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Systemic lupus erythematous (SLE) is a heterogeneous autoimmune disease in which out-

comes vary among different racial groups. Here, we aim to identify SLE subgroups within a

multiethnic cohort using an unsupervised clustering approach based on the American College

of Rheumatology (ACR) classification criteria. We identify three patient clusters that vary

according to disease severity. Methylation association analysis identifies a set of 256 dif-

ferentially methylated CpGs across clusters, including 101 CpGs in genes in the Type I

Interferon pathway, and we validate these associations in an external cohort. A cis-

methylation quantitative trait loci analysis identifies 744 significant CpG-SNP pairs. The

methylation signature is enriched for ethnic-associated CpGs suggesting that genetic and

non-genetic factors may drive outcomes and ethnic-associated methylation differences. Our

computational approach highlights molecular differences associated with clusters rather than

single outcome measures. This work demonstrates the utility of applying integrative methods

to address clinical heterogeneity in multifactorial multi-ethnic disease settings.
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Systemic lupus erythematosus (SLE) is a multifactorial
autoimmune disease with heterogeneous manifestations
that encompasses a wide range of disease severity. Complex

diseases such as SLE involve a dynamic interplay between
molecular processes, many of which are unknown. Long-term
outcomes for individual patients are therefore difficult to predict,
as is the scope of organ system involvement. While some patients
have aggressive disease progression, others do not accrue sig-
nificant damage within 5 years of SLE diagnosis1–4. We know
little about why an affected individual might develop a particular
SLE phenotype. Furthermore, a patient can be classified as having
SLE if she or he fulfills any four of the 11 American College of
Rheumatology (ACR) classification criteria5, with resultant
extensive disease heterogeneity. In recent years, significant effort
has been applied to better sub-classify SLE, not only to predict
disease outcomes but also inform specific mechanistic pathways
that could be strategically targeted according to subtype6–8.

SLE disease progression and outcomes vary significantly among
different racial/ethnic groups9–11. Patients from non-European
populations, such as Hispanics, African Americans, and Asians,
develop SLE at a younger age and experience worse disease mani-
festations than patients of European descent. Even after decades of
basic research and public health initiatives these health disparities
remain relatively unchanged. Factors that underlie these disparities
are elusive and likely derive in part from complex interactions
between genetic and environmental factors, which may in part
originate from social inequities. However, the majority of molecular
studies to date have been carried out in European populations.

These is evidence that both genetics and DNA methylation
play a role in SLE outcomes. Lupus nephritis, a severe outcome of
lupus that drives disease mortality, was found to be significantly
correlated with genetic variants in ITGAM, TNFSF4, APOL1,
PDGFRA, and SLC5A11, among others. The HLA-DR2 and HLA-
DR3 alleles have also been associated with susceptibility and
autoantibody production in lupus12–15. Overall, hypomethylation
of interferon-responsive genes has been associated with higher
disease activity and renal disease, as well as production of auto-
antibodies16–18. For example, differentially methylated CpGs in
TNK2, DUSP5, MAN1C1, PLEKHA1, IRF7, HIF3A, IFI44, and
PRR4 have been associated with lupus nephritis18–20. Differen-
tially methylated CpGs in IFIT1, IFI44L, MX1, RSAD2, OAS1,
EIF2AK2, PARP9/DTX3L, and RABGAP1L have been associated
with production of autoantibodies16,21,22. However, these studies
have been performed largely in patients of European descent.

While numerous previous studies focused on either the genetics
or epigenetics of SLE, a multi-omics approach coupled with deep
clinical phenotyping may better elucidate the molecular basis of
disease heterogeneity. By integrating different layers of molecular
and clinical data, several studies have provided insight into
mechanisms of complex disease such as Alzheimer’s disease23–25,
inflammatory bowel disease26, cancer27,28, and rheumatoid
arthritis29–32. In this work, we initially apply unsupervised clus-
tering of ACR classification criteria for SLE to define disease
subtypes among a diverse multi-ethnic cohort of SLE patients. We
then develop and apply an integrative approach leveraging human
genetics and DNA methylation data to elucidate differences
between these disease subtypes. We find 256 differentially methy-
lated CpGs that varied significantly according to subtype, of which
61 were under proximal genetic control (Fig. 1).

Results
Clinical clustering identifies distinct subtypes of SLE. Clinical
characteristics of the 333 patients examined from the UCSF
California Lupus Epidemiology Study (CLUES) cohort are pre-
sented in Supplementary Table 1. We first stratified SLE patients

into clusters based on ACR classification criteria and sub criteria
using an unsupervised clustering approach. Briefly, we first
applied multiple correspondence analysis (MCA) and then per-
formed K-means clustering on the top two components chosen
by a bootstrap resampling strategy (see Methods). Three clusters
were identified. The clusters are labelled M (mild), S1 (severe 1)
and S2 (severe 2; Fig. 2a, b). Cluster M was comprised of 101
patients (30.3%) and was characterized by a high prevalence of
malar rash, photosensitivity, arthritis, and serositis, but lower
prevalence of hematologic manifestations, lupus nephritis, and
serologic manifestations (p < 0.001). Cluster S1 was comprised of
154 patients (46.2%) and was characterized by higher prevalence
of lupus nephritis and anti-dsDNA autoantibody positivity (p <
0.001). Cluster S2 was comprised of 78 patients (28.8%) and was
the most severe subtype, with a high prevalence of lupus
nephritis, autoantibody production (anti-dsDNA, anti-Sm, anti-
RNP and antiphospholipid antibodies), and internal organ
manifestations, such as hematologic manifestations (Fisher exact
test p < 0.001; Table 1). The Lupus Severity Index33, a validated
scoring system based on the ACR classification criteria, was also
significantly different between the three clusters (ANOVA test p
= 2 × 10−21), with cluster M the least severe, and cluster S2 the
most severe (Fig. 2c).

