carefully

evaluated.

1.2.2 | Tau

Another pathological hallmark of AD, the inclusion of neurofibrillary

tangles, is characterized by hyperphosphorylated tau (Hampel et al.,

2010; Javidnia, Hebron, Xin, Kinney, & Moussa, 2017). Under normal

physiological conditions, tau is primarily localized to mature neuronal

axons and aids in stabilizing microtubule assembly and regulating axo-

nal transport (Garwood, Cooper, Hanger, & Noble, 2010; Leyns &

Holtzman, 2017). Phosphorylation of tau determines its affinity for

tubulin (Leyns & Holtzman, 2017). If tau is inappropriately or exces-

sively phosphorylated, microtubule assembly becomes inhibited

(Leyns & Holtzman, 2017). Although primarily expressed in neurons,

tau is also expressed at low levels in oligodendrocytes (LoPresti,

Szuchet, Papasozomenos, Zinkowski, & Binder, 1995) and astrocytes

(Buee, Bussiere, Buee‐Scherrer, Delacourte, & Hof, 2000; Chiarini,

Armato, Gardenal, Gui, & Dal Pra, 2017; Kahlson & Colodner, 2015;
Leyns & Holtzman, 2017). Additionally, astrocytes produce cytokines,

such as TNF‐α and IL‐6 (Wu et al., 2015), that subsequently intensify

tau hyper‐phosphorylation, exacerbating overall tau pathology (von

Bernhardi, Eugenin‐von Bernhardi, & Eugenin, 2015). This presence

of tau may inhibit neuroprotective capabilities of astrocytes. In co‐

cultures of neurons and astrocytes isolated from either C57BL/6 or

mutant human tau P301S transgenic mice, in which tau is expressed

under the Thy1.2 (Cd90) promoter and therefore only present in neu-

rons (Allen et al., 2002), P301S astrocytes fail to protect neurons from

cell death (Sidoryk‐Wegrzynowicz et al., 2017). Upon transplantation

of C57BL/6 astrocytes or addition of C57BL/6 astrocyte‐conditioned

medium to neuron cultures, neuronal survival significantly improved,

indicating that astrocytes develop pathological changes upon expo-

sure to P301S neurons. This neuroprotective phenomenon was also

replicated in vivo by transplanting C57BL/6 astrocytes into P301S

mice (Hampton et al., 2010). Astrocytes may also mediate Aβ‐induced

tau phosphorylation and cleavage. Mixed rat cortical in vitro cultures

have significantly increased tau phosphorylation, compared to neuro-

nal monocultures, suggesting astrocyte presence exacerbates neuro-

toxicity (Garwood, Pooler, Atherton, Hanger, & Noble, 2011).

Therefore, tau may affect glia (“astrogliotauopathy”; Kovacs et al.,

2016), and glia may affect tau pathology. The effects of tau modulat-

ing treatments (i.e., tau aggregation inhibition and phosphorylated tau

clearance) on glial function are yet to be confirmed.

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=858
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1.2.3 | Inflammation

Inflammation is a critical component of AD pathology. Given astro-

cytes, along with microglia and peripheral immune cells, function as

key regulators of inflammation in the CNS (Anderson et al., 2016;

