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|dentification of somatic mutations in single cell
DNA-seq using a spatial model of allelic imbalance
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Recent advances in single cell technology have enabled dissection of cellular heterogeneity in
great detail. However, analysis of single cell DNA sequencing data remains challenging due to
bias and artifacts that arise during DNA extraction and whole-genome amplification,
including allelic imbalance and dropout. Here, we present a framework for statistical esti-
mation of allele-specific amplification imbalance at any given position in single cell whole-
genome sequencing data by utilizing the allele frequencies of heterozygous single nucleotide
polymorphisms in the neighborhood. The resulting allelic imbalance profile is critical for
determining whether the variant allele fraction of an observed mutation is consistent with the
expected fraction for a true variant. This method, implemented in SCAN-SNV (Single Cell
ANalysis of SNVs), substantially improves the identification of somatic variants in single cells.
Our allele balance framework is broadly applicable to genotype analysis of any variant type in
any data that might exhibit allelic imbalance.
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ingle-cell DNA sequencing (scDNA-seq) has recently

emerged as an efficient and scalable tool to study genetic

heterogeneity in multicellular organisms. Although whole-
genome sequencing of bulk tissues has been used to identify
somatic mutations, its sensitivity for mutations present in a low
fraction of cells is limited. For example, mutations shared by
fewer than 5% of cells are difficult to detect even with 100 x
sequencing. scDNA-seq, on the other hand, offers the possibility
of detecting mutations of essentially any frequency as long as they
are present in the selected single cell. In addition, co-occurrence
patterns among multiple mutations across multiple single cells
can define subclonal populations and reveal evolutionary
dynamics within a cell population. Recent applications of scDNA-
seq have elucidated subclonal evolution processes in breast car-
cinomal! and revealed a biological mechanism capable of gen-
erating chromothripsis, disastrous DNA damage often observed
in cancer cells?. In our own work, we have used scDNA-seq to
reconstruct cellular lineage in the brain using somatic mutations
as markers® and to uncover the accumulation of single nucleotide
mutations in aging human neurons®.

The genome of a single cell must first be extracted and
extensively amplified to produce sufficient DNA for sequencing
on standard high-throughput sequencing platforms. Of the
handful of whole-genome amplification (WGA) protocols cur-
rently available®, multiple displacement amplification (MDA) is
presently considered the most suitable for genome-wide detection
of single nucleotide variants (SNVs) and short insertions and
deletions due its ability to amplify the majority of a human
genome with a high-fidelity polymerase®’. However, MDA is a
non-linear amplification process and therefore suffers from non-
uniform amplification of the genome, creating high variability in
sequencing depth along the genome. The same non-uniform
amplification process can also cause differences in amplification
between homologous copies of the same DNA because they are
amplified essentially independently® (Fig. 1a). In human cells, for
example, the maternal copy of a gene can be amplified to a dif-
ferent level than the paternal copy, leading to a large disparity in
the number of sequencing reads generated from each allele. This
allelic imbalance is common in MDA-amplified DNA libraries
and substantially complicates the identification of somatic
mutations—which appear as heterozygous variants—in scDNA-
seq data.

In scDNA-seq applications aiming to identify somatic SNVs,
computational filtering of physical artifacts that arise sponta-
neously during cell lysis, DNA extraction, library preparation,
and WGA is essential, as the number of artifacts can vastly exceed
the number of true somatic mutations and obscure biologically
relevant signals. Artifacts occurring before amplification or in the
early stages of amplification could affect a substantial fraction of
the few DNA copies at any genomic locus (Fig. 1b). Subsequently,
allelic imbalance can further confound detection of such artifacts
by over-amplifying the artifact-harboring allele relative to its
homolog and can make true mutations harder to detect by under-
amplifying the mutation-harboring allele (Fig. 1c). As a result,
variant allele fraction (VAF)—the fraction of sequencing reads
supporting a heterozygous variant—may deviate substantially
from the expected ~50% and is not as informative as it is in bulk
sequencing for distinguishing artifacts from true mutations. The
effect of allelic imbalance on VAF is often substantial and is
evident by examining the VAFs of known heterozygous SNPs in
single-cell data (Fig. 1d). Because the VAF of true heterozygous
variants in single-cell data should follow the fraction of DNA
amplicons from the variant-harboring allele while artifacts do not,
the observed VAF of a putative mutation must be appraised
considering the allelic-specific amplification balance at that
position.

To properly evaluate VAFs in the context of genotyping, we
developed a spatial model to estimate allele-specific amplification
balance (AB) at any genomic locus. A genome-wide AB curve is
constructed by measuring AB at a large set of heterozygous SNPs
(obtained prior to scDNA-seq) and inferring AB in the inter-
vening regions. Specifically, the model considers how AB mea-
surements at heterozygous SNPs (hSNPs) correlate with AB away
from hSNPs and how to properly combine information from
multiple hSNPs in a large neighborhood. This approach proves
particularly fruitful in MDA-amplified libraries in which the
characteristically long amplicon lengths (typically ~5-10kb)
cause the AB to change relatively slowly along the genome.

The AB model enabled the development of a novel somatic
SNV genotyper called SCAN-SNV (single-cell analysis of SNVs).
SCAN-SNV removes scDNA-seq artifacts by requiring candidate
sSNV VAFs to both match the estimated local AB and not match
VAFs consistent with common scDNA-seq artifacts. SCAN-SNV
also employs a novel method to estimate artifact burden and an
upper limit on the number of true somatic mutations prior to
genotyping, which helps to address situations in which the arte-
factual mutations substantially outnumber somatic mutations.
Standard SNV genotypers designed for bulk data have been
shown to perform very poorly when applied to single cells, pri-
marily by calling a large number of artifacts as true mutations>10.
Our comparative analyses show that SCAN-SNV substantially
outperforms both Monovar® and SCcaller!?, with a >3-fold
decrease in false discovery rate while maintaining similar
sensitivity.

Results

Distinguishing artifacts from mutations using allele balance.
Below, we demonstrate how allelic imbalance can lead to false
positive (FP) variant calls in practice and how estimating AB can
help to avoid such erroneous calls. We also show how to
approximate the prevalence of single-cell artifacts and bound the
somatic mutation rate prior to genotyping, which can help to
control the false discovery rate (FDR). Finally, we integrate these
ideas into our sSNV genotyper SCAN-SNV and apply it to a
scDNA-seq benchmarking data set.

In general, candidate mutations supported by a high fraction of
sequencing reads are less likely to be artifacts than low VAF
candidates. However, even high VAF candidates must be carefully
examined in scDNA-seq data because a considerable number of
single-cell artifacts attain high VAF due to allelic imbalance. In
Fig. 2a, we provide an example of a high VAF (44%) artifact
present in a single neuron?. Although the high VAF is promising
initially, the nearby hSNP rs10872298 (a well-characterized
polymorphism, also found in bulk samples of the same
individuals) is supported by 94% of reads, indicating that the
region is severely affected by allelic imbalance. Therefore,
acceptable candidate mutation VAFs should be similar to either
6 or 94% since all reads from the mutated allele should support
the sSSNV. On the other hand, a single-stranded, pre-amplification
artifact on the over-amplified allele would be supported by half of
reads from that allele on average (94%/2 = 47%, Fig. 1c), which
closely matches the observed VAF. This suggests the candidate
sSNV should be rejected despite its high VAF and demonstrates
the utility of AB in evaluating the fraction of reads supporting a
mutation.

