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Abstract
Purpose—Effective, consistent, and complication-free treat-
ment of cerebral bifurcation aneurysms remains elusive
despite a pressing need, with the majority of lesions present-
ing in such locations. Current treatment options focus either
on aneurysm coil retention, supported by a stent-like device
positioned in the parent vessel lumen, or intrasaccular
devices that disrupt flow within the aneurysm dome. A third
alternative, i.e., the use of conventional (intraluminal) flow-
diverters to treat such bifurcation aneurysms raises the
problem that at least one daughter vessel needs to be jailed in
such a deployment. The eCLIPs is a stent-like device that
offers the possibility of flow-diversion at the aneurysm neck,
without the drawbacks of daughter vessel occlusion or those
of intrasaccular deployment.
Methods—In this study the eCLIPs device was virtually
deployed in five cerebral bifurcation aneurysms and com-
pared with a conventional tubular flow-diverter device.
Computational fluid dynamics (CFD) simulations of the
aneurysm haemodynamic environment pre- and post-im-
plantation were conducted, and focussed on metrics associ-
ated with successful aneurysm occlusion. Absolute and
relative reductions in aneurysm inflow rate (Q) and time-
averaged wall shear stress (TAWSS) were recorded.
Results—The eCLIPs device was found to perform in a
similar qualitative fashion to tubular flow-diverters, with
overall reduction of metrics being somewhat more modest
however, when compared to such devices. Aneurysm inflow
reduction and TAWSS reduction were typically 10–20%
lower for the eCLIPs, when compared to a generic flow
diverter (FDBRAIDED) similar to devices currently in clinical
use. The eCLIPs was less effective at diffusing inflow jets and
at reducing the overall velocity of the flow, when compared
to these devices. This result is likely due to the larger device
pore size in the eCLIPs. Notably, it was found that the
eCLIPs provided approximately equal resistance to flow
entering and exiting the aneurysm, which was not true for the

FDBRAIDED device, where high-speed concentrations of
outflow were seen at the aneurysm neck along with local
TAWSS elevation. The clinical implications of such beha-
viour are not examined in detail here but could be significant.
Conclusions—Our findings indicate that the eCLIPs device
acts as a flow-diverter for bifurcation aneurysms, with
somewhat diminished occlusion properties comparing to
tubular flow diverters but without the jailing and diminished
flow evident in a daughter vessel associated with use of
conventional devices.

Keywords—Cerebral aneurysm, Bifurcation aneurysm, Med-

ical device, Flow-diverter, Stent.

INTRODUCTION

The majority of cerebral aneurysms are known to
occur at vessel bifurcations.2,6 Despite significant
innovation in cerebral aneurysm treatment in the past
two decades, only a small number of dedicated devices
are available to specifically treat bifurcation aneur-
ysms. Even fewer options are available when more
challenging wide-necked aneurysms must be treated.
The majority of these devices act as supports to enable
aneurysm coiling, such as the pCONus and pCANvas
devices (Phenox, Bochum, Germany) and PulseRider
(Pulsar Vascular/CERENOVUS J&J, Irvine, CA,
USA), while a smaller number of devices act as
intrasaccular flow disruptors like the WEB (Sequent
Medical/MicroVention Terumo, Aliso Viejo, CA,
USA), Luna/Artisse (Medtronic, Dublin, Ireland) and
the Medina (Medtronic/Covidien/eV3, Dublin, Ire-
land) devices.

There are well-documented positive outcomes from
sidewall aneurysms treated with conventional, tube-
like, braided flow-diverter devices, including the SILK/
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SILK + (Balt Extrusion, Montmorency, France), Pi-
peline Embolization Device (PED) (Medtronic/Covi-
dien, Dublin, Ireland), Flow Re-direction Endoluminal
Device (FRED) (MicroVention Terumo, Aliso Viejo,
CA, USA) and Surpass (Stryker Neurovascular, Fre-
mont, CA, USA).5 The use of conventional flow-di-
verters in bifurcation cases, however, remains
controversial due to the necessity of jailing a daughter
vessel with the low-porosity device mesh. A number of
studies have reported daughter vessel occlusion or
incomplete aneurysm obliteration with neck remnants
in such cases.1,9,15,26,31,32,37 Although vessel occlusion
is often asymptomatic, given sufficient collateral flow
in the Circle of Willis,1 the long term risks and
reduction in retreatment options have made such off-
label use of conventional flow diverters in bifurcation
aneurysms a rarity.