Zamanian et al., 2012), modulation of these cells may help prevent

pro‐inflammatory responses. As an example, minocycline, an antibi-

otic with well‐defined anti‐inflammatory properties, would be a key

drug candidate for such immunomodulation. Minocycline treatment

over 2 weeks reduces the number of activated astrocytes in the cor-

tex of young human tau transgenic mice (Garwood et al., 2010), as

identified by intensity of GFAP immunohistochemistry andmorphology

(i.e., fewer hypertrophied soma and thick processes). Interestingly, no

differences in astrocyte morphology were identified in the hippocam-

pus, which may be due to regional‐specific heterogeneity of astrocytes

and/or may highlight the limited ability to identify the reactive state of

an astrocyte using simplistic GFAP intensity and morphological assess-

ment. As anticipated, minocycline treatment significantly reduced

global levels of many pro‐inflammatory factors (GM‐CSF, I‐309,

eotaxin, IL‐6, IL‐10, M‐CSF, MCP‐1 (CCL2), MCP‐5 (CCL12), and

TREM‐1), while other factors remained similar to untreated baselines

(BCL, C5a, G‐CSF, sICAM‐1, IFNγ, IL‐1α, IL‐1ra, IL‐2, IL‐3, IL‐4, IL‐5,

IL‐7, IL‐13, IL‐12p70, IL‐16, IL‐23, IL‐27, IP‐10 (CXCL10), iTAC

(CXCL11), KC (mouse CXCL1), MIG (CXCL9), MIO‐1α, MIP‐2 (human

CXCL1), RANTES (CCL5), SDF‐1 (CXCL‐12β), TARC (CCL17), TIMP‐
FIGURE 2 Alzheimer's disease significantly disrupts many major astrocyt
arrows indicate documented examples of Alzheimer's disease‐associated a
activated microglia. Aβ, amyloid‐β; GFAP, glial fibrillary acidic protein; NO
species
1, and TNF‐α). Surprisingly, a handful of cytokine factors increased

(IL‐17, IL‐1β, and MIP‐1β (CCL4); Garwood et al., 2010). Since levels

of cytokines were gathered from bulk tissue preparations, follow‐up

assessments of cell type‐specific contributions to these cytokine

changes are needed to add nuance to what cell type therapeutics

should target.

Another drug class with potential to modulate inflammation in AD

and induce intriguing effects on astrocyte function is non‐steroidal

anti‐inflammatory drugs. Chronic (9‐month) treatment with

CHF5074 (a novel γ‐secretase modulator) in Tg2576 mice increased

localization of reactive astrocytes around Aβ plaques (Imbimbo et al.,

2010). These changes may be indicative of cytoskeletal reorganization

to promote migration to areas of injury (Lichtenstein et al., 2010),

potentially allowing for increased astrocyte‐mediated neuroprotection

(i.e., phagocytosis of Aβ plaques).
1.3 | Future specific astrocyte targets as a potential
AD therapy

There are several possible targeting strategies to ameliorate astrocyte

dysfunction during AD. One does however need to determine what

stage during disease would provide the most effective astrocyte‐

specific targets. Many studies report astrocyte “activation” early in

the pathogenesis of AD (Carter et al., 2012; Owen et al., 2009;
e functions. Major astrocyte functions are listed in black. Red text and
strocyte perturbation. Yellow circles indicate added influence of
, nitric oxide; MAO‐B, monoamine oxidase B; ROS, reactive oxygen
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Schipper et al., 2006); however, we still understand very little about

their role in the initiation, progression, or possible resolution of dis-

ease (Figure 2). Although no astrocyte‐specific therapies currently

exist for AD, there are several promising possibilities. We will briefly

discuss a small number of these here.
1.3.1 | Homeostasis/trophic support of neurons and
synapses

Astrocytes secrete a number of known and unknown neurotrophic

factors required for normal neuronal health and extension of neurite

outgrowths (Meyer‐Franke, Kaplan, Pfrieger, & Barres, 1995;

Verkhratsky, Matteoli, Parpura, Mothet, & Zorec, 2016). These factors

also likely play a key role in synaptic plasticity and signal strength (with

unhealthy neurons likely unable to maintain such connections). The

importance of activity‐dependent plasticity should not be overlooked

however, as neuronal activity is known to cause release of many neu-

rotrophic factors, like NGF and BDNF (Ernfors, Bengzon, Kokaia,

Persson, & Lindvallt, 1991; Isackson, Huntsman, Murray, & Gall,

1991). There is also strong evidence that neuronal activity can control

synthesis, secretion, and signalling mediated by such neurotrophins

(Kang & Schuman, 1991; see also Schinder & Poo, 2000; Schipper

et al., 2006 for review). But what role would astrocytes play in such

a neuron‐dominated hypothesis?