However, this simple method to estimate AB and apply it to
candidate sSNVs is problematic. First, although the hSNP in Fig.
2a is very close (20bp) to the candidate sSNV, the average
distance between credible hSNPs in the data analyzed here is
~1500 bp. Thus, a robust estimate of AB should account for the
distance from the neighboring hSNPs. Second, VAF at an hSNP
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Fig. 1 scDNA-seq artifacts. scDNA-seq analysis is complicated by a combination of imbalanced amplification of homologous alleles (allelic imbalance) and
early artifacts that affect a large fraction of initial DNA. a MDA is a non-linear amplification process. DNA strands displaced by replication are immediately
available for repeated rounds of replication, which can lead to imbalanced amplification between homologous alleles. Single cell sequencing depth is the
sum of allele-specific sequencing depths, represented by a stacked depth plot. Pink: sequencing depth of maternal allele; blue: paternal allele. b Routine
DNA damage during extraction protocols can disproportionately impact single cell DNA. Bulk DNA damage is mostly washed out since spontaneous errors
are unlikely to recur independently on multiple molecules. However, damage to a single cell's genome can affect a large amount (25%; single-stranded
error) of the initial template. In an idealized MDA process, MDA replicates all four initial strands (two molecules) of DNA to produce eight strands (four
molecules). A random polymerase misincorporation error would affect 1 out of 8 DNA strands, affecting 12.5% of the DNA. ¢ Allelic imbalance affects the
VAF of both true mutations and artifacts. Over amplification of an allele harboring early single-stranded damage (red) can inflate the artifact to a mutation-
like VAF while a true mutation (green) can be reduced to low VAF. d Without allelic imbalance, heterozygous SNV VAFs would be tightly distributed

around 50% due to random sampling effects. However, allelic imbalance causes VAFs in scDNA-seq to be significantly over-dispersed symmetrically

around 50%

can be a noisy estimator of AB at typical whole-genome
sequencing depths. For example, an approximate 95% AB
confidence interval in Fig. 2a ranges from 86 to 100% and would
widen at lower sequencing depth. It is therefore important to
model this noise and to incorporate data from as many
informative hSNPs as possible to increase the precision of the
estimate.

Estimating allele balance genome-wide. To address these issues,
we developed a genome-wide AB model that conceptualizes AB
as a smooth curve along the genome representing the fraction of
DNA amplicons derived from one (arbitrarily chosen) of the two
alleles. The model is based on the principle that AB measured at
an hSNP is most applicable in the immediate vicinity and
becomes increasingly less informative at more distant loci. This
happens because amplification products covering the hSNP site
also cover nearby genomic loci with high probability, leading to
similar levels of amplification and therefore similar AB (Fig. 2b).
Sites further away from the hSNP are less likely to be amplified
together, allowing for different amplification levels and possibly
different AB. Therefore, the distance at which AB measurements
remain correlated depends on the distribution of amplicon sizes,
with larger sizes corresponding to slowly changing AB curves

(Fig. 2¢). Average amplicon sizes for MDA can range from ~5 to
10 kb but can vary substantially between samples even when the
same amplification protocol is followed. We employ a Gaussian
process to formally model how AB correlation decays as a
function of distance and to combine information from multiple
hSNPs in a statistically principled way for prediction of the AB at
any genomic position (see Methods section).

Figure 2d illustrates how the model is trained and applied. The
input data are the locations of phased, credible hSNPs from an
external source (e.g., matched bulk sequencing data or a SNP
database) and the number of reads supporting the variant and
reference alleles at each hSNP in the single cell. To determine the
likely AB values at the hSNP, read counts—not VAFs—are used
in a binomial model to account for random fluctuations due read
sampling. If adjacent hSNPs are located on opposite alleles, a
sudden, but spurious, change in AB might appear (Fig. 2d, gray
line), and this could severely impede learning the AB correlation
properties. We solve this by phasing hSNPs and standardizing all
AB measurements to an arbitrary but consistent allele. The AB
model is trained by choosing the AB correlation function that
maximizes the model likelihood over phased hSNPs. To infer AB
at a site of interest, the Gaussian process produces a Bayesian
posterior AB distribution using the learned correlation function
to automatically find and combine information from all
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Fig. 2 The allele balance model helps to identify single cell artifacts. a A single cell artifact (left, green) attains high VAF (44%). The region is affected by
allelic imbalance as evidenced by the hSNP with VAF 94% (right, blue). The candidate sSNV should present with VAF ~ 6% or VAF % 94%. b MDA
polymerase (green) randomly dissociates from the template DNA belonging to one allele (black), creating amplicons (gray) of various lengths. Nearby
sites are highly likely to be amplified by the same polymerase, but the probability decreases for more distant sites. This creates a correlation in allele-
specific amplification levels between nearby sites (blue, orange). The process occurs independently on both homologous alleles, leading to a stable allele
balance in a small genomic locus. € Long amplicons cause allele-specific read depths (blue, paternal allele; pink, maternal allele) to change more slowly
along the genome. When each allele is more stable, so is the allelic balance. The AB correlation function quantifies allele balance stability. d lllustration of
AB modeling and estimation. Reads at hSNPs can be assigned to alleles based on whether they contain reference- or variant-supporting bases. This allows
allele-specific depth, and therefore AB, to be estimated at the hSNP. AB outside of hSNP loci is inferred (thick black line) using a Gaussian process
parameterized by the AB correlation function. A binomial read sampling model determines how closely the inferred AB curve should follow the noisy hSNP
measurements (error bars: 95% confidence intervals). Phasing hSNPs allows the paternal SNP (blue) VAF to be adjusted to (1 - VAF) to be consistent with
the surrounding maternal SNPs, which is necessary to produce long-range allele balance estimates. The shown candidate sSNV, despite achieving very high
VAF, is likely an error since it does not match the local amplification balance. e The AB model applied to a 200 kb window around the candidate sSNV
shown in (a). The artifact (red) at VAF = 44% is highly inconsistent with the model's estimated AB of 89% (black line) and falls well outside of the 95%
probability interval (gray envelope)

informative hSNPs. To evaluate candidate sSNV mutations, we large genomic regions devoid of hSNPs. The model is also

built three statistical tests based on AB predictions: (1) an allele
balance consistency (ABC) test to determine whether a candidate
is consistent with the local AB; (2) a test for pre-amplification
artifacts which looks for candidate mutations occurring on
roughly half of reads from either allele; and (3) a test for early
amplification artifacts which, under an ideal amplification
process, occur on one quarter of reads from either allele (see
Methods).

We applied the AB model to a 200 kb window around the locus
in Fig. 2a. As shown in Fig. 2e, the FP sSNV (red) is visually
inconsistent with the AB in its region, lying well outside of the
95% confidence interval (gray envelope). The candidate sSNV is
rejected by the ABC test with p-value 1.8 x 1076 and is instead
consistent with a pre-amplification artifact (p-value = 0.54).