All bifurcation-specific flow-diverter devices cur-
rently in clinical use (WEB, Artisse and Medina) re-
quire the device to be inserted into the aneurysm dome.
As such, while these devices can cover a range of an-
eurysm sizes, their use is typically limited to aneurysms
where there is good compliance between the aneurysm
and device shape. Consequently the success of treat-
ment is highly dependent upon accurate 3D measure-
ments of the aneurysm geometry.25 Additionally,
reports in the literature point towards concerns over
compaction of intrasaccular flow-diverter devices and
poor outcomes when deployed in partially thrombosed
lesions.3,4

The eCLIPs (Evasc Medical Systems Corp.) is a
stent-like device that can be deployed to cover the neck
region of a bifurcation aneurysm, reducing inflow,
while still allowing unfettered access to daughter ves-
sels and microcatheter access to the aneurysm dome
for adjunctive coil placement. The eCLIPs—shown in
Fig. 1—is a doubly-curved device with two distinct
sections: one section with a set of anchoring ribs (vis-
ible in the distal portion of the device shown in the
figure) which secure the device in a daughter vessel
lumen, and a second section with higher-density ribs
that cover the aneurysm neck, which are capable of
both retaining coils and diverting flow. The device is
non-cylindrical, resulting in greater compression/ex-
pansion at the vessel wall and giving good apposition
over a range of vessel sizes. The porosity of the
eCLIPs, approximately 65% with a range of 58–77%,
is similar to that of a conventional flow diverter.
Complete details of the eCLIPs design, delivery in vivo,
and corresponding antiplatelet regimen are available in
the literature.8,17,28

Use of the eCLIPs pre-clinically and clinically as a
coil-assist device is documented in the literature.8,17,28

In two clinical cases the device was used without
adjunctive coiling—acting exclusively as a flow-di-

verter device.8 The successful isolation of the lesion in
these cases raises the possibility of using the eCLIPs as
a dedicated flow-diverter in other aneurysm geome-
tries.

In this study the flow-diverting effect alone of the
eCLIPs is investigated to ascertain whether treatment
without coil placement would be effective in five
bifurcation aneurysm cases. The eCLIPs is virtually
compared to a conventional flow-diverter device de-
ployed, with both the absolute value and relative
reduction in aneurysm inflow and wall shear stress
considered as metrics of treatment success.

METHODOLOGY

Aneurysm Geometries and Virtual Deployment

Five cerebral bifurcation aneurysm geometries (re-
ferred to as a1, a2, a3, a4, a5) were selected for virtual
deployment and CFD simulation by the eVasc clinical
team. Selection criteria for the geometries included
appropriate aneurysm and vessel size to support
treatment with the current generation of eCLIPs device

FIGURE 1. The eCLIPs device (a) as packaged and deployed
via microcatheter and (b) in top and side view during
manufacture.
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(size range for daughter vessels 2.00–3.25 mm diame-
ter). The selected geometries consisted of two basilar
tip aneurysms (a1 and a4 in Fig. 2) and three internal
carotid terminus aneurysms (a2, a3 and a5 in Fig. 2)
with maximum aneurysm dome and neck diameters
varying from 4.2 to 13.4 mm and 3.3 to 6.4 mm
respectively.

For modelling purposes, the anchoring section of
the device, shown in the right-hand portion of Fig. 1b,
was ignored entirely as it was assumed to have no
contribution towards aneurysm inflow reduction. It
was also assumed that the anchoring portion is placed
in the narrower/harder to access of the two daughter
vessels, as per previous clinical use of the device.29

A simplified wireframe version of the device was
deployed initially. The spine of the wireframe device
was located across the aneurysm neck along a previ-
ously defined deployment line (Step I). The fully ex-
panded wireframe device was then placed (Step II). All
extraneous device ribs (those not covering the aneur-
ysm neck in some way) were removed for computa-
tional efficiency. Each rib of the device was deformed
into the approximate deployed configuration within
the vessel (Step III). No material properties were as-

signed to the device and the local variation in rib
stiffness due to cross-section or orientation was not
incorporated in the wireframe. Instead, each wireframe
rib was deformed with a pseudo-realistic condition of
locally minimising deformed curvature in each rib,
with the device spine remaining rigid. Each rib was
trimmed after initial contact with the vessel wall to
maximise computational efficiency. The wireframe de-
vice was then solidified to create ribs and a central
spine of the same dimensions as the original device
(Step IV). This procedure was used to deploy the same
sized device in each of the five aneurysm geometries as
shown in Fig. 2. Note that in large aneurysms with an
amorphous neck (such as a1) the device can expand to
its full equilibrium diameter and leave a gap between
the device and vessel/aneurysm wall. In these cases the
eCLIPs remains anchored in the substantially smaller
daughter vessels.