With respect to ethnicity, we found a significant increase in the
proportion of White patients in cluster M compared to clusters S1
and S2 (Kruskall–Wallis p= 4.76 × 10−4), and a higher propor-
tion of Asian patients in clusters S1 and S2 compared to cluster M
(Kruskall–Wallis p= 1.4 × 10−3; Table 1).

At the time of blood sampling, patients in the more severe
clusters (S1 and S2) had lower levels of complement C3 (ANOVA
p= 1.47 × 10−3), were more likely to be RNP positive (Fisher exact
test p= 3.66 × 10−5) and were more likely to be receiving
mycophenolate (Fisher exact test p= 2.48 × 10−3) and prednisone
(Fisher exact test p= 5.07 × 10−2) than patients in cluster M
(Supplementary Table 2). We also examined complete blood counts
and proportions taken at time of blood draw from all patients and
found a statistically significant decrease in leukocytes (ANOVA p=
3.31 × 10−3), eosinophils (ANOVA p= 3.39 × 10−2) and lympho-
cytes (ANOVA p= 2.84 × 10−2) among the three clusters (Supple-
mentary Table 2). This could represent a marker of disease severity
or a consequence of higher immunosuppressant drug use at the
time of blood draw for patients in the more severe disease clusters.

In a comparison of socioeconomic variables across clinical
clusters, we did not observe a statistically significant difference in
average education level or income between the three clusters
(Supplementary Table 3).

Distinct methylation patterns distinguish clinical clusters. The
clusters identified above, characterized by multiple comorbid
phenotypes, represent a clinically relevant framework to stratify
SLE patients. Using this stratification, we aimed to identify dif-
ferentially methylated CpG sites associated with these clinical
clusters. Using an ANOVA model, we identified 256 CpG sites in
124 genes that were differentially methylated according to clinical
cluster (FDR < 0.1) after adjusting for sex, genetic ancestry prin-
cipal components, cell composition, medications, alcohol use, and
smoking status (Fig. 3a; Supplementary Data 1). A quantile-
quantile plot is shown in Supplementary Figure 1. The observed
versus expected test statistic demonstrates no evidence for infla-
tion of the association tests (inflation factor λ= 0.99).

Upon mapping these 256 cluster-associated CpG sites to genes
and performing pathway analysis, we found significant enrich-
ment of genes associated with Type I interferon signaling,
antiviral responses and inflammatory pathways (gene list
enrichment analysis FDR < 0.01; Table 2).
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In order to functionally classify the cluster-associated CpGs,
we intersected these genomic regions with the Hallmark
Interferon-Alpha Responsive gene set34 since the IFN-alpha
signaling pathway has been previously implicated in SLE
pathology18,35–38. We observed a significant enrichment of
IFN-alpha responsive genes (hypergeometric p < 0.01) with 101
out of the 256 CpGs within this set. Notably, of the 101 IFN-alpha
CpGs, 93 were hypermethylated in cluster M relative to both
cluster S1 and S2. Of these CpGs, 57 were in the promoter region
(TSS200, TSS1500, 5′ UTR), and 36 were in the gene body.
Hypermethylation at the promoter sites suggests a role for
epigenetic silencing in cluster M with respect to S1 and S2 while
gene body hypermethylation suggests gene expression.

Cluster-associated CpGs with the greatest variance (5–11%
methylation variance) across the clusters were in genes IFI44L,
MX1, PARP9, EPSTI1, and PDE7A, all displaying hypermethyla-
tion in cluster M relative to S1 and S2 (Supplementary Data 2).
With the exception of PDE7A, all of these genes are interferon
responsive. PDE7A encodes a phosphodiesterase associated with

T cell activation and IL-2 production39. Differentially methylated
CpGs in IFI44L, MX1, and PARP9 map to the 5-UTR region,
suggesting silencing of these genes. Differentially methylated
CpGs in EPSTI1 and PDE7A are located in the gene body, where
hypermethylation is associated with gene expression.

For each of the 256 CpGs identified above using the ANOVA
test, we then sought to determine which pairwise comparison
(cluster S2 vs M, S2 vs S1, or S1 vs M) contributed to the
significant F-statistic. Using the nestedF method in the Limma R
package40, 247 of the aforementioned associated 256 CpGs were
differentially methylated between clusters S2 and M (FDR p < 0.1;
Supplementary Fig. 2A, Table 3 and Supplementary Table 5). The
most significant CpGs were in the promotor of IFI44L and gene
body of RSAD2, with hypermethylation in cluster S1 versus M.
Comparison of clusters S2 to S1 identified 18 differentially
methylated CpGs (FDR < 0.1; Supplementary Fig 2B, Table 3 and
Supplementary Table 5), with hypermethylation of CpGs in IFI27
and B2M, a component of the MHC1 complex. Comparison of
clusters S1 and M identified 53 differentially methylated CpGs

CLINICAL CLUSTERING

Multiethnic CLUES SLE Cohort

333 patients with phenotypic data

1. MCA on ACR clinical features

2. Unsupervised K-means clustering

3 Stable Clinical Clusters

Severe (S2) cluster (n = 78)Severe (S1) cluster (n = 154)Mild (M) cluster (n = 101)

Malar Rash
Oral Ulcers

Late onset Anti-dsDNA Early-onset Leukopenia Lupus Nephritis
Lymphopenia Myocarditis
Anti-dsDNA Early-onset
Anti-Sm Non-white

Thrombocytopenia

MOLECULAR PROFILING

OMICS INTEGRATION

EXTERNAL VALIDATION

External SLE Validation Cohort (n = 302)

Random forest model trained on study clusters and applied to external validation cohort to generate cluster
assignments

DNA Methylation data acquired using Illumina 450 k (included 158 CpGs from 256 cluster-associated
CpGs)