Despite the improved ability to reject scDNA-seq artifacts
made possible by our model, it remains difficult to predict AB in

susceptible to errors in hSNP phasing in which the variant is
assigned to the incorrect allele. However, phasing errors are
infrequent and only produce a noticeable shift in AB in
imbalanced regions. It is important to note that the model does
not account for copy number changes or structural variations,
which can alter VAF and affect the apparent AB, and assumes
that the two strands of DNA from a single allele are equally
amplified. If a single DNA strand went completely unamplified,
then physical scDNA-seq artifacts could present at the same VAF
as true mutations. Finally, in regions with specific AB values, VAF
alone may not be sufficient to distinguish artifacts from true
sSNVs regardless of sequencing depth. For example, when the
allele balance is 2:1, both a true sSNV on the under-amplified
allele and a pre-amplification artifact on the over-amplified allele
would attain VAF = 1/3 on average. SCAN-SNV rejects both true
sSNVs and artifacts in such regions by the pre-amplification
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Fig. 3 SCAN-SNV FDR tuning strategy. Somatic SNVs and hSNPs are
supported by 50% of DNA prior to amplification in single cells. The shapes
of VAF distributions for the two mutation types should be similar because
both are equally affected by allelic imbalance, but artifacts in the candidate
sSNV set (red line) usually create an enrichment at low VAF compared
with hSNPs (black line). VAFs for the unknown number of true mutation
among candidate sSNVs (green area) should be distributed similarly to
hSNPs. Potential values for the total number of true sSSNVs N (dashed lines)
can be evaluated by first distributing the N mutations according to the hSNP
VAFs and then ensuring the predicted numbers of sSNVs at each VAF do
not exceed the number of candidates at that VAF. The largest such N
provides an upper bound on the number of somatic mutations. Given N, a
lower bound on the fraction of artifacts amongst sSNVs at any VAF can be
estimated

artifact test; a similar argument applies to regions with 4:1 allele
balance and the amplification artifact test. As a result, SCAN-
SNV rarely has power to call SNVs with VAF < ~40% at typical
whole-genome sequencing depths of 30x.

Tuning calling thresholds to account for artifact prevalence.
For the statistical tests derived from the AB model, p-value
thresholds for calling must be set. Because scDNA-seq artifacts
tend to be enriched at low VAF (Fig. 3, red curve), we reasoned
that increasing the stringency of p-value thresholds for low VAF
candidate mutations would increase accuracy. In particular, a p-
value threshold « can be related to the false discovery rate by

aN,

FDR ~ — A
aNy + (1 — )Ny

(1)

where f3 is the type II error rate resulting from the choice of o; Nr,
and N, are the number of true mutations and artifacts in the
candidate sSNV set, respectively. Given suitable estimators of Ny
and Ny, it would be possible to adjust p-value thresholds « to
target a user-supplied FDR.

We therefore developed a method to estimate an upper bound
on Nr by exploiting the fact that hSNPs and somatic SNVs are
present on 50% of DNA molecules prior to amplification and are
equally affected by allelic imbalance. Under the assumption that
somatic SNVs occur in diploid regions and are approximately
uniformly scattered across the genome, VAF distributions for
hSNPs and sSNVs should be similarly shaped. The unknown
subset of true sSNVs resides in the larger set of candidate sSNV's
and should form a VAF distribution similar to that of hSNPs (Fig.
3). We employ a heuristic to find the largest number of true
sSNVs N that fits beneath the candidate VAF distribution when
distributed according to the hSNP VAFs (see Methods). Nt can
be combined with the hSNP VAF distribution to estimate the
number of true mutations and artifacts at each specific VAF,
allowing the determination of VAF-specific p-value thresholds
corresponding to the desired FDR (see Methods). This does not
constitute formal FDR control, but rather provides a rough guide
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non-reference evidence and discovers germline or clonal hSNPs from bulk.
Phased hSNPs serve as a training set to learn AB correlation patterns,
predict AB at candidate sSNV loci and estimate artifact prevalence. Only
candidate sSNVs passing all filters are reported as putative mutations

to increasing stringency for sSNV classes that are contaminated
by a large artifact burden.

SCAN-SNV: genotyping sSNVs in MDA-amplified single cells.
We combined the AB model and automatic threshold tuning to
create SCAN-SNV (Fig. 4). An overview of the method follows.
First, GATK!! HaplotypeCaller is jointly applied to both single
cell and bulk sequencing data to generate a genome-wide list of
non-reference sites and their respective variant and reference read
counts. The calls in the matched bulk data are taken as hSNPs,
which are then phased by SHAPEIT2!2 and used to train the AB
model.

Somatic SNV genotyping begins by defining a set of candidate
sSNVs using the lenient read support requirements shown in
Fig. 4. Their VAF distribution is then compared with the phased
hSNP VAF distribution to estimate the artifact burden and
somatic mutation rate. The AB model’s correlation function is fit
separately for each chromosome by inspecting single-cell reads at
phased hSNPs. Finally, AB is estimated at every candidate sSSNV
and several filters designed to remove single cell artifacts are
applied. Primary filters are based on the AB model and include
the three previously described statistical tests. The artifact
statistical tests are tuned at every candidate site to obey a user-
specified target false discovery rate given the estimates of artifact
prevalence. Secondary filters remove candidate sSN'Vs covered by
an excessive number of reads containing indels or clipped reads
compared with reads at the same locus in the bulk sample.
Candidate sSNVs passing all filters are emitted as putative
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somatic SNVs. Finally, when multiple related single cells are
sequenced, an optional joint calling mode which relies on
repeated observations of allele balance consistency across samples
can be applied (see Methods).

Assessing the performance of SCAN-SNV. It is difficult to
validate somatic SN'Vs in scDNA-seq data because the genome of
a single cell is consumed during WGA, i.e., DNA extraction and
amplification cannot be replicated to identify artifacts. Validation
of putative sSSNVs by deep sequencing of excess amplified DNA
not used for initial sequencing can be confounded by the artifacts
that were introduced in the amplified DNA; validation in the
original tissue by very high-depth amplicon sequencing is pos-
sible? but only for clonal sSN'Vs with VAFs that are not too small.
We therefore assessed SCAN-SNV and other callers using two
approaches: a synthetic data set and a kindred cell system.

Performance assessment on simulated data. We first assessed
SCAN-SNV using a synthetic diploid (SD) male chromosome X
benchmarking data set. Hemizygous male X chromosomes have
been previously exploited in single-cell studies for estimating
FDR?, utilizing the fact all true mutations on the hemizygous
chromosome should have VAF close to 100%. However, a
hemizygous X chromosome cannot reproduce the challenge of
calling variants on a diploid chromosome because the AB should
be either 0 or 1 along most of the chromosome. We therefore
created synthetic diploid (SDs) X chromosomes by mixing
chromosome X reads from the single cells of two different male
donors with spiked-in mutations serving as a truth set. Unlike
purely simulated approaches, the SD X chromosomes retain the
patterns and characteristics of true MDA artifacts. Disadvantages
of SDs include the fact that data from different amplifications are
combined (although the same amplification protocol was fol-
lowed) and that chromosome X has a lower SNP density than
autosomes, which can disadvantage callers that depend on local
hSNPs (such as SCAN-SNV and SCcaller).

Briefly, reads from single cells were processed prior to mixing
by first identifying endogenous SNPs and sSNVs and then spiking
in 500 randomly placed mutations using BAMSurgeon!3 (Fig. 5a,
see Methods). Processed reads from 16 single cells from two male
donors?* were then downsampled and merged to create eight SDs
with mean 30x depth (Supplementary Table 1). A matching
synthetic diploid bulk sample was created by mixing bulk data for
the two male donors. To allow benchmarking of multi-sample
genotypers, some of the spike-in mutations were shared across
multiple SDs according to the phylogeny depicted in Fig. 5b.

SCAN-SNV achieved the lowest false positive rate (FPR),
improving by ~3-fold over SCcaller and Monovar in single-
sample mode and by ~30-fold over Monovar in joint mode (Fig.
5¢). When both shared and private spike-in mutations were
considered, sensitivity was very similar across the four single cell
genotypers (mean sensitivity 30-35%) with Monovar in joint
mode achieving the highest average recall. Notably, Monovar’s
allowance for up to one mutation supporting read in the matched
normal sample and lack of dbSNP filtration may lead to higher
sensitivity at the cost of increased FPR. The highest sensitivity
was attained by MuTect!# and GATK as expected, but the
number of FPs committed by these callers renders them
impractical for studies where low- to moderate mutation burdens
are expected.