Astrocytes are intimately involved at the synapse and along with

the pre‐ and post‐synaptic neuronal terminals form the “tripartite syn-

apse” (Araque, Parpura, Sanzgiri, & Haydon, 1999) or “astrocyte cra-

dle” (Verkhratsky & Nedergaard, 2014). In this location, astrocytes

help form structural and functional synapses (Allen et al., 2012;

Blanco‐Suarez, Liu, Kopelevich, & Allen, 2018; Christopherson et al.,

2005; Singh et al., 2016; Stogsdill et al., 2017), but in the context of

disease, the capacity of astrocytes to continue such functions is

decreased (Liddelow et al., 2017). Additionally, due to loss of synaptic

density early in AD (Hong et al., 2016), it is likely that astrocytes play a

major role propagating disease progression. Would targeting astro-

cytes to produce more synaptogenic factors, like glypicans,

thrombospondins, neuroligins, hevin/sparc, and chordin‐like 1, allevi-

ate synaptic and memory loss in patients? Or would such efforts cause

an imbalance in neuron/synapse compliments leading to additional

complications like epilepsy?

In contrast to neurons in the peripheral nervous system, CNS neu-

rons are not maintained by exogenous delivery of target‐derived neu-

rotrophic factors following axotomy (Ernfors, Lee, Kucera, & Jaenisch,

1994; Farinas, Jones, Backus, Wang, & Reichardt, 1994). Although

reactive astrocytes present in regions of neurodegeneration in AD

patient post‐mortem tissues are known to secrete a potent neurotoxin

(Liddelow et al., 2017), this toxicity is not due to a lack of astrocyte‐

derived neurotrophins. As such, it seems unlikely that simply adding

more trophic support will be sufficient to maintain neuronal numbers

(although this may be different at different stages of disease). As such,

future pharmaceuticals targeting astrocyte–neuron viability will likely

be more effective if they block secretion of toxic factors from astro-

cytes or receptor binding/uptake into neurons.
1.3.2 | Neuroinflammation

Inflammation is the body's immune response that drives self‐

protection. It both removes harmful stimuli and begins the healing pro-

cess. Infection, traumatic injury, and disease that damage tissue are

unable to heal without an inflammatory response. However, we also

know that inflammation can be a major contributor to cognitive

decline and neurodegeneration. In most cases, it is apparent that the

problem with inflammation is not how often it starts but how often

it fails to subside (Nathan & Ding, 2010). It is therefore not the pres-

ence of inflammation that is a likely initiator/progressor of AD but

non‐resolving inflammation that is causing most problems.

AD pathology is overwhelmingly characterized by such detrimen-

tal chronic, non‐resolving inflammation. Resident microglial cells and

infiltrating peripheral immune cells, like macrophages, primarily drive

this inflammation (Heneka et al., 2015; Zenaro et al., 2015). More

recently, the involvement of inflammation‐induced reactive astrocytes

is also gaining interest (Liddelow et al., 2017; Shi et al., 2017;

Zamanian et al., 2012). Multiple lines of communication exist between

the nervous and immune system cells, and dysregulation of this com-

munication represents a fundamental principle underlying neuroin-

flammation. Immune cell‐derived inflammatory molecules are critical

for the regulation of host responses to inflammation—an important

part of wound healing and repair. In a chronic setting, however, this

maintained state of inflammation inside the CNS correlates (perhaps

initiates?) with neurodegenerative diseases like AD. So how would

one target inflammation with pharmacotherapeutics?