Validated 132 out of 158 CpGs with correlation > 0.9

Illumina MethylationEPIC BeadChip

Methylation DNA Genotyping

Affymetrix world lat1 genotyping array

Methylation panel across ~850,000 CpGs Genotyping panel across ~817,000 SNPs

HWE p value > 1 × l0–4

MAF > 5% ; CR > 90%
Imputation performed using Minimac3

LD pruned (R2 < 0.8)

Signal intensities background subtracted,
quantile normalized

Filter out CpG sites hybridized to multiple
loci on non-autosomal chromosomes

256 Cluster-associated CpG sites

Univariate linear regression
Identified 256 cluster-associated CpG sites in
124 genomic locations

237 cluster-associated CpGs also associated
with race (FDR < 0.05)

Enrichment of sites in active chromatin states

Linear model adjusting for sex, age, cell count,
alcohol use, smoking status, genetic ancestry,
and medication use

Identified 744 meQTL associations with 61
unique CpGs and 397 SNPs

744 cis meQTL associations

Non-whiteAnti-Sm
Lupus Nephritis

White

Fig. 1 Integrative analysis pipeline. An overview of the omics data integration strategy used to characterize clinical clusters identified by K-means
clustering. MCA=Multiple Component Analysis, HWE=Hardy-Weinberg Equilibrium, MAF=minor allele frequency, LD= linkage disequilibrium, FDR=
false discovery rate, meQTL= cis-methylation quantitative trait loci
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(FDR < 0.1; Supplementary Fig. 2C; Table 3 and Supplementary
Table 5). The percent variance between clinical clusters explained
by CpG methylation varied from 0.9% for cg23002431 (COPA
gene body) to 21% for cg00959259 (PARP 5’UTR).

Validation of cluster-specific methylation profiles. To deter-
mine whether the methylation signature associated with the three
clinical clusters identified was reproducible, we applied our clus-
tering method to a previously published independent cohort of
302 female SLE patients of European descent16. This cohort has a
lower lupus severity index (6.15 ± 1.42) compared to the CLUES
cohort (6.85 ± 1.63; Student’s t test p < 0.001), however this dif-
ference is relatively small and not clinically significant. In order to
identify methylation associations in this validation cohort, we first
assigned a cluster label (M, S1, or S2) to each patient using the
study cohort as a reference. Since the clusters in the study cohort
were discovered using an unsupervised approach, we first trained a
random forest model on the CLUES data with the ACR features
as input. Model parameters were optimized by minimizing the

out-of-bag error (Supplementar Fig. 3). The model achieved a
minimum out-of-bag error of 12.8%. We then applied this model
to the validation cohort of SLE patients of European descent and
determined a cluster label for each sample. Clinical characteristics
of subjects in each cluster in the validation cohort are presented in
Supplementary Table 4. In comparison to the CLUES cohort
where the majority of subjects were in cluster S1, the majority in
the validation cohort were in cluster M, reflecting the racial dif-
ferences between the cohorts.

To determine whether the methylation patterns associated with
each cluster were robust and reproducible, we evaluated methylation
differences in the independent cohort of 302 female SLE patients of
European descent as described above16. Since the validation dataset
was obtained using the Illumina 450k BeadChip, we restricted these
analyses to the 158 cluster-associated CpGs in the CLUES cohort
that were also on the 450k array. Of these 158 CpGs, 132 (84%)
were significantly associated with cluster in the validation dataset
(FDR < 0.1; Table 3). We observed a strong correlation (r > 0.9)
between differences in methylation beta values for the CLUES
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cohort and validation set for all three pairwise comparisons (cluster
S1 vs. M, S2 vs. S1, and S2 vs. M; Table 3, Fig. 4).

Active chromatin states in cluster-associated CpGs. In order to
further characterize the epigenetic landscape of the cluster-
associated CpGs, we examined CpG enrichment in genomic
regions classified according to specific chromatin states based on
the Epigenome Roadmap 15 state model41. Results for 13 per-
ipheral blood cell types are summarized in Supplementary Fig 4.
We found significant depletion (Fisher’s exact FDR < 0.01; OR <
0.5) of cluster-associated CpGs in quiescent regions in 12 of the
13 cell types, and significant enrichment (FDR < 0.01; OR > 2) in
enhancers and regions flanking active transcriptional start sites in
all cell types. We also observed significant enrichment (Fisher’s
exact FDR < 0.01; OR > 2) of H3K4me3, H3K4me1, and H3K27ac
histone marks specific for active enhancers in all peripheral blood
cell types (Supplementary Fig 5).

Epigenetic annotation of differentially methylated CpGs in
IFI44L land in enhancers and active transcription sites in
peripheral blood primary B cells, T helper memory cells, Naïve
T cells, Th17 cells, T memory cells and T regs, but not in
regulatory or transcription sites in neutrophils or NK cells.
Differentially methylated CpGs in MX1, PARP9, EPSTI1, and
PDE7A are located in enhancers and transcription sites in most
peripheral immune cell subtypes.

meQTL loci controlling cluster-associated CpGs. We sought to
understand the sources of methylation differences in the
clinically-defined clusters. Therefore, we used paired genotype
data to investigate genetic drivers of methylation differences.
Specifically, we conducted a methylation quantitative trait loci

analysis (meQTL) to determine which cluster-associated CpGs
were under proximal genetic control (distance between SNP and
CpG < 1Mb). Genetic data was first imputed and LD-pruned
(r2 < 0.8). After adjusting for population structure, sex, age, cell
type composition, medication use, smoking status, and alcohol
consumption, we found 744 significant cis meQTL associations
(FDR < 0.05; Fig. 3b). These involved 61 unique CpGs in 41
genes, and 397 SNPs in 90 genes (Supplementary Data 3).