To better assess multi-sample genotypers, sensitivity was also
assessed for shared spike-in mutations (Fig. 5d). As expected,
single-sample callers do not show increased sensitivity for
mutations supported by multiple samples. SCAN-SNV’s joint
mode, which calls mutations with good allele balance consistency

across several samples (see Methods), committed 10-fold fewer
errors than Monovar in joint mode and matched or exceeded
Monovar’s sensitivity for sSNVs shared by fewer than eight
samples. Although GATK HaplotypeCaller (90% sensitivity
target) performed well, the difference between its target (90%)
and actual performance (40-60% spike-in sensitivity) suggests
that it would be difficult to tune in practice.

Performance assessment using a kindred cell system. We also
validate the performance of our method using a kindred cell
system, in which one amplifies and sequences two or more very
closely related single cells (e.g., separated by <5 cell divisions) so
that essentially all somatic mutations are shared. This enables
discrimination between true mutations, which are shared between
cells, from spontaneous artifacts, which are unlikely to recur at
the same positions in multiple amplifications.

We therefore assessed the performance of SCAN-SNV with a
previously published kindred system!? which contains two MDA-
amplified single cells (IL-11 and IL-12) and an unamplified, single
cell-derived clone (IL-1c). Their experimental design (Fig. 6a)
also contains six non-kindred MDA-amplified single cells, three
unamplified single cell-derived clones and an unamplified bulk
sample that serves the role of a matched normal tissue.

In the previous analysis of the kindred group!?, sSNVs were
considered validated if they were called in a kindred single cell
and supported by 4 or more reads in the unamplified kindred
clone (IL-1c). This analysis relies solely on the unamplified cell
line bulk to prevent the validation of recurrent artifacts; however,
this strategy is questionable because the unamplified cell line bulk
cannot account for recurrent artifacts caused by amplification.
(We also found systematic alignment differences because the cell
line bulk and kindred group samples were sequenced using
different read lengths, 100 bp vs. 250 bp).

We undertook a more comprehensive approach to validation,
taking advantage of the information provided by the additional
nine single cell-derived samples (mean total coverage ~264x)
from the same cell line. We integrated calls from both GATK and
samtools!® to classify sSNVs as likely TPs, likely FPs, and
unknown, depending on the patterns of shared support across all
12 single cell-derived samples (see Methods, Supplementary
Table 2). Briefly, likely TP sSN'Vs must be supported by at least 50
total reads across all 13 samples, a minimum number of
mutation-harboring reads across the kindred group (number
determined by a mock analysis of non-kindred samples, see
Methods, Supplementary Fig. 1) and by at least two kindred
samples. Furthermore, to exclude recurrent artifacts, they must
not be supported any of the remaining non-kindred samples.
Likely TP sSNVs supported by all three kindred samples exclu-
sively (‘triple exclusive’; TRE) are the highest confidence somatic
mutations and are used to assess genotyper sensitivity. The
remaining sSNVs, which are either supported by one kindred
sample (singletons) or by samples outside of the kindred group,
are classified as likely FPs (see Methods, Supplementary Table 2).
Most singletons are physical scDNA-seq artifacts and the small
number of true mutations private to a single cell cannot be
validated by the kindred system. sSNVs supported by out-of-
kindred group samples (which could be true, subclonal muta-
tions) also appear to be primarily FPs, since they occur with
reproducibly low VAFs across samples (mean VAF = 16%) when
true somatic mutations inherited by multiple single-cell samples
should not have consistently low VAFs (Fig. 6b). We therefore
assessed FDR by the fraction of likely FP sSNV calls over all
positive calls.

SCAN-SNV called 397 sSNVs in the kindred single cell IL-12
with an estimated FDR of 24% and an estimated sensitivity of
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44% (Fig. 6¢). As previously discussed, sSNVs and hSNPs should
have similar VAF distributions. Indeed, above VAF =50%,
mutations called by SCAN-SNV follow the hSNP distribution
(Fig. 6d bottom) reasonably well. However, there were very few
SCAN-SNV calls below VAF =50%, due to reduced power to
distinguish low VAF true mutations from artifacts. Power to
resolve the two cases depends on sequencing depth, and we
anticipate that SCAN-SNV is capable of detecting more low VAF
mutations in samples with higher depth.

SCAN-SNV performs favorably compared with SCcaller, which
showed slightly increased sSNV sensitivity (44 vs. 50% of TREs
recovered) but produced a call set highly enriched for likely FPs,
leading to a ~3-fold increase in estimated FDR (24 vs. 64%).
Independent of our assessment scheme, the large number of likely
FPs called by SCcaller is evident by a considerable skew toward
low VAF sSNVs that is not observed for hSNPs (Fig. 6d, middle
compared with bottom). Monovar achieved the highest sensitivity
when run jointly on all eight single cells (54%) but was
comparatively low when run on a single sample (34%). However,
Monovar produced a very large number of FP calls in both modes
(FDR: 92% single, 98% joint).

As shown in Fig. 6e, mutation signatures based on trinucleotide
frequencies!® for TRE sSNVs are characterized by the pattern of

C>A mutations similar to a previously observed signature
associated with cell culture!”. This is consistent with the
anticipated mutagenic process acting in these samples, which
were all taken from a human fibroblast cell line. The mutational
pattern for SCAN-SNV calls in IL-12 was concordant with that of
TRE sSNVs. However, SCcaller sSNV's for IL-12 were generally
enriched for T>C and T>G mutations and contained
pronounced peaks for mutations that would create homopolymer
runs (e.g, ACA>AAA, GCG> GGG, etc.). We speculate that
these peaks may correspond to artefactual calls in repetitive
regions such as microsatellites, where accurate alignment is
particularly difficult. Monovar calls contained peaks at all ANA
and TNT contexts (first and last columns of each color group)
and shared SCcaller’s enrichment for T > C and T > G mutations
in general. Monovar in multi-sample mode shared these
characteristics and also contained a striking peak for TCA >
TAA mutations, which may point to a reason for the increase in
FPR (Supplementary Fig. 2).

Detection of atypical MDA amplification. SCAN-SNV was also
applied to the other kindred single cell, IL-11. In this cell,
196 sSNVs were called with an estimated FDR of 26% and TRE
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Fig. 6 SCAN-SNV performance assessed by a kindred cell system. a Twelve single cell-derived samples from a human fibroblast cell line'®. Somatic
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replicates of single cells and enables assessment. True mutations (green stars) are likely to be supported by several kindred samples; scDNA-seq artifacts,
however, should be private. b sSNVs in kindred samples with non-kindred support may be subclonal sSNVs. If true, each single cell sample inheriting the
subclonal sSNV provides an independent VAF measurement. For true subclonal mutations, the average VAF over many samples should be ~50%. ¢ Single
cell genotyper performance on kindred cell IL-12. TRE sensitivity, percent of triple exclusive sites (TREs) recovered; FDR, fraction of total calls classified as
likely FPs. d sSNV calls for both genotypers are binned by VAF and classified as either TRE, likely TP or likely FP based on which of the 13 samples contain
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11. g Same as (d) for kindred cell IL-11. The VAF distribution of both hSNPs and TRE sSNVs is very different from IL-12, suggesting substantial differences in

amplification or cell quality

sensitivity of 19% (Fig. 6f). SCAN-SNV again compared favorably
with SCcaller in FDR, attaining a ~3-fold reduction (26 vs. 74%),
similar to IL-12. But it showed marked reduction in sSNV sen-
sitivity compared with SCcaller (19 vs. 39%) and its own per-
formance on IL-12 (explained below). Monovar’s single-sample
sensitivity also suffered (8 vs. 34%), but its sensitivity in joint
mode was unaffected (56 vs. 54%). Again, however, Monovar’s
FDR remained exceptionally high (97-99%).