Mesh Independence

Case a2 was selected for a mesh independence study
due to the relatively large flow velocity magnitude and
gradient present in the aneurysm dome (identified in
previous computations). The geometry with and
without the eCLIPs device was meshed in CFD-Vis-
CART (ESI Group) with a projected single domain
unstructured mesh, an omnitree cartesian tree type and
three near-wall cartesian layers to give a smooth and
well-resolved boundary definition. This resulted in
initial meshes of 298,000 and 85,000 cells respectively
with and without the device deployed. The meshes
were incrementally refined to give an approximate
doubling of the element count, resulting in maximum
mesh sizes of 24,300,000 and 14,100,000 cells respec-
tively with seven levels of refinement.

For this test, steady state CFD computations were
performed assuming a constant blood flow rate typical
of the ICA (230 mL/min) and a radially symmetric,
parabolic inlet velocity distribution. Blood was mod-
elled with constant density and viscosity of 1000 kg/m3

and 0.004 Pa s respectively, resulting in a Reynolds
number of 392 for this case. A plane was defined just
within the aneurysm dome through which the aneur-
ysm inflow was measured. The aneurysm dome surface
was also isolated to measure WSS.

The reduction in aneurysm inflow due to the eCLIPs
device at each level of mesh refinement was calculated
and the expected convergence behaviour toward a
fixed reduction with increased mesh refinement was
confirmed. A mesh density greater than 5000 cells/mm3

was sufficient to capture the inflow reduction with less
than 1% uncertainty. This finding is consistent with
previous studies and devices.21,23 The corresponding
reduction in mean and maximum wall shear stress

FIGURE 2. Deployed device configurations for each
aneurysm geometry in Basilar tip (a1, a4) and Internal
Carotid terminus (a2, a3, a5) locations. Aneurysm domes are
partially removed for device inspection.
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(WSS) with increasing mesh fineness was also consid-
ered. In this case a level of mesh refinement greater
than 5000 cells/mm3 was sufficient for mesh indepen-
dence below 2%.

Overall a mesh fineness of at least 5000 cells/mm3

was chosen to provide sufficient confidence regarding
mesh independence (1% on flow, 2% on shear stress)
for all further computations.

CFD Setup

Each aneurysm case with the eCLIPs device deployed
was meshed to the previously defined level of mesh
independence in CFD-VisCART (ESI Group), with the
same meshing setup as for the mesh independence tests.
Transient cardiac flow profiles corresponding to the
ICAandBAwere taken froma 1Dmodel of the vascular
network and scaled to achieve flow rates of 230 and
120 mL/min for the internal carotid and basilar arteries
respectively.27 A constant heart rate of 75 BPM was
assumed. Inlet velocity profiles were applied in a radially
symmetric parabola consistent with Poiseuille flow, gi-
ven the relatively low Womersley number (< 3). Con-
stant pressure conditions were applied to all outlets with
no substantial differences seen in relative proportions of
outflow in each vessel when compared to in vivo obser-
vations in the literature.12,30 Vessel walls and the eCLIPs
device were assumed rigid.24

Blood was modelled as an incompressible Newto-
nian fluid with a density of 1000 kg/m3 and a constant
dynamic viscosity of 0.004 Pa s. The governing un-
steady three-dimensional Navier–Stokes equations
were solved using the finite volume approach in CFD-
ACE + (ESI Group) employing a central differencing
scheme (second order) for spatial interpolation and a
Crank–Nicholson scheme (second order) for time
marching. SIMPLE-Consistent (SIMPLEC) pressure
correction was used in addition to an algebraic multi-
grid for convergence acceleration.20,34,35 We have
confirmed through sensitivity analysis that a constant
time step of 0.001 s was sufficient and we used a con-
vergence criterion of five orders of magnitude residual
reduction or an absolute residual reduction to
1 9 10�8 to assert iterative convergence of all variables
within each time step. Three full cardiac cycles were
simulated (2.4 s real time) with results reported for the
third cycle, to reduce transient effects. Mean Reynolds
numbers in the range of 274 to 392 were observed
across the five geometries, with an instantaneous peak
of 980, which supported the assertion for the laminar
nature of the flow.10,14 Small Womersley numbers
(1.68–2.72) also confirmed that little departure of the
velocity profile from the Poiseuille case occurred.11,36

Computations were run on 32–64 cores with 32–64 GB
of RAM, depending on mesh size. Convergence was

typically seen in fewer than 50 iterations per timestep
and with a total solution time around 72–96 h.