Of the 744 significant cis meQTL associations, 91 meQTLs in
19 unique CpGs were in interferon-alpha or interferon-gamma
responsive genes. Of these, the greatest number of meQTL loci
were in EPSTI1 (12 SNPs), PARP14 (nine SNPs), and PARP15 (8
SNPs) for CpGs in interferon-alpha responsive genes (Supple-
mentary Data 3). We found 39 meQTL associations involving
CpG sites in the promoter region. Notably, we found 21
associations in CpGs in PARP14, of which 20 were in the
promoter region under the control of SNPs in PARP14, PARP15,
and DIRC2. We also found CpGs in the promoter region of OAS3
(n= 2) under the control of SNPs in LHX5-AS1, and one CpG in
USP18 under the genetic control of SNPs in LINC01634.

Of the non-interferon-responsive CpGs, we found 20 genetic
variants that controlled methylation of cg07259759 located in the
gene body of USP35, a ubiquitin specific peptidase42 (methylation
variance 21–25%). Ten of these 20 genetic variants were found in
an intron of GAB2, a tyrosine kinase adaptor that is primarily
upregulated in activated innate immune cells43–45. We also found
43 genetic variants in HLA-F, a MHC-Ib minor allele involved
in NK cell self-recognition46, which controlled methylation at
four CpG sites in the gene body of HLA-F. Fifteen CpGs were
located in the promoter or 5’UTR region, with the largest
methylation variance observed for cg04738877 in the promoter

Table 1 Summary of significant clinical and demographic variables across clusters

Cluster

M (N= 101) S1 (N= 154) S2 (N= 78) P value FDR

ACR criteria (%)
Malar rash 68.3 20.8 62.8 1.22E-15 4.87E-15
Discoid rash 14.9 5.2 20.5 1.41E-03 1.88E-03
Oral ulcers 70.3 26.6 48.7 4.72E-11 1.18E-10
Arthritis 93.1 66.2 88.5 1.14E-07 2.53E-07
Pleuritis 48.0 17.5 38.5 7.41E-07 1.48E-06
Pericarditis 13.0 13.6 35.9 4.71E-05 7.24E-05
Seizure 8.0 4.5 9.0 0.354 0.354
Psychosis 5.0 0.6 9.0 6.79E-03 7.54E-03
anti-dsDNA antibodies 35.6 76.0 92.3 9.79E-17 4.90E-16
anti-Smith antibodies 9.9 27.9 57.7 2.64E-11 7.55E-11
ANA positivity 89.1 98.7 98.7 3.20E-04 4.57E-04
Hemolytic anemia 1.0 8.5 15.4 1.65E-03 2.07E-03
Leukopenia 4.0 11.7 65.4 1.34E-25 2.68E-24
Lymphopenia 19.8 16.9 76.9 1.67E-21 1.67E-20
Thrombocytopenia 8.9 13.0 34.6 6.82E-06 1.24E-05
Renal 15.8 62.3 57.7 3.32E-13 1.11E-12
Photosensitivity 73.3 18.2 41.0 1.91E-17 1.27E-16
APLA 25.7 32.5 42.3 0.0641 0.0675

Ethnicity
White 48.0 22.7 16.7 4.76E-04 1.90E-03
Hispanic 18.0 22.1 30.8 0.115 0.23
African–American 11.0 9.7 12.8 0.642 0.64
Asian 20.0 44.8 37.2 1.43E-03 4.30E-03
Other 3.0 0.6 2.6 2.57E-05 1.29E-04
Lupus Severity Index (SD) 5.6 (1.37) 7.39 (1.43) 7.41 (1.42) 2.93E-22 2.05E-21
SLEDAI Score (SD) 2.43 (2.94) 2.82 (2.9) 3.94 (3.44) 3.58E-03 1.08E-02

ACR American college of Rheumatology, APL antiphospholipid antibodies, FDR false discovery rate, SLEDAI SLE disease activity index
False Discovery Rate (FDR) p-values were calculated for Kruskall–Wallis (continuous variables) or Fisher’s exact test (binary variables)
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region of GALC, under the control of SNPs in introns of the
same gene.

Although we considered all SNPs within a 1Mb window
around each CpG, the proportion of significant meQTL
associations decreased as the distance between SNPs and CpGs
increased (Supplementary Fig. 6A and B). This suggests that
genetically determined CpG methylation was typically driven by
proximal genetic variation, rather than distal effects.

Epigenetic mediation of genetic association with clusters. One
challenge of interpreting the methylation associations with clus-
ters is that many methylation differences may represent a con-
sequence of clinical differences between clusters rather than
causal mediators. In order to identify which CpGs may mediate
genetic associations with clusters and reveal novel biology, we
employed an integrative causal inference method47.

Briefly, this method uses conditional probabilities to evaluate a
causal relationship between a factor (genotype), a potential
mediator (CpG methylation), and an outcome (clinical cluster).

First, from the list of 744 meQTLs identified, we selected the
SNPs that were significantly associated with cluster (FDR < 0.05).
For these meQTL associations, we identified the subset where
methylation appears to mediate the genotype-cluster association

using the causal inference test (CIT). This yielded 24 meQTLs
with 21 SNPs (FDR < 0.05; Supplementary Table 5). Notably from
these, we found 6 significant associations between SNPs in GAB2
and CpGs in USP35. We also found evidence for methylation
mediation of SNPs in HLA-F. Figure 5 provides an example of
one of these associations between a SNP in GAB2 and CpG in
USP35.

Ethnicity-associated differentially methylated CpGs. As some of
the methylation differences in the clinically-defined clusters could
be explained by genetic variation in the meQTL analysis, we
explored the effect of ethnicity, after adjusting for genetic factors.
Previous work has identified patterns of differential methylation
across ethnic groups due to both ancestral genetic variation and
environmental influences48. As non-White ethnicity is associated
with worse outcomes in SLE, we sought to determine whether the
differentially methylated CpGs across clusters were enriched for
ethnicity-associated CpGs, after adjusting for genetic ancestry. Of
the 256 cluster-associated CpGs, we identified 237 CpGs that
were associated with ethnicity (FDR < 0.05) after adjusting for
sex, the top three genetic ancestry principal components, cell
composition, medications, alcohol use, and smoking status. A
permutation analysis was conducted by randomly permuting
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ethnicity 1000 times and testing for association with ethnicity.
Figure 6a displays the density of ethnicity-associated CpGs in
1000 random samples. This analysis revealed a significant (p <
0.001) enrichment of ethnicity-associated CpGs in the cluster-
associated methylation signature. Results and data are available as
an RShiny Application for use in future research: http://
comphealth.ucsf.edu/sle_clustering/.