Despite the fact that both kindred cells were very closely related
and processed according to the same protocols, SCAN-SNV
immediately revealed two clear differences in the quality of the
two sequencing libraries that may explain the change in
genotyping accuracy. First, hSNPs in IL-11 were considerably
more concentrated around VAF = 50% than in IL-12 (Fig. 6d, g,

bottom). Second, AB correlation decayed more quickly at short
distances in IL-11 than in IL-12. hSNP VAF distributions and AB
correlation functions for the six additional, non-kindred MDA-
amplified single cells also closely matched the VAF and AB
patterns of either IL-11 or IL-12 (Fig. 7a, b), forming two distinct
classes: well-balanced MDA products resembling IL-11 and
imbalanced products resembling IL-12. The same two classes
could also be created by separating single cells on the basis of
genome-wide copy number profiles, which were computed for all
samples using Ginkgo!8 (Supplementary Fig. 3). It is natural to
assume these differences are caused by random variability in the
quality of WGA; however, the observation that samples cluster
into two distinct classes rather than varying more continuously is
inconsistent with this hypothesis.
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Identification of an accidental doublet. One explanation for the
well-balanced MDA products is that the cells had increased DNA
content prior to amplification. For example, when amplification
begins with two genomes rather than one, the additional copies
reduce the variability in read depth and lead to more balanced
amplification between alleles—a fact which has been exploited
previously!. In the present data set, the increase in DNA content
could have been due to (i) cells in G2 or early M phase; or (ii) the
accidental isolation of two cells rather than one (a doublet). In
either scenario, AB correlation should decay more rapidly since
each allele is initially represented by two copies which are
amplified independently. Indeed, when we simulated this
increased DNA content by combining reads from two imbalanced
samples (see Methods), its hSNP VAF distributions and AB

correlation functions matched those of well-balanced products
(Fig. 7a, b, dashed lines).

Further analysis of sSSNV VAF distributions revealed that IL-11
is highly likely to be a doublet. Unlike hSNPs, sSSNVs may or may
not be shared by both cells in the doublet. Unshared sSNVs
would be present on 25% of DNA prior to amplification whereas
shared sSNVs would be supported by 50% (Fig. 7c). Therefore, a
positive indicator for a doublet is a peak at VAF = 25% in sSNV
VAFs. We computed sSNV distributions for IL-11 and IL-12
using TREs to avoid genotyper bias (Fig. 7d) and confirmed the
doublet hypothesis for IL-11 by observing the characteristic peak
at VAF =25% for IL-11 but not in IL-12.

An accidental doublet explains SCAN-SNV’s reduced sensitiv-
ity for IL-11: sSN'V's not shared by both cells in the doublet would
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be filtered because they occur at the same VAF expected by our
model of pre-amplification artifacts.

Performance on single tumor cells. SCAN-SNV was developed
with the assumption that all DNA sequences are diploid. When
this assumption does not hold, e.g., when sequencing single cells
from tumors, it may perform suboptimally. To test its perfor-
mance in aneuploid cells, we applied it and other callers to four
single estrogen receptor positive breast cancer (ERBC) cells that
harbor several chromosome-level copy number changes!. This
data set was not sufficient to construct a truth set, so callers were
judged by the fraction of sSNVs that were supported either in
bulk sequencing of the same ERBC cancer cell population or in
multiple single cells (clonal support). SCAN-SNV’s calls were
most frequently clonally supported (55% clonal support, 955 total
sSNV calls, Supplementary Fig. 4a) whereas other callers either
produced relatively few calls (SCcaller, 35% clonal support, 532
calls) or recovered more clonally supported sSNVs at the cost of
many suspect calls (Monovar and MuTect, 5-7% clonal support
and 18,049-66,008 calls) (Supplementary Fig. 4b). Clonal support
rates for SCAN-SNV calls were computed separately for haploid,
diploid and triploid chromosomes to explore the effects of vio-
lating the diploid assumption (Supplementary Fig. 4c). Haploid
chromosomes showed slightly increased clonal support (mean
60%) compared with diploid and triploid chromosomes (48% and
52%, respectively). Increased performance on haploid chromo-
somes is expected since true mutations will have VAFs near 100%
while the similar performance for diploids and triploids provides
evidence that SCAN-SNV can gracefully handle some violations
of its diploid assumption. We caution that chromosome-level
copy number changes are mild violations of the diploid
assumption and that performance may degrade under more
severe violations such as chromothripsis, structural variants, and
sub-chromosomal copy number variants (CNVs).

Discussion

Analysis of scDNA-seq data presents many challenges. For sSNV
detection, they include filtration of high VAF artifacts caused by
cell lysis, whole-genome amplification and recurrent analysis
artifacts such as read misalignments. Our analyses suggest that
most single-cell genotypers have similar sensitivities for detecting
somatic SNVs in diploid cells but commit false positive errors at
substantially different rates. SCAN-SNV achieves unprecedented
specificity by estimating allelic imbalance and only calling
mutations when sufficient power is available to avoid false posi-
tives. The efficacy of our methodology was further confirmed by
the unanticipated detection of a doublet.

In particular, SCAN-SNV outperforms SCcaller, the only
published genotyper for non-clonal SNVs in scDNA-seq data.
The only other genotyper designed for single cells is Monovar,
but it is intended for joint calling across multiple cells, and its
authors specifically advise users to remove private calls. Although
SCcaller also attempts to remove artifacts by estimating AB from
hSNPs, the lower false discovery rate (~3-fold reduction) for
SCAN-SNV stems from major improvements to both the method
of estimating AB and the genotyping procedure: (i) SCcaller
estimates AB by computing weighted moving averages of hSNP
VAFs over a fixed size sliding window, but these weights and
window sizes are not learned from real MDA data, not fit to
individual samples, and do not account for sequencing depth (i.e.,
a VAF = 50% hSNP covered by 10 reads will be treated the same
as a VAF = 50% hSNP covered by 100 reads, despite the fact that
the higher depth SNP contains more information); (ii) SCcaller
does not phase the VAFs used in the moving average and limits
its model to estimating the fraction of DNA from the most

amplified allele; (iii) SCcaller does not provide probability inter-
vals for AB estimates; (iv) SCcaller’s genotyping procedure does
not include a model for pre-amplification scDNA-seq errors,
which are expected to attain the highest VAFs; (v) SCcaller only
provides parameters to control sensitivity to germline hSNPs
rather than the FDR, which is more critical in scDNA-seq
applications where true mutations are often scarce compared with
artifacts; (vi) finally, SCcaller does not include power calculations
to determine which conditions (e.g., read depth, candidate sSSNV
VAF, AB) are necessary to reliably distinguish mutations from
artifacts.

We anticipate that our genotyping method, which primarily
depends on VAF, can be extended and improved through inte-
gration with non-VAF information such as physical read link-
agel®. The linkage approach can evaluate sSNV candidates that
reside on the same sequencing read as nearby hSNPs by com-
puting the apparent number of haplotypes at the locus. scDNA-
seq artifacts usually occur on a subset of reads from one allele,
creating evidence for three haplotypes at the locus when a single
cell should contain only two. Although linkage can resolve sSSNV's
intractable to VAF analysis, its main disadvantage is that it
applies only to a relatively small fraction of the genome
(~20-25%).

Further, our AB model can also aid detection of CNVs in
scDNA-seq data. AB values in regions affected by CNVs will not
oscillate around AB =1/2 as they would in diploid regions, e.g.,
AB in a single-copy gain region should oscillate around 1/3 or 2/3
whereas AB in a single-copy loss would tend toward AB =0 or 1.
To distinguish CNVs from artefactual shifts in AB caused by
imbalanced amplification, one could determine the typical size of
such AB # 1/2 regions resulting from allelic imbalance from our
model. Candidate CNV's significantly longer than allelic imbal-
ance segments are more likely to be true events.