Post-processing

A plane was prescribed at each aneurysm neck
through which inflow was measured. In the same spirit,
the aneurysm dome was isolated from the parent vas-
culature for WSS computations. Post-processing was
conducted in CFD-VIEW (ESI Group) and Matlab
(Mathworks) yielding a number of flow metrics
including aneurysm inflow (cycle averaged and cycle
range), absolute intrasaccular velocity distributions,
and both spatial mean and maximum TAWSS (Time-
Averaged WSS). All time-averaged metrics were cal-
culated from the flow distribution taken at 0.02 s
intervals (40 sample points per cardiac cycle).

Reductions in these metrics (Inflow, velocities,
TAWSSmean and TAWSSmax) are considered proxies
to successful aneurysm treatment.7,10,13,16,33 Reduced
inflow and lowered mean WSS are linked with
thrombus initiation in the aneurysm dome, similarly a
reduction in peak WSS is linked to reduced flow jetting
and a reduction in rupture risk.18 However, the
TAWSSmax metric can be misleading in the absence of
a visualization of the shear stress distribution as the
location of the peak WSS may change significantly
after device deployment. An additional metric was
calculated to capture the fraction of the aneurysm
dome under shear stress conditions conducive to
thrombosis initiation (a shear rate < 100 s�1 or
WSS < 0.04 Pa s).19 This was quantified as the per-
centage area of the aneurysm dome under such con-
ditions with and without a device deployed.

Positioning Sensitivity Study

In order to quantify the effect of positioning
uncertainty and variability on device performance,
three further computations were conducted for Case
a2. Specifically, the eCLIPs device was re-deployed in
(1) the original position; (2) a ‘‘Reversed’’ configura-
tion with the device anchored in the opposite daughter
vessel; (3) a ‘‘Plus 15 Deg.’’ configuration with the
original device rotated about its longitudinal axis by
15� and (4) a ‘‘Minus 15 Deg.’’ configuration with the
original device rotated 15 degrees in the opposite
direction. The same flow and shear stress metrics were
computed for the three additional positions of the
device in Case a2.

Conventional Flow-Diverter Devices

The performance of the eCLIPs device was com-
pared to a generic woven flow-diverter device (labelled
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as FDBRAIDED), similar to the SILK/SILK+ or Pi-
peline Embolization Device (PED). This device has a
porosity of ~ 70% and was created in length and
diameter combinations to mimic commercially avail-
able devices. The size of conventional device deployed
in each aneurysm case is summarised in Table 1.
Deployment and CFD modelling of these devices dis-
cussed in this paper were conducted previously with an
identical meshing setup, boundary conditions and de-
vice sizing according to manufacturers’ recommenda-
tions. Details of these computations are referred to
here for brevity and are available in the literature.22

RESULTS

The cycle-averaged reductions in aneurysm Inflow,
TAWSSmean and TAWSSmax due to the deployment
of each device are plotted in Fig. 3 as both columns
and coloured markers. The range of reductions seen
across the cardiac cycle is indicated in dashed error
bars for each column. In some geometries the con-
ventional FDBRAIDED device could be deployed in ei-
ther daughter vessel under manufacturer
recommendations and comparisons with both scenar-
ios are shown. The plots on the right-hand side of
Fig. 3 show a considerable spread of reductions about
the mean and relatively large standard deviations for
both devices, possibly excessively influenced by outliers
in the low sample size. Across all three plots the lowest
reductions seen correspond to Case G. Due to the low
number of samples no tests for Normality, such as
Shapiro-Wilks, could be performed. Consequently, the
deviation of the data from Normal is unknown.