In the field of multiple sclerosis, much effort has been placed in

developing anti‐inflammatory agents to help alleviate symptoms and

progression for patients. Immunomodulatory drugs have beneficial

properties (e.g., fingolimod and laquinimod), which exert effects by

targeting peripheral immune cells and reactive astrocytes—indicating

that their modulation may be a promising therapeutic option (Bruck

et al., 2012; Choi et al., 2011). But care must be taken. TNF‐α blockers

have been shown to have a relatively safe profile, but non‐selective

inhibitory drugs of TNF‐α in multiple sclerosis are contradictory in

their effects. The earliest investigation of anti‐TNF‐α therapies in

demyelinating mouse models reported beneficial anti‐inflammatory

effects. As a result, clinical trials of lenercept (van Oosten et al.,

1996) and infliximab lenercept (Lenercept MS Study Group and Uni-

versity of British Columbia MS/MRI Analysis Group, 1999) were

rushed to human clinical trials—and caused a paradoxical increase in

disease activity. In addition, dangerous side effects, including

increased risk of secondary infection, T‐cell lymphoma, congestive

heart failure, lupus‐like syndromes, diabetes mellitus, psoriasis, and

myasthenia gravis (muscle weakness), among others, were reported

(Bosch, Saiz et al., 2011; British Thoroacic Society Standards of Care

Committee, 2005; Bruzzese et al., 2015; Ramos‐Casals et al., 2007;

Strangfeld & Listing, 2006). So is anti‐inflammatory therapy a cross

too dangerous to bear?

The very first suspicion that anti‐inflammatory drugs may

decrease risk of AD was from the observation that people with rheu-

matoid arthritis on anti‐inflammatory therapy had an unexpectedly

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2407
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low prevalence of dementia (McGeer, McGeer, Rogers, & Sibley,

1990). While extensive laboratory and epidemiological studies have

also suggested that anti‐inflammatory medications can defer or pre-

vent AD occurrence, there remain several studies that do not corrob-

orate these findings. On the whole, however, it seems anti‐

inflammatory therapies that target chronic, non‐resolving inflamma-

tion are beneficial (see Wang et al., 2015 for meta‐analysis). So why

this disconnect, and why have no blockbuster anti‐AD drugs hit the

market? This may be partially due to low penetrance of most anti‐

inflammatory drugs across the blood–brain barrier (BBB) into the

CNS. It may also be a consequence of therapeutics unable to discern

between new acute (helpful) inflammation compared with old chronic

(harmful) inflammation already present in the brain. An ideal anti‐

inflammatory treatment would be both a CNS penetrant and suffi-

ciently specific to target only that inflammatory response (be it

immune cells or astrocytes) that is driving degeneration and dementia.

As immune cells are primed to respond rapidly to insult and inflamma-

tion, and resolve almost as quickly upon removal of the initiating path-

ogen, more successful therapies in the future may instead target

chronic astrocyte inflammatory responses. It may be that the slow‐

to‐respond and chronically reactive astrocytes prove a better target

for specific astrocyte anti‐inflammatory therapeutics.
1.3.3 | BBB maintenance

Astrocytes, although not involved in the formation of the BBB

(instead, this is initiated by Wnt/β‐catenin signalling and pericytes;

Daneman et al., 2009; Daneman et al., 2010; Daneman, Zhou, Kebede,

& Barres, 2010), are intimately involved in its normal regulation and

functioning. Many studies have implicated cerebrovascular disorders

with AD—suggesting an important role of the blood vasculature in

the initiation and progression of the disease (Farkas & Luiten, 2001;

Viswanathan & Greenberg, 2011; see also de la Torre, 2004 and

Jellinger, 2008 for clinical review). In addition, there is the complica-

tion of normal age‐related deterioration of the BBB (Montagne et al.,

2015), in much the same way that there are ageing changes in the

astrocyte transcriptome that drives them to a pro‐inflammatory reac-

tive state (Boisvert et al., 2018; Clarke et al., 2018). This makes it dif-

ficult to discern the causative or correlative role of barrier breakdown

in the context of AD.

The deposition of Aβ (Carrano et al., 2011; Roher et al., 2003) and

tau (Forman et al., 2005; Vidal et al., 2000) in the cerebral vasculature

appears to drive a pro‐inflammatory environment, setting up a positive

feedback look leading to greater cytotoxic events and barrier perme-

ability. In validation of these hypotheses, depletion of tau in

rTg4510 tauopathy mice decreases extravasation of IgG, indicative

of a less permeable vascular barrier in the brain (Blair et al., 2015). This

suggests barrier integrity can be maintained/revived by mediating

levels of extracellular AD pathological proteins. As microglia and astro-

cytes are the major phagocytes in the brain, it is likely that these cells

are clearing such debris during disease. But what happens to their

phagocytic ability during disease?
Microglia, along with astrocytes, are known to localize with amy-