In summary, our model of AB, approach to single-cell SSNV
genotyping and benchmarking processes are highly useful in their
current form and will likely provide a solid foundation for future
improvements to single-cell genotyping. The AB framework
developed here is likely to be helpful for detecting other point-like
mutation types (indels) or mutations with point-like features (i.e.,
breakpoints for structural rearrangements).

Methods

hSNP training set construction. SCAN-SNV determines hSNPs by joint appli-
cation of GATK HaplotypeCaller to all single cell and bulk BAMs and subsequently
applying SHAPEIT?2 to autosomal, biallelic, single nucleotide non-reference sites
called in the bulk sample. The 1000 Genomes Phase 3 integrated haplotype panel
dated October 2014 is used for analyses in this report. Only heterozygous SNPs that
were successfully phased by this process were treated as credible hSNPs.

Modeling allele balance. Let Y;, D;, and X; be the observed number of mutation
supporting reads, total reads and genomic position (in base pairs) at locus i. We
model the allele balance B; as a latent variable by

Y,|D,, X, B, ~ Bin(Di,Hﬁ)

i1 2

BiIXiaas b-,cdeGP(ka(Xivx))7 (2)
k(xy,x,) = exp(a - 7(’5‘;?2)) + exp (c —zal )

where GP refers to a Gaussian process, k(x;, x,) is the covariance function (an
unnormalized version of the correlation function discussed in the main text) and a,
b, ¢, and d are model parameters. All observations (Y; and D;) are conditionally
independent given B;. A latent variable model is appropriate for modeling AB since
it is a property of the amplified DNA that is only indirectly observed by sequencing
reads. Because a Gaussian process is used to model AB, we allow B; to range over
(—oo, ) and convert it to a value in [0, 1] using the logistic transform

1/(1 + e B). Although we will often refer to B; as allele balance, the logistic
transform must be applied to arrive at the intuitive interpretation of AB as the
fraction of amplified DNA derived from one allele. The form of the covariance
function is an arbitrary choice. We chose to combine two radial basis functions so
that one could account for very short-range effects, which tend to inflate corre-
lation due to shared reads between loci, and the other could account for medium-
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to long-range effects driven by MDA amplicon size. A noteworthy property of k(x;,
x;) is that it gives the covariance between two AB values at positions x; and x; using

only the distance between the two sites )xi — xj‘.

Fitting the allele balance correlation function. The covariance function k con-
tains all model parameters. Parameters are fit separately for each chromosome by
maximizing the likelihood function using a grid search. The likelihood function is

v =) — = = — = —
L(u,b,c,d\Y,D,X) 7fR,,P(Y|B,D) P(B\x,a,b,c,d)ds,

Binomial PMF  Multivariate normal PDF

= fa (1‘[ Bin(Y,.;D[,HE%B,)) ~det(2nK)‘%exp{ﬂ B K- B}dﬁ' .

T
Y- D,-log(l-ﬁ-eB')——% KB }dB

M=

n T
o det(27K)~ fmz exp{

1i=1

(K),y= k(X ;).

Here, n denotes the number of hSNPs on the chromosome being fit (which
typically ranges from 10% to 10°) and the parameters a, b, ¢, and d are required to
calculate the covariance matrix K, but are suppressed for brevity. The vectors
Y,D,and X contain all # observations on the chromosome being fit. Computing
this likelihood function is difficult: the integrand has no closed form solution and is
also impractical to approximate numerically because it involves integrating over the
very high dimensional space R". We therefore employ two approximations to
compute L in reasonable time: (1) each chromosome is divided into non-
overlapping blocks of 100 hSNPs, which are treated as independent, and (2) the
Laplace approximation is applied to estimate the reduced-dimension integral. The
resulting approximation for a single chromosome is

/100

L(a, b, dY. D, X) % [ Lice (.0, c,dl?h,ﬁb,fb), (4)
b=1

where the vectors Y,, D,, X, refer to observations for the bth block of 100 hSNPs.
The basic idea behind the Laplace approximation is to replace the intractable
integrand with an easy-to-integrate Gaussian function. To do this, a second order
Taylor expansion around the maximizer of the unapproximated distribution is
used, giving the multivariate normal posterior

— - = = ~ -1
BisnelY, D, X ~ MVN(BhSva(K"‘W ) )-,
N T
B = argmax{ <H Bin(Yi;Di,lﬁ%E)) ~det(2nK)7%exp{—%§) K’IF}},
BeRr" i
W= VvV, 1ogp( Bysxps D)
)

To compute these values and the final approximate log likelihood, we use
algorithm 3.1 from ref. 20 with the modification

log P(Y;|B;,D;) = Y;B; — D;log(1 + €%). (6)

The maximizer Bygyp is approximated by Newton-Raphson iteration. Iteration
continues until the nth iteration’s estimate of the log-likelihood function log P(™
satisfies

|10g P
[log P(")

with € = v/2.2x 10716 or the number of iterations exceeds n = 50.

— log P(n—1)
x < @)

Predicting allele balance at somatic SNV candidates. AB at each sSNV can-
didate locus is predicted following algorithm 3.220, except that we are interested
only in the mean and variances of the latent GP. Only hSNPs within 200 kb of each
candidate sSNV are considered. Since this is an order of magnitude longer than
typical MDA amplicon sizes, all relevant hSNPs should be included. Like the fitting
process, prediction also requires an approximation of the true distribution due to
analytical intractability. First, hSNP ABs in the window centered at the candidate
sSNV are approximated by the Laplace approximation described in the previous
section, which provides Bygp and the Hessian W. The posterior distribution of the
AB at candidate location X snv is then the normal distribution given by:

~ - 5
BionvIXssnvs Bronps X ~ N(p, 0),
T is
U= k(Xsst» X) K™ Bpsnps (8)
—\T a1 —
0* = k(Xesnv: Xssnv) — k(Xsst X) (K+w™) k(XsSNw X)‘
Allele balance consistency test. The allele balance consistency (ABC) test ensures

that candidate sSNVs reasonably match the local AB. The AB model estimates the
fraction of amplicons derived from one of the two alleles, but a somatic mutation

could occur on either. We therefore choose the AB that most closely matches the
VAF of the candidate sSSNV using the heuristic
| 0

(10)

VAF —

U =arg min{
x€{u,—p}

The ABC null model is then

14+e™

Y|B ~ Bin(DA,H%),
B, 0® ~ NG, 0.

The probability of y reads supporting the sSSNV is found by marginalizing over
the posterior AB distribution

P(Y = ylu*,0%) = /P(Y:y\B =b)-P(B=1bly*,d*)db (11)

. >~ /D 1 Yioeh \PT g e
= ylu*. ?) = 2 12
P =) 1m<y>(1+e*b> (He*) Vit T 0

The integral is approximated using Gauss-Hermite quadrature with 128
nodes?!. Let k be the observed number of variant-supporting reads at a locus. The
ABC p-value papc is computed by summing all events with lower probability of
occurrence than k:

Pasc = ZP(Y =ylu*,0*) - I{P(Y = ylu*,0*) < P(Y =klu",0*) },  (13)

y=0

where I(-) is the indicator function.

Artifact statistical tests. Artifact statistical tests are designed to detect scDNA-
seq errors with the greatest chance of attaining high VAF: pre-amplification errors,
which often occur during cell lysis, and first-round amplification errors. The
artifact tests follow the ABC test except that the null model includes the possibility
of the error occurring on either allele, meaning there is no need to compute p*.
Let allele 1 be the allele directly modeled by B and allele 2 be the other allele. Then
the null artifact model is the mixture distribution given by

1te?