Across the five cases the eCLIPs device produces a
relatively uniform and consistent reduction in aneur-
ysm inflow of approximately 30–40%, perhaps due to
the consistent size of the implanted device. The per-
formance of the FDBRAIDED on the other hand ap-
pears superior but more variable with inflow
reductions between 30 and 60%, and a larger standard
deviation in Fig. 3a. The reduction in mean TAWSS
(TAWSSmean) is far more variable for both devices. In
four treatment scenarios the FDBRAIDED produces
substantial reductions in TAWSSmean of around

80%, while the eCLIPs results in a reduction of around
60–70% in the same cases. This is reinforced by the
larger standard deviation for both devices seen in
Fig. 3b. A similar pattern emerges in the plot of
reduction in peak TAWSS (TAWSSmax) shown in
Fig. 3c with reductions in all cases, bar Case a3, of
around 80% due to the FDBRAIDED and 60–70% due
to the eCLIPs. Across all three plots of Fig. 3 Case a3
stands out with both devices performing poorly and
reducing both Inflow and TAWSSmean by around
30%.

TABLE 1. Size of conventional flow diverter device and
eCLIPs device implanted into each aneurysm geometry

Aneurysm Conventional device (FDBRAIDED) size eCLIPs size

a1 3 9 25 mm 3.25 mm

a2 4 9 20 mm 3.25 mm

a3 4 9 20 mm 3.25 mm

a4 3 9 20 mm 3.25 mm

a5 3.5 9 20 mm 3.25 mm

FIGURE 3. Reductions in inflow (a) and both mean (b) and
maximum (c) TAWSS across the five aneurysm geometries
due to the eCLIPs device and a conventional flow-diverter
(FDBRAIDED). Columns and coloured markers both indicate
cycle average, dashed error bars show cycle range. Solid
black markers and solid error bars indicate mean and
standard deviation of each distribution.
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The corresponding area of the aneurysm dome with
WSS magnitude that is low enough to initiate throm-
bosis is summarised in Fig. 4 for each device. In all
combinations bar one (the FDBRAIDED deployed in the
right-hand vessel of Case a3) the presence of a device
increases the area of the aneurysm dome under this
preferential condition. Substantial variation in the
aneurysm area fraction is seen across the cases and
devices—ranging from around 1 to 80%. With the
exception of Case a4 the FDBRAIDED device increases
this area to at least 30% across the cases regardless of
deployment position. The eCLIPs device shows a lar-
ger range of aneurysm area fraction under preferential
shear conditions—around 20–80% when case a4 is
again excluded.

It should be noted that this area-based metric does
not capture the risks associated with jets of flow on the
aneurysm wall, which may only exist on a small area of
the dome but have been linked with poor treatment
outcomes. Similarly, the reduction in TAWSSmax may
be misleading as the location at which the maximum
TAWSS occurs is not considered; placement of a de-
vice could reduce a flow jet and lower TAWSSmax, but
the resulting jet and TAWSSmax could impact a more
critical area of the aneurysm, such as a vulnerable bleb.
Detailed visual inspection of aneurysm flow and shear
stress patterns is conducted in the next section.

Across the geometries daughter vessel outflow
fractions were also compared for both the eCLIPs and
conventional device. In both cases there was very little
departure (< 5%) in outflow fraction compared to the
No Device case suggesting that, in the first instance,
neither device presents a daughter vessel occlusion risk.
However, without incorporating biochemical models
to capture device endothelialization the actual occlu-
sion of the daughter vessel cannot be predicted.

Figures 5 and 6 show lines tangent to the instanta-
neous velocity vector, at mean flow rate, colour-coded
for magnitude, and WSS distributions respectively at
the same time step with and without eCLIPs or
FDBRAIDED devices.

Case a1 In the a1 case, broadly similar performance
is seen between the two device types and the two
deployment configurations of the FDBRAIDED device:
inflow and WSS metrics are reduced by 40–50% and
70–80% respectively. The action of each device on the
aneurysm flow pattern in a1 does vary: the
conventional device diffuses the flow into a broader,
less coherent jet that results in fewer areas of elevated
WSS in the aneurysm dome when compared to the
eCLIPs device. Overall the large size of the aneurysm
dome in this case diffuses the relatively large inflow
(even after device placement this averages ~ 60 mL/
min) to create a shear stress environment conducive to
thrombosis—reinforced by Fig. 4. The elimination of a
jet-induced high WSS region by all devices is likely to
address many of the clinical concerns for this large
aneurysm.