Discussion
In the present study, we developed a stepwise multi-omics
approach for identifying SLE patient subtypes defined by
clinically-relevant phenotypes and molecular mechanisms among
a multi-ethnic cohort. We report three lupus clinical subtypes
defined by the ACR classification criteria that vary according to
disease severity. We also show that patterns of differential
methylation at specific CpGs are associated with the clinical
subtypes. A subset of these CpGs are under genetic control,
however the majority display a strong association with ethnicity
after adjusting for genetic ancestry, suggesting possible molecular
mediators of the ethnic-effect underlying lupus outcomes.

Unlike previous studies that have largely studied SLE patients
of European genetic ancestry, we studied a cohort or patients of
White, African-American, Asian, and Hispanic ethnicity. Since

SLE severity is known to vary widely between racial and ethnic
groups, analysis of a large multiethnic cohort is crucial for
understanding the genetic and non-genetic determinants of this
ethnic-associated variability.

Unsupervised clustering approaches have been applied widely
to high dimensional omics datasets with the aim of deriving
meaningful clusters characterized by a small set of molecular
features6,49,50. By translating this dimensionality reduction tech-
nique to the ACR clinical features in SLE, we identified three
clinical subtypes each characterized by specific ACR features. Due
to the strong association of DNA methylation with genetic var-
iation, unsupervised clustering of the methylation data revealed
population structure rather than lupus-relevant clinical differ-
ences. For these reasons, we did not report DNA methylation
clustering and rather chose to define subtypes by ACR criteria.
Since this is an ongoing cohort, with a larger sample size, we may
be able to define methylation-based clusters in each racial
group separately, minimizing the effect of genetic structure
confounding.

Importantly, the clusters defined in this study are consistent
with previous epidemiological studies describing the correlation
of multiple sub-phenotypes of SLE, such as the correlation of SLE
skin manifestations with arthritis, serositis with the lack of

Table 2 Significantly enriched pathways in cluster-associated CpGs

Name Source P value FDR B&H Genes from Input Genes in Annotation

Interferon signaling REACTOME 9.54E-32 8.19E-29 29 202
Interferon alpha/beta signaling REACTOME 2.06E-30 8.84E-28 21 69
Cytokine signaling in immune system REACTOME 2.26E-20 6.46E-18 34 763
Interferon gamma signaling REACTOME 1.04E-15 2.23E-13 14 94
Influenza A KEGG 3.35E-13 5.76E-11 15 173
Herpes simplex infection KEGG 8.98E-13 1.29E-10 15 185
Measles KEGG 1.09E-09 1.33E-07 11 134
ISG15 antiviral mechanism REACTOME 1.67E-09 1.59E-07 9 77
Antiviral mechanism by IFN-stimulated genes REACTOME 1.67E-09 1.59E-07 9 77
Hepatitis C KEGG 1.33E-08 1.14E-06 10 131
RIG-I/MDA5 mediated induction of IFN-alpha/beta pathways REACTOME 7.27E-08 5.68E-06 8 84
Negative regulators of RIG-I/MDA5 signaling REACTOME 1.13E-07 8.08E-06 6 36
TRAF3-dependent IRF activation pathway REACTOME 3.00E-06 1.87E-04 4 16
TRAF6 mediated IRF7 activation REACTOME 3.05E-06 1.87E-04 5 35
RIG-I-like receptor signaling pathway KEGG 6.35E-06 3.64E-04 6 70
Antigen presentation: folding, assembly and peptide loading of
class I MHC

REACTOME 1.99E-05 1.01E-03 4 25

TRAF6 mediated NF-kB activation REACTOME 1.99E-05 1.01E-03 4 25
Viral carcinogenesis KEGG 5.15E-05 2.46E-03 8 201
Endosomal/vacuolar pathway REACTOME 5.81E-05 2.62E-03 3 12
NF-kB activation through FADD/RIP-1 pathway mediated by
caspase-8 and -10

REACTOME 7.51E-05 3.23E-03 3 13

NOD-like receptor signaling pathway KEGG 1.26E-04 5.14E-03 7 170
Nicotinamide salvaging REACTOME 2.09E-04 8.17E-03 3 18
ER-Phagosome pathway REACTOME 2.65E-04 9.91E-03 5 87

FDR B&H false discovery rate by Benjamini and Hochberg method
CpGs were mapped to genes using Illumina annotation file, and pathway analysis was performed using ToppFunn92

Table 3 Summary of cluster-wise comparison and validation

Comparison Number of Differentially Methylated CpGs in study cohort
(# CpGs on 450k Chip)

Significant in Validation Set
(FDR < 0.1)

ΔBeta R-squared CLUES vs.
Validation

Cluster S1 vs M 53 (28) 21 0.94
Cluster S2 vs S1 18 (8) 6 0.96
Cluster S2 vs M 247 (122) 105 0.94

Rows indicate individual pairwise comparisons as performed using the nestedF method in Limma
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other end-organ involvement, and anti-dsDNA with lupus
nephritis21,51,52. The milder subtype in this study had a higher
prevalence of participants of White race. This has also been
previously described, as patients with European ancestry have a
higher proportion of arthritis, skin manifestations and serositis
and lower prevalence of lupus nephritis and autoantibody pro-
duction53–55.

By considering clusters defined by multiple phenotypes we
preserve the multifactorial clinical nature of SLE. Training a
random forest model using the cluster assignments as labels
allowed us to apply this clustering scheme to an external dataset
of patients of European descent. After validation in other larger
multi-ethnic cohort, this model may form a clinically useful
stratification method to further study disease heterogeneity
in SLE.