For pre-amplification artifacts f= 2, meaning that a pre-amplification artifact is
expected to occur on half of amplicons derived from the artifact-harboring allele.
This corresponds to two assumptions: (1) pre-amplification artifacts are single-
stranded and (2) the two strands are equally amplified. Amplification artifacts are
modeled with f= 4, reflecting the following ideal amplification scenario. DNA from
one allele is initially double-stranded. Suppose both strands of the allele are fully
replicated exactly once before any other replication occurs, producing four strands
of DNA. Polymerase incorporation errors occurring during this process will
therefore be present on one-fourth of strands from this allele. Assume
amplification of the four strands continues without additional errors, eventually
producing approximately equal numbers of amplicons from each strand. A
misincorporation error in the first round will therefore be supported by one-
quarter of molecules in the amplicon pool for this allele.

Y|B, allelel ~ Bin(D,}ﬁ), Y|B,allele2 ~ Bm(D,f (
P(Y|B) =

(14)
3P(Y|D,allele 1) + 3 P(Y|D, allele 2).

Estimating artifact prevalence. Under certain assumptions, it is possible to
bound the number of true sSSNVs in a set of candidate sSNVs using a large enough
set of high confidence hSNPs. The necessary assumptions are that true sSSNVs are
present on 50% of DNA molecules prior to amplification (e.g., as would occur for a
fully diploid genome) and that true sSNVs are not too concentrated in specific
genomic regions, so that the sSSNV VAF distribution resembles hSNP VAFs. Under
these assumptions, the fraction of somatic SNVs at a specific VAF should not be
too different from the fraction of hSNPs at that same VAF. Using hSNPs as a guide,
the expected number of true sSNVs at each VAF can be computed for any Nt > 0.
When Nr is too large, the predicted number of true sSNVs for some VAFs will
exceed the number of candidate sSNVs at that VAF, making it evident that the
chosen Nr is likely inconsistent with the data.

We use a multinomial simulation to evaluate the consistency of several possible
values of Ny with the observed hSNPs and candidate sSNVs. Only successfully
phased hSNPs are used for these simulations. hSNPs H, and sSNVs §, falling into
20 equally sized VAF bins are counted such that:

H, = #{hSNPs: 0.00 < VAF<0.05},
H, = #{hSNPs: 0.05 < VAF<0.10},

S, = #{sSNVs: 0.00 < VAF<0.05},
= #{sSNVs: 0.05 < VAF <0.10},

H,y = #{hSNPs: 0.95 < VAF < 1.00},  S,, = #{sSNVs: 0.95 < VAF < 1.00}.

(15)

We assess the consistency of any value of Ny >0 with the data as follows. First,
we simulate the numbers of sSSNVs in each VAF bin 1000 times by drawing from a
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multinomial distribution with parameters matching the binned hSNPs

v H H 1000 20
{S(') NMultin0m<NT,ﬁl,~"7%)} ) szHV'
i=1

v=1

(16)

The fraction Fy_ of simulations consistent with the observed sSNV candidate
counts evaluates the fit of Ny to the data.

F —mez(s“ks AASH<S ) (17)
N = 1000 - 1 1 20 20

This process is repeated for several values of Nt ranging from 1 to the total
number of sSSNV candidates. The upper bound on the somatic mutation burden is
the largest Nt such that FNl > 0.005. We choose such a lenient criterion to account
for the fact that inconsistency occurs even if only a single VAF bin out of 20
exceeds the candidate SSNV count at that VAF.

Given the estimate of Ny, the expected numbers of true sSSNVs and artifacts in

VAF bin i are
H; H;
NTA,v=NTE7 N, ; = maxq Ny l_ﬁ ,0.1 5.

Since these values represent expectations, they may be <1. The arbitrary
minimum value of 0.1 for the artifact burden is to avoid FDR estimates of 0%.

The preceding procedure is applied separately to sSNVs and hSNPs with the
same sequencing depth; all sSSNVs and hSNPs with depth greater than the 90th
percentile of hSNPs are treated together. This produces Nr,; p and Ny ;p, which
estimate the number of true mutations and artifacts for each VAF and depth.

(18)

Determining p-value cutoffs. The ABC test uses a fixed cutoff of 0.05. p-value
cutoffs for both artifact tests are tuned at every sSNV candidate to obey a user-
supplied false discovery rate 6. This is possible because the alternative hypothesis of
an artifact test—that the site is a true mutation—provides a specific model with
which statistical power (1 — ) can be computed for any p-value cutoff a. Highest
density regions?? are used to account for the multi-modal nature of the artifact
models and the integer read counts. Given the artifact prevalence estimates from
the previous section for the VAF and depth of the candidate sSNV, the expected
FDR for a p-value cutoff & can be computed using the relationship provided in the
main text. The largest « satisfying the requested FDR 6 at each sSNV is used. This
procedure does not formally control the FDR, as this would require formal models
of Nt and N, rather than the heuristics used here.

Multi-sample calling. SCAN-SNV’s joint calling model is based on the idea that
true mutations should match the estimated AB in every sample in which they are
observed. We define a joint statistic J as the product of ABC p-values for all samples
with any mutation supporting reads. Each ABC p-value is subject to a penalty
factor of 1/10 if the standard deviation of the GP at the locus exceeds 1. J-statistics
are also computed for 4000 randomly selected hSNPs which are then grouped
based on the number of single cells supporting the hSNP. Ninetieth percentiles are
computed for each group of hSNP J-statistics and used as thresholds for sSNVs
supported by the same number of samples. Unlike single-sample calls, joint calls
are not filtered by the artifact statistical tests or excess indel and read clipping
filters.

Excess indel and read clipping filters. Artefactual sSSNVs may result from nearby
misalignments or areas of poor alignment. These may be single-cell specific if, e.g.,
an MDA chimera?3 event occurred. One sign that a locus may be compromised in a
single cell is a large number of sequencing reads with indels or soft- or hard
clipping which is not also seen in the matched bulk. BWA-MEM reports these
events in the CIGAR string as D, I, S, and H operations. We therefore sought to
determine how many indel (I, D) or clipping (H, S) operations should be tolerated
at somatic SNV candidates by comparing to the rate of the same CIGAR operations
in bulk at the same locus. We therefore compute the fraction of reads containing
indel and clip operations for both bulk and single cell at each candidate sSSNV and a
set of 4000 randomly chosen hSNPs. The hSNPs are used to build 2-dimensional
empirical distributions (Fsingle cellop> Fauiop), Where Fr op is the fraction of
CIGAR operations of type OP (either indel or clip) spanning a single hSNP in the
specified sample type T. Similar quantities are computed for each candidate
somatic SNV. Candidates are filtered if they exceed the 90th percentile of either
(i.e., indel or clip) hSNP empirical distribution.

Running SCAN-SNV. SCAN-SNV is implemented using Snakemake2* and dis-
tributed as a Conda?’ package. SCAN-SNV and all dependencies were installed
using Conda into a blank environment and the scansnv script was run with
default parameters. External databases used were the human reference genome
b37d5 (--ref), dbSNP 147 common variants (--dbsnp), and the 1000
Genomes Project phase 3 with X chromosome dated October 2014 provided by
SHAPEIT2 (--shapeit-panel). SCAN-SNV was run on a SLURM cluster
using the --drmaa flag. Candidate sSNVs that pass the ABC test, pre-
amplification and amplification artifact tests using a target FDR of 10%, and
excess indel and clipping tests are reported.