Case a2 Figures 5 and 6 summarise the same
combination of velocity and WSS distributions for
Case a2. In this case the eCLIPs device underperforms
the FDBRAIDED by around 20–30% when comparing
reductions in key metrics. Across the velocity plots, it
is clear that the fundamental aneurysm flow pattern is
relatively unchanged by either device placement: flow
enters at the back of the aneurysm and exits at the
front, causing two peaks in WSS either side of the main
aneurysm dome. These WSS peaks are reduced in
severity and extent by both devices but more so by the
smaller-pored FDBRAIDED, which reduces the entire
aneurysm dome to a WSS below 2.5 Pa at mean flow.
This is reflected in the plot of Fig. 4 where the
conventional device places almost 60% of the
aneurysm dome in a favourable shear stress
environment, compared to the ~ 20% (approximately
double the preferential area with no device present)
achieved by the eCLIPs. In this case the relatively low
reduction in aneurysm inflow for the eCLIPs device
(32.2%) also translates into a high absolute inflow
value after device placement, averaging ~ 70 mL/
min—the highest post-device placement seen in this
study. Together these factors would anecdotally point
towards a reduced potential for aneurysm occlusion
with the eCLIPs in this geometry.

Case a3 Figures 5 and 6 summarises the equivalent
distributions and metric reductions for Case a3. As was

FIGURE 4. Aneurysm area below critical WSS for thrombus
initiation displayed by case and device.
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noted in Fig. 3, Case a3 shows markedly lower
reductions in the three metrics considered for both
devices (typically 30–40%), when compared to the
other four aneurysm cases. However, these reductions
should be considered alongside the relatively low
absolute aneurysm inflow with or without a device,
visible in the small number of flow lines entering the
aneurysm dome. As such the aneurysm inflow rates
seen after deployment of either device are the lowest
across all five cases (~ 25 mL/min), which is likely low
enough to encourage thrombosis. This point is
reinforced by the more positive performance of Case
a3 when considering the area of the aneurysm under

WSS favourable for thrombosis (Fig. 4), but the same
plot also shows the unusual result of the FDBRAIDED

device actually decreasing this area. This effect results
from the FDBRAIDED diffusing the concentrated flow
entering the aneurysm into a slower moving core that
then sweeps a larger fraction of the aneurysm dome,
when compared to the more extreme high and low
WSS areas visible in No Device and eCLIPs
configurations.

The plot of TAWSSmax reduction in Fig. 3 is also
somewhat misleading showing a greater reduction for
the eCLIPs device when the FDBRAIDED actually

FIGURE 5. Velocity magnitude plots at mean flowrate for each aneurysm case a1–5 with and without a device deployed for both
the eCLIPs and FDBRAIDED. Where the FDBRAIDED has been deployed in either the left or right daughter vessel this is indicated.

BIOMEDICAL
ENGINEERING 
SOCIETY

PEACH et al.514



eliminates the WSS peak located at the aneurysm’s
minor lobe. The poor performance of the conventional
device captured in the graph has resulted from the
higher WSS zone at the extreme left of the aneurysm
dome (adjacent to the Anterior Communicating Ar-
tery) where flow leaving the aneurysm dome is con-
centrated.

Given the (pro-thrombotic) low aneurysm inflow
rate, even in the absence of a device, the clinical con-
cerns with this case are likely to focus on the high-
WSS-inducing flow jet. Both the eCLIPs and
FDBRAIDED reduce the impact of this jet but the more
effective jet reduction of the conventional device is

offset by a corresponding increase in impingement of
flow leaving the aneurysm. Such a concentrated an-
eurysm outflow region may correlate with the persis-
tent neck remnants seen in the literature.1,26,32 There is
also likely a secondary (positive) effect of the eCLIPs
fully covering the aneurysm neck compared to the
parent vessel placement of the FDBRAIDED in that the
eCLIPs presents a platform for endothelialization that
spans the aneurysm neck entirely.

Case a4 The velocity and WSS distributions for Case
a4 are also shown in Figs. 5 and 6. In this case all
devices reduce the violent flow pattern within the

FIGURE 6. Wall shear stress (WSS) magnitude plots at mean flowrate for each aneurysm case a1–5 with and without a device
deployed for both the eCLIPs and FDBRAIDED. Where the FDBRAIDED has been deployed in either the left or right daughter vessel this
is indicated.
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aneurysm dome and in particular the eCLIPs device
and the conventional device deployed in the right-hand
daughter vessel perform very similarly. Although the
corresponding reductions in flow and shear stress
metrics are similar between these two configurations,
the FDBRAIDED device again diffuses the flow jet
entering the aneurysm more by reducing the velocity of
the flow more substantially. This translates into a more
effective reduction in shear stress peaks in the
aneurysm dome with the FDBRAIDED (right), which
are still present with the eCLIPs device, but as with the
previous case the area of peak WSS shifts to where
flow exits the aneurysm in the FDBRAIDED case.