After identifying clinically-relevant patient clusters, we
found a set of 256 CpGs associated with the clusters with
strong enrichment of methylation for genes in the Type I inter-
feron pathway, cytoplasmic viral sensing pathways, and immune
related pathways, with significant enrichment in enhancers
and regions flanking active transcriptional start sites in all per-
ipheral immune cell types. Several studies have implicated tran-
scriptional upregulation and epigenetic regulation of the Type I
interferon pathway in SLE17,19,35–37,56. We and others have
also previously described methylation changes in interferon

responsive genes associated with individual lupus outcomes,
including cutaneous rash57, renal involvement19,20,58 and ser-
ologic manifestations16,22. However, given the striking hetero-
geneity of clinical features in SLE, epigenetic programs associated
with single phenotypes may be less relevant in a clinical setting.
By performing unsupervised clustering on a diverse SLE cohort,
we can study the molecular heterogeneity in clinically-relevant
subtypes driven by multiple SLE outcomes and disease severity.
With this approach we found that severe subtypes, which also
have higher proportions of patients of Asian and Hispanic eth-
nicity, have a higher degree of type I interferon dysregulation. Of
these CpG sites, the greatest methylation variance across the
clusters was in IFI44L, which encodes for Interferon Induced
Protein 44 Like, with progressive hypomethylation from cluster
M to cluster S2. Although the function of IFI44L is unknown,
increased IFI44L expression is a component of the type-1 IFN
response signature and also part of the cellular response to viral
infections59. IFI44L promoter methylation has been proposed as a
blood biomarker for SLE58.

Since genetic variation can have profound effects on DNA
methylation60–62, we also performed an meQTL analysis to
quantify the degree of proximal genetic control of the 256 CpG
signature. Although the cluster-associated CpG set was strongly
enriched for Type 1 IFN genes, only a subset of these Type 1 IFN
CpGs (24%) had meQTL loci, suggesting that environmental
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factors may be contributing more to the epigenetic regulation of
the Type 1 IFN pathway than genetic factors. We found inter-
esting associations between genetic variation and methylation at
CpGs in immune relevant genes, and in 24 meQTL associations
we had evidence of mediation of the genetic association by
methylation at the corresponding CpG. We would like to high-
light variants in HLA-F, PAR14 and GAB2 controlled methylation
sites in USP35. HLA-F is part of the nonclassical HLA-Ib genes,
which are mono- or oligomorphic46. Surface expression of HLA-F
has been demonstrated on activated T, B and NK cells, and serum
IgG autoantibodies against HLA-F have been detected in SLE
patients and correlated with disease activity63–65. PARP14
encodes for poly(ADP-ribose) polymerase (PARP) protein family
14 and is involved in cellular maintenance and cell fate decisions,
such as cell-cycle progression, metabolic pathways and ribosome
biogenesis66. Its role in SLE and autoimmune disease has not
been defined but it has been shown to regulate glycolysis via IL-4
in B lymphocytes67 and to promote survival of cancer cells67–69.
Glycolysis in SLE has been found to directly influence the Th17
cell fate and survival, therefore implicating a potential mechan-
istic role for PARP14 in SLE70.

GAB2 is a member of the GRB2-associated binding protein
(GAB) gene family. These genes act as adapters for transmitting
various signals in response to stimuli through cytokine and
growth factor receptors, and T- and B-cell antigen receptors45.
Among its related pathways is Akt signaling, which is involved in
cell proliferation and autophagy, a process that has been impli-
cated in SLE pathogenesis44,71–73. Variants of GAB2 influenced
methylation marks in the gene body of USP35, which encodes for
a member of the peptidase C19 family of ubiquitin-specific pro-
teases42. This deubiquitinating enzyme has been shown to

mediate the IFN-type I response upon viral infection and it has
been associated with higher IFN-β and IFIT1 gene expression74.
This is relevant to our findings as higher levels of IFN-β have
been associated with SLE75–77. As with all epidemiologic studies,
these results represent hypotheses that will require mechanistic
validation and independent replication.

Variation in methylation can be attributed to genetic and non-
genetic effects. The majority of differentially methylated CpGs
among disease subtypes were not classified as under genetic
control. Although the number of detected meQTL associations is
likely to increase with a larger sample size, it also suggests a
greater role for non-genetic or environmental effects. Since self-
reported race and ethnicity refers to communality in cultural
heritage, language, social practice, traditions, and geopolitical
factors, it may be a proxy for a wide variety of environmental
exposures not easily captured. Since ethnicity plays a role in
differences in lupus severity, we were interested in the association
of ethnicity and our methylation findings, after adjusting for
genetic variation. After adjusting for genetic principal compo-
nents, we found a significant enrichment of self-reported race-
associated CpGs in our 256 CpG signature (p < 0.001). This
suggests that there may be a common set of CpGs that mediates
both SLE clusters and non-genetic differences in race. Although
this might raise concern for confounding by genetic structure, our
analysis revealed a low genomic inflation factor. Furthermore, the
CpGs are biologically relevant in SLE pathogenesis. In addition,
previous work has identified differential methylation between
ethnic groups due to environmental factors that is not fully
explained by genetic ancestry48. It is well known that SLE out-
comes vary according to race, and the causes behind these race
disparities are a source of ongoing debate. We observed
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differences in race across the disease subtypes, with the milder
subtype having a larger representation of White patients.
Therefore, these methylation differences suggests the existence of
molecular mediators of the non-genetic race-related clinical dif-
ferences in SLE outcomes, and may reflect environmental expo-
sures that affect races differentially. Figure 6b displays a model for
the role of race-associated non-genetic factors that control both
methylation of the 256 CpG signature and SLE disease subtypes.