loid plaques in the brains of AD patients, and it has been shown that

amyloid can stimulate microglia to phagocytose these protein deposits

(Bard et al., 2000; Schenk et al., 1999). Similarly, blocking microglial

phagocytosis of amyloid causes an increase in plaque load in brains

of amyloidogenic human APP mice (Wyss‐Coray et al., 2001), which

have human APP Swedish double mutations as well as the London

(V717F) mutation that result in elevated levels of Aβ, plaque deposi-

tion, and gliosis (Mucke et al., 2000). Closer inspection of these results

shows that experiments that blocked microglial phagocytosis were

accompanied by an increase in expression of the complement compo-

nent C3 (recently shown to be highly expressed by neurotoxic reactive

astrocytes; Liddelow et al., 2017). What connections therefore exist

between microglial removal of pathogenic proteins, astrocyte activa-

tion, and BBB permeability?

As stated above, astrocytes are not involved in the formation of

the BBB (Daneman et al., 2009) but are intimately involved in its main-

tenance and restoration following insult from injury and in disease.

The astrocyte endfeet that encapsulate blood vessels form a second-

ary barrier between the periphery and the CNS termed the “glia

limitans” (see Engelhardt & Coisne, 2011; Verkhratsky, Nedergaard,

& Hertz, 2015). It is also these endfeet with high levels of the water

channel aquaporin 4 (AQP4) that mediate glymphatic drainage of toxic

metabolites out of the CNS during sleep (Iliff et al., 2013). As there is

impairment of these paravascular clearance pathways in both normal

ageing (Kress et al., 2014) and in disease (Peng et al., 2016; Weller,

Subash, Preston, Mazanti, & Carare, 2008), the targeting of such struc-

tures may indeed prove beneficial in removal of AD pathogenic pro-

teins. In this way, one would not need to target phagocytic function

of cells per se but instead could improve passive drainage of such mol-

ecules out of the brain through the glymphatic system.
2 | CONCLUSIONS

There are currently ~5.5 million Americans living with AD with a cor-

responding healthcare cost of around 259 billion US dollars. Over 16

million Americans are expected to develop AD by 2050 with a corre-

sponding estimated healthcare cost of over 1 trillion dollars

(Alzheimer's Association, 2017). Current FDA‐approved drugs provide

modest symptomatic relief for AD patients. Could this be because glial

populations are not being accounted for, even though they respond to

these drugs? Could taking astrocyte modulation into account enhance

pharmacological action in neurons? Systematic review of clinical trials

reveals AChEI treatment is modestly effective compared to placebo

groups (Lanctôt et al., 2003; Zhang & Neubert, 2011). Additionally,

30–40% of AD patients do not respond to AChEI treatment

(McGleenon, Dynan, & Passmore, 1999). The same is true of any cur-

rent AD drug class under investigation. While headlines in the press

bemoan the failure of drugs almost every month, we are learning more

and more about this devastating disease.

With increasing age as the primary risk factor for AD development

and a steadily growing ageing world population, a greater
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understanding of AD aetiology and pathogenesis is imperative in order

to help alleviate the physical, emotional, and financial burden of this

devastating disease on patients and their families. Our understanding

of the non‐neuronal contributions to chronic neurodegenerative dis-

eases is leaving its infancy and entering adolescence—there is much

upheaval and excitement to come.

2.1 | Nomenclature of target and ligands

Key protein targets and ligands in this article are hyperlinked to corre-

sponding entries in http://www.guidetopharmacology.org, the com-

mon portal for data from the IUPHAR/BPS Guide to

PHARMACOLOGY (Harding et al., 2018), and are permanently

achieved in the Concise Guide to PHARMACOLOGY2017/2018 (Alex-

ander, Christopoulos, et al., 2017; Alexander, Fabbro, et al., 2017; Alex-

ander, Kelly, et al., 2017a, b, c; Alexander, Peters, et al., 2017).
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