Performance with the FDBRAIDED device deployed
in the opposite daughter vessel (left) is substantially
improved. This better performance results from dis-
rupting the fundamental flow pattern of the aneurysm
dome, where flow now enters more centrally, and by
the more tightly packed device struts restricting flow
more—both effects documented in previous publica-
tions.22 This superior performance of the FDBRAIDED

deployed in the left vessel is very visible in Fig. 4 where
all other device configurations only result in pro-
thrombotic shear stress values in less than 5% of the
aneurysm dome area.

The relatively high absolute inflow rates (~ 40–
60 mL/min) in this small aneurysm with any device
deployed, combined with the small fraction of aneur-
ysm dome under pro-thrombotic shear stress (with the
exception of the FDBRAIDED left configuration) point
towards low potential for aneurysm occlusion. It
should also be noted that the superior performance of
the conventional device results exclusively from the
subtle choice of deployment location.

Case a5 Finally, the flow distributions for Case a5
are shown in Figs. 5 and 6. For both the eCLIPs and
FDBRAIDED the presence of the device retains the ‘‘no
device’’ flow pattern but reduces the speed and violence
of the aneurysm flow. The shear stress patterns are
correspondingly reduced in magnitude after device
deployment but in both cases the fundamental WSS
pattern of high and low locations remains. The eCLIPs
underperforms the conventional device in inflow
reduction by a substantial margin (~ 20%), which
leads to similar differences in the reduction of mean
TAWSS. As in previous cases this is visible as a more
diffuse, low-velocity jet of flow entering the aneurysm
in the conventional device case. Both devices also
dramatically increase the fraction of aneurysm area
under pro-thrombotic shear stress (Fig. 4) but again
the FDBRAIDED does so to a greater effect.

As with previous cases a less dramatic difference in
TAWSSmax reduction is seen between the devices
despite more effective jet elimination by the
FDBRAIDED, and as previously, a corresponding in-
crease in neck WSS is caused by exiting flow, which
counters this reduction for the conventional device.

Large differences in absolute aneurysm inflow rate
(~ 30 vs. ~ 45 mL/min) between the eCLIPs and
FDBRAIDED devices combined with more effective jet
elimination and low shear stress promotion do point
towards the FDBRAIDED being the more effective
treatment option for this case. However, the perfor-
mance seen for the eCLIPs may also be sufficient for
thrombosis and occlusion.

Aneurysm Velocity Histograms

Further detail of the flow within the aneurysm dome
may be captured by considering the histogram of
velocity magnitude within the aneurysm dome (J.
Cebral 2018, personal communication), as shown for
Case a2 in Fig. 7. Both the velocity histogram shape
and mean value give an indication of the likelihood of
thrombosis in the aneurysm dome—where
stable thrombus is likely to be encouraged by a uni-
form low velocity throughout the aneurysm dome. The
introduction of either the eCLIPs or FDBRAIDED de-
vice in Case a2 reduces the mean dome velocity by 47
and 73%, respectively, while 90% of the flow in the
aneurysm dome is below 0.310, 0.014, 0.08 ms�1 with
No Device, the eCLIPs and FDBRAIDED respectively.
Equally the same flow distributions can be charac-
terised by the fraction of the aneurysm dome with a

FIGURE 7. Aneurysm dome velocity histograms for Case a2
with and without devices deployed. Spatial means are
indicated in corresponding coloured text.

BIOMEDICAL
ENGINEERING 
SOCIETY

PEACH et al.516



velocity below 0.01 ms�1 as 7.0, 15 and 54% respec-
tively for the No Device, eCLIPs and FDBRAIDED

configurations. These results broadly align with the
inflow reduction seen for Case a2 where the eCLIPs
produced an inflow reduction of approximately half
that of the FDBRAIDED.