We applied this approach to an external cohort of exclusively
SLE patients of European descent. The clinical clusters were
labelled by applying a random forest model trained on the ori-
ginal CLUES clusters. The greatest number of subjects were
assigned to cluster M. Since cluster M was also enriched for
patients that self-identified as White in the original clusters, we
believe that the clustering model accurately captures the role of
racial differences in lupus severity. We were only able to test 158
of the 256 cluster-associated CpGs in the validation cohort due to
a limited number of overlapping probes. However, we validated
84% of the cluster-associated methylation sites. As we also found
that the majority of cluster-associated CpGs were race-associated
in the CLUES cohort, this suggests that while race plays a role in
DNA methylation, these effects are secondary to the clinical
differences between lupus clusters. As we could not determine the
relative genetic and non-genetic contributions of the methylation
differences, we cannot recreate the race-specific findings we have
described for the CLUES cohort. In general, this suggests that the
subtypes and associated methylation differences we have descri-
bed can be applied to other cohorts.

Our study has likely been limited by the modest sample size, in
particular the small number of African-American SLE patients.
We have also profiled DNA methylation marks in whole blood,
which even after rigorous adjustment methods may be subject to

confounding due to cell composition. Additionally, since
methylation changes may be cell-type specific, our data may be
insensitive to these effects. For example, when comparing clusters
S1 and S2, we were only able to detect 20 differentially methylated
CpGs. However, since clusters S1 and S2 had significantly dif-
ferent rates of lymphopenia and leukopenia, methylation differ-
ences may represent both differences in cell proportion and cell-
type specific epigenetic remodeling that cannot be distinguished
in whole blood data. Additionally, our validation cohort is limited
not only by its ethnic and gender composition, but also since
methylation was measured on a different chip than the present
study. This meant that we were only able to test a subset (158) of
the 256 cluster-associated CpGs in the validation cohort. Ideally,
clustering would be performed separately in each racial group to
account for possible race-specific effects. However, due to the
limited sample size, this was not feasible in the current study.
Future work with larger sample sizes in non-European popula-
tions may help to address this issue.

Strengths of this study include the rich phenotyping data and
adjustments for major confounders, including medications at the
time of blood draw, smoking history, and alcohol consumption,
which are unaccounted for in most epigenome-wide association
studies. This is also the largest cohort including African Amer-
ican, Caucasian, Asian, and Hispanic patients to be profiled for
genome wide DNA methylation and genotyping, which allowed
us to differentiate between genetic and non-genetic effects of race
in SLE outcomes, shedding light on molecular mediators of race
in disease heterogeneity. Future work will include testing these
findings in other multi-ethnic cohorts. Furthermore, it will be of
interest to determine whether these DNA methylation differences
are predictive of future disease activity and severity.

In summary, we have identified three distinct clinical subtypes
of SLE that have distinct patterns of methylation at specific CpG
sites. While previous studies have defined subtypes based on
transcriptomic data6–8, by integrating methylation and genetic
data, the three subtypes identified here may reflect the influence
of both genetic and non-genetic effects. We also identified
potential mediation of genetic association by methylation changes
not previously addressed in SLE. Furthermore, we have demon-
strated the utility of studying a diverse SLE population to inves-
tigate the molecular underpinnings of race differences in SLE
outcomes.

Methods
Subjects and samples. Subjects were participants in the California Lupus Epi-
demiology Study (CLUES), a multi-racial/ethnic cohort of individuals with
physician-confirmed SLE. This study was approved by the Institutional Review
Board of the University of California, San Francisco. All participants signed a
written informed consent to participate in the study. Participants were recruited
from the California Lupus Surveillance Project, a population-based cohort of
individuals with SLE living in San Francisco County from 2007 to 2009 (2, 47).
Additional participants residing in the geographic region were recruited through
local academic and community rheumatology clinics and through existing local
research cohorts.

Study procedures involved an in-person research clinic visit, which included
collection and review of medical records prior to the visit; a history and physical
examination conducted by a physician specializing in lupus; collection of
biospecimens, including peripheral blood for clinical and research purposes; and
completion of a structured interview administered by an experienced research
assistant. All SLE diagnoses were confirmed by study physicians based upon one of
the following definitions: (a) meeting ≥ 4 of the 11 American College of
Rheumatology (ACR) revised criteria for the classification of SLE as defined in
1982 and updated in 19975,78, (b) meeting 3 of the 11 ACR criteria plus a
documented rheumatologist’s diagnosis of SLE, or (c) a confirmed diagnosis of
lupus nephritis, defined as fulfilling the ACR renal classification criterion (>0.5
grams of proteinuria per day or 3+ protein on urine dipstick analysis) or having
evidence of lupus nephritis on kidney biopsy.

DNA methylation assessment. DNA methylation of genomic DNA from per-
ipheral blood mononuclear cells was profiled using the Illumina MethylationEPIC
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BeadChip. This chip assesses the methylation level of ~850,000 CpGs in enhancer
regions, gene bodies, promoters, and CpG islands. All subsequent processing was
done using the R minfi package. Signal intensities were background subtracted
using the minfi noob function and then quantile normalized79,80. Sites with a poor
detection rate (detection p value > 0.05) in more than 5% of the samples (1746 CpG
sites) were removed. Sites predicted to hybridize to multiple loci (44,097 CpG sites)
and sites on non-autosomal chromosomes (19,627 CpG sites) were removed,
resulting in 802,579 probes for analyses.