Positioning Study Results

As shown in Fig. 8, the position of the eCLIPs de-
vice in a2 case does not appear to substantially affect
the reductions in the three key metrics considered, with
the exception of an almost 20% greater reduction in
peak TAWSS when the device is reversed. The change
in device position appears to mainly alter the location
and number of high WSS areas in the aneurysm dome:
two regions of approximately equal size and magnitude
are present in the ‘‘eCLIPs’’ and ‘‘Minus 15 Deg.’’
configurations (visible on the front and back of the
main aneurysm lobe) while a single region dominates
in the ‘‘Reversed’’ and ‘‘Plus 15 Deg.’’ cases (a high

WSS area on the front and back faces of the main
aneurysm lobe). The superior TAWSSmax reduction
performance of the ‘‘Reversed’’ device appears to
correlate with the elimination of the high WSS region
on the back face of the aneurysm dome. The ‘‘Rev-
ersed’’ configuration also produces a unique flow pat-
tern: in all other configurations flow enters and exits
the aneurysm centrally at the back and front respec-
tively, whereas in the ‘‘Reversed’’ configuration flow
enters on the left of the aneurysm dome towards the
back face and exits on the right-hand side.

Similar results are seen for the area of aneurysm
dome below a critical WSS. All positions of the device
perform relatively poorly on this metric (20–30% area
compared to > 50% for the FDBRAIDED) and again a
slightly improved performance is seen in the reversed
configuration where more of the aneurysm rear wall
experiences lower TAWSS. Generally, the flow pat-
terns and metric reductions appear relatively insensi-
tive to variation in the positioning of the eCLIPs
device.

STUDY LIMITATIONS

Due to the speculative and computational modelling
approach taken, this study has a necessary number of
limitations. Primarily, only the instant after device
implantation has been modelled—no capturing of the
aneurysm thrombosis and device endothelialization
that are necessary for successful treatment have been
considered, only surrogate measures of these processes.
Inferred boundary conditions of flow (population-av-
eraged flowrate and parabolic profile) and outlet
pressure (fixed) were implemented due to the lack of
patient-specific data for the aneurysm cases concerned.
The influence of these factors on the conclusions drawn
in the study is considered small, given the like-for-like
comparison with the known technology of a conven-
tional flow diverter device.

CONCLUSIONS

Overall the eCLIPs device exhibits a small but
measurable performance reduction, when compared to
a conventional flow-diverter (FDBRAIDED) deployed in
the same five aneurysm cases. The eCLIPs typically
reduced aneurysm inflow by around 10–20% less with
similar reductions seen in mean shear stress. Small
sample sizes mean it is not possible to interrogate the
significance of this result.

On the other hand, the eCLIPs device consistently
produced a uniform reduction in aneurysm inflow
of ~ 30–40% under a wide range of aneurysm inflow

FIGURE 8. Case a2 positioning study results showing
velocity and WSS distributions at mean flow rate with and
without the eCLIPs and FDBRAIDED devices deployed.

BIOMEDICAL
ENGINEERING 
SOCIETY

A Virtual Comparison of the eCLIPs Device and Conventional Flow-Diverters 517



rates prior to implantation (~ 40–115 mL/min). By
contrast the FDBRAIDED device produced flow reduc-
tions in the range of ~ 30–60%, where the consistency
of the flow-diverter appears more dependent on de-
ployed position and device sizing.

Compared to the conventional device the eCLIPs
was less effective at diffusing jets of flow entering an-
eurysms and lowering the flow velocity. Consequently,
local peaks in shear stress were less effectively reduced
by the eCLIPs. This is likely due to the significantly
larger effective pore size of the eCLIPs device and the
lower pore density. This effect of pore size does not
appear to adversely affect endothelialization, as pre-
vious pre-clinical studies of the eCLIPs have shown
complete incorporation of the device 30–90 days after
implantation.

The eCLIPs provided approximately equal resis-
tance to flow entering and exiting the aneurysm
dome—covering the entire neck—unlike the
FDBRAIDED, which primarily restricted flow entering
the aneurysm. In the case of the FDBRAIDED this led to
high-speed flow exiting the aneurysm in a very con-
centrated location in some cases, with a corresponding
increase in local shear stress. This behaviour may
correlate with the neck remnants recorded in the lit-
erature following FD treatment of bifurcation aneur-
ysms.

These results confirm that the eCLIPs device can
indeed act as a flow-diverter. The eCLIPs does not
match the performance of conventional flow-diverters
but it is unclear what degree of flow-diversion is suf-
ficient for effective aneurysm isolation.
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