DNA genotyping. Genotyping for genomic DNA from peripheral blood mono-
nuclear cells was performed using the Affymetrix Axiom Genome-Wide LAT 1
Array. This genotyping array is composed of 817,810 SNP markers across the
genome and was specifically designed to provide maximal coverage for diverse
racial/ethnic populations, including West Africans, Europeans and Native Amer-
icans81. Samples were retained with Dish QC (DQC) ≥ 0.82. SNP genotypes were
first filtered for high-quality cluster differentiation and 95% call rate within batches
using SNPolisher. Additional quality control was performed using PLINK. SNPs
having an overall call rate less than 95% or discordant calls in duplicate samples
were dropped. Samples were dropped for unexpected duplicates in IBD analysis or
mismatched sex between genetics and self-report; for first-degree relatives, one
sample was retained. All samples had at least 95% genotyping and no evidence of
excess heterozygosity (maximum < 2.5*SD). We tested for Hardy-Weinberg Equi-
librium (HWE) and cross-batch association for batch effects using a subset of
subjects that were of European ancestry and negative for double-stranded-DNA
antibodies and renal disease to minimize genetic heterogeneity. SNPs were dropped
if HWE p < 1e-5 or any cross-batch association p < 5e-5.

Genetic data was imputed using the Michigan Imputation Server82 using
Minimac3. Imputation was performed using the 1000 Genomes Phase 3 reference
panel. Following imputation, SNPs with minor allele frequency greater than 5%
were retained, and SNPs with > 5% missing data or evidence of deviation from
Hardy Weinberg equilibrium (p < 1 × 10−4) were removed. SNPs were pruned so
that no two SNPS were in linkage disequilibrium (r2 > 0.8).

Phenotypic clustering analysis. To stratify SLE patients into clinically relevant
clusters, we performed unsupervised clustering on patient phenotypic data. Cluster
analysis was performed on the American College of Rheumatology (ACR) criteria
and sub criteria. Data were dichotomized to represent absence or presence of each
criterion. Multiple correspondence analysis was performed with the PCAmixdata R
package83. The top two MCA dimensions were retained as selected by the k-fold
cross validation scheme implemented in the missMDA R package84,85 (Figure
S7A). The number of clusters, k, was chosen by maximizing cluster stability
measured by Jaccard similarity using a bootstrap resampling based method.
Maximum cluster stability was achieved with k= 3 and each cluster had a Jaccard
mean stability score greater than 0.8286 (Fig. S7B).

Medication use adjustment. Since medication use can modify CpG methylation
at certain sites, we aimed to include medications prescribed at the time of blood
sampling as covariates in statistical analyses. We performed principal component
analysis (PCA) on a dichotomized matrix of current medications at the time of
blood sampling for each patient. The top three PCs were chosen using a three-fold
cross validation scheme implemented in the missMDA R package84,85 and included
as covariates in subsequent statistical models.

Differential methylation analysis. In order to account for possible confounding
due to cell type heterogeneity, we applied the ReFACTor algorithm87 implemented
in Glint88 to infer peripheral blood cell composition. To identify CpG sites asso-
ciated with clinical clusters, a linear model adjusted for sex, age, cell count esti-
mates, alcohol use, smoking status, genetic ancestry components, and the top three
medication principal components was fit using the nestedF mode in the Limma R
package40. P values were adjusted using the Benjamini Hochberg procedure. All
analyses were performed using R version 3.4.289.

Chromatin state enrichment. 15-state chromatin model epigenome data for all
human peripheral blood cell types was accessed via the NIH Roadmap Epige-
nomics Consortium41. All CpGs on the probe-set were assigned a chromatin state.
For each of the 15 chromatin states, a fold statistic was computed using a Fisher’s
exact test for enrichment of the chromatin state within the set of cluster-associated
CpGs relative to all the CpGs in the probe-set. This process was repeated for
H3K4me3, H3K4me1, and H3K27ac ChIP seq peaks from the NIH Roadmap
Epigenomics Consortium.

CpG race enrichment adjusted for genetic ancestry. Enrichment of race-
associated CpGs in the list of differentially methylated CpGs was determined via
a permutation method. Briefly, the total number of cluster-associated CpGs
(Ncluster) was obtained for a specified FDR as above. Then, a null set was created
by randomly permuting the race labels 1000 times. For each permutation, from
the set of cluster-associated CpGs, we computed the number of CpGs associated
with the permutated race labels by fitting a linear model for each CpG adjusting

for sex, age, cell count estimates, alcohol use, smoking status, the top three
genetic principal components, and the top three medication principal compo-
nents. We then found the number of race associated CpGs in the set of cluster-
associated CpGs (Nrace) using the same linear model as the null set. We defined
an enrichment statistic as the proportion Nrace/Ncluster relative to the mean of the
null distribution.

Statistical meQTL analyses. Since the Illumina BeadChip EPIC platform is
known to cross-react with several probes if the region contains a SNP90, we first
removed all probes with SNPs. meQTL analysis was then performed by fitting a
linear model adjusted for sex, age, cell count estimates, alcohol use, smoking status,
the top three genetic principal components, and the top three medication principal
components using the Matrix eQTL R package91.

Causal inference test. For each meQTL association, the genotype (G)–methylation
(M)–cluster (Y) relationships were assessed using the Causal Inference Test (CIT).
To establish a mediation relationship in which genotype acts on the clusters through
methylation, four conditions must be satisfied: (1) G and Y are associated, (2) G is
associated with M after adjusting for Y, (3) M is associated with Y after adjusting for
G, and (4) G is independent of Y after adjusting for M. The CIT p-value is defined as
the maximum of the four component test p-values.

External validation. A random forest model was trained on the cluster labels from
the study data and cross validation was used to optimize parameters. Methylation
data and ACR criteria were obtained from a previously published SLE cohort12. All
ACR criteria were dichotomized in a manner identical to the study data. The
random forest model was then applied to the external validation data to generate
cluster labels. CpGs that were differentially methylated in the study data were
validated using a linear model adjusted for cell composition, genetic principal
components, sex, and age. Smoking history was negative for all patients in the
validation cohort. Alcohol use and medication principal components were not
included in the linear model since these data were not available.

Data availability
DNA methylation, genotype and phenotypic data that support the findings of this study
have been deposited in DbGap with the primary accession code of phs001850.v1.p1. Data
is available through an application to a data access committee

Code availability
All custom code is available at github.com/ishanparanjpe/lupus_clustering.
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