Running other somatic SNV callers. SCcaller version 1.1 was run as previously
reported!?. BAMs were converted to pileups using samtools version 1.3.1 with the
option -C50 and hSNPs were defined using dbSNP version 146. Single cell somatic
SNVs were called by applying SCcaller’s ~a varcall, -a cutoff and reasoning
v1.0 script in sequence with default parameters. As recommended on the Github
README, passing somatic mutations were required to have VAF > 1/8, filter
status = PASS, bulk status = refgenotype and must not have been observed in
dbSNP. The stringent artifact threshold corresponding to a« = 0.01 was used for
assessment.

Monovar commit 7b47571 was downloaded and the somatic calling strategy
reported previously? was mimicked as closely as possible; no script is provided for
identifying somatic mutations. Single cell BAMs were input to samtools version 1.9
with options ~BQO -d10000 —q 40, which was piped into the monovar.py script
with options -p 0.002 -a 0.2 -t 0.05 -m 2 as recommended by the authors.
To determine whether SNVs were somatic or germline, samtools was run with the
same options on matched bulk data. Somatic SNVs were determined by the
following filters: Monovar’s genotype string must not match . /. or 0/0;
minimum sequencing depth of 10 with at least 3 reads supporting the mutation; at
least 6 reads in bulk with no more than 1 mutation supporting read; and single-cell
VAF 2 10% for sSNVs with >100 depth or VAF > 15% for sSNVs with depth
between 20 and 100. Finally, sSNVs were filtered if any other call occurred within
10 bp. For joint calling, the VCF column FILTER=PASS was also required.

MuTect calls were produced by MuTect version 1.1.7. Although MuTect 2 is
now preferred, it relies on an external panel of normals for proper filtration. We
chose to use MuTect 1 because it is unclear to what extent MuTect 2 performance
would depend upon this panel and because no reference panel of normals is
publicly available. MuTect was run with default parameters except ~dt None and
COSMIC v7226 and dbSNP 147 (common variants) were passed to parameters
--cosmic and --dbsnp, respectively. All sSSNVs with FILTER=PASS were
retained.

GATK HaplotypeCaller was run jointly on all SD samples and mixed bulk with
the extra parameters -mmg 60 -rf BadCigar
--dontUseSoftClippedBases followed by VQSR with -mode SNP and
GATK best practices parameters for the HapMap, Omni, 1000 Genomes and
dbSNP databases. Somatic SNVs were filtered from the raw calls by requiring 0
mutation supporting reads, depth > 10 and genotype string 0/0 in bulk, any
single-cell genotype string other than . /. and 0/0, absence from dbSNP 147
common and a VQSR tranche status of at least 90% or 99% for sensitivity targets
90% and 99%, respectively.

Synthetic diploid read mixing. Aligned and processed BAMs for individuals 5087
and 5532 were downloaded from dbGaP study phs001485.v1.pl. Reads aligned to
chromosome X were extracted from each BAM and downsampled to an average of
15x using samtools view’s —s option. Spike-in mutations were then added to each
downsampled BAM as described below. Finally, a downsampled, spike-in carrying
BAM from each individual was mixed with samtools merge to create a single BAM
with ~30x mean depth (Supplementary Table 2).

Synthetic diploid spike-ins. First, a genomic blacklist was created to ensure that
spike-in mutations would not intersect with endogenous variants or artifacts,
pseudoautosomal regions (PARs), assembly gaps or common variant sites as
reported by dbSNP 147. To identify potential endogenous variants and artifacts,
GATK HaplotypeCaller was run jointly on all full-depth BAMs with default
parameters. A 5bp window centered at each position with non-reference reads
output by GATK was added to the blacklist. Similarly, 5 bp windows centered at
the position of every record in dbSNP 147 common were also added. Finally, the
blacklist was completed by adding 26 assembly gaps annotated by UCSC
(hgdownload.cse.ucsc.edu/goldenPath/hgl9/database/gap.txt.gz) and the hgl9
coordinates for PAR1 (60,001-2,699,520) and PAR2 (154,931,044-155,260,560). In
total, 3750 spike-in mutations (corresponding to 15 branches with 250 mutations
each) were created by choosing random positions from the non-blacklisted genome
and a random non-reference base. Two hundred and fifty mutations were assigned
to each branch of the phylogeny and spiked into one of the two downsampled
donor BAMs for all descendent SDs using BAMSurgeon (Supplementary Table 2).
Spike-ins were added at 100% VAF. A spike-in was considered successful if at least
1 alternate read survived BAMSurgeon’s mutation and realignment process. The
number of successful spike-ins ranged from 180 to 446, depending primarily on the
breadth of coverage of each single cell. BAMSurgeon was run with the following
parameters: ——force --mindepth 0 —-maxdepth 10000 --minmut-
reads 0 --ignoresnps --aligner mem. BAMSurgeon was modified by
adding the parameters —I 400, 90 to the BWA-MEM command because BWA
often cannot infer insert size characteristics in the small windows around spike in
mutations. Without this addition, the PROPER_PAIR BAM flag is often not set,
causing some mutation-carrying reads to be ignored by samtools. Actual insert size
mean and standard deviations ranged from 388 to 428 and 81 to 93, respectively,
across all donor chromosome X BAMs.

Synthetic diploid assessment. Sensitivity was calculated as the fraction of
successful spike-ins recovered. The number of FPs per SD was the number of
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sSNV calls that were not known spike-ins or endogenous sSNVs. Endogenous
sSNVs were determined by examining the full-depth single cell and bulk BAMs
with samtools mpileup with —g 60 at every site called by any genotyper. A site
was considered a putative endogenous sSNV if either: (1) the mean VAF of the
sSNV across all samples with at least 2 alternate reads was >80% and bulk
contained at least 2 reads at the locus with none supporting the sSNV; or (2) the
mean VAF of the sSNV across all samples with at least 2 alternate reads was
>90%, at least two single cells supported the sSNV and the bulk contained no
reads at the locus.

Kindred cell system. Aligned and processed BAMs for the kindred system were
downloaded from the NCBI Sequence Read Archive (SRA) using accession number
SRP067062. All 13 BAMs were analyzed jointly by GATK HaplotypeCaller (with
-rf BadCigar --dontUseSoftClippedBases) and bcftools call (with
-mvV indels =P 0.5) using minimum mapping qualities (MQs) of both 1 and
60. The —P 0.5 option was chosen to greatly increase samtools’ sensitivity. All
sites output by samtools and GATK with MQ > 60 non-reference reads in any
sample were classified using the following criteria. First, sites were classified as
supported in bulk if mutation supporting reads were observed in sample
SRR2976567 in either of the MQ = 60 or MQ =1 runs. Sites with no mutation
supporting reads across all ten non-kindred samples and at least 50 total reads
across all samples were considered kindred exclusive and further separated into
those supported by 1, 2, or 3 of the kindred samples. Kindred exclusive sites
supported by all three samples are designated triple exclusive (TRE). An additional
class consisting of sSNVs supported by all three kindred samples and at most

1 supporting read in a non-kindred sample was also created to account for
sequencing errors since base quality scores were not considered. All remaining sites
were classified as FPs. Site classifications were further refined by a mock kindred
group analysis (described below). Finally, samtools and GATK classifications were
integrated according to Supplementary Table 2 to create the TRE, likely TP, likely
FP and unknown designations in Fig. 6. In total, 569 TRE sites were used to
compute sensitivity.

Mock kindred group analysis. Clonal sSNVs or artifacts may be exclusive to the
kindred group due to chance alone (e.g., due to chance dropout in the remaining
samples or differences in read lengths). We therefore applied the same classification
procedure described above to mock kindred groups consisting of three randomly
chosen samples. All possible mock groups were created except the group of three
clonally expanded samples and groups containing heat lysed single cells. For each
mock kindred exclusive mutation supported by two or three samples, we counted
the total number of mutation supporting reads across the mock kindred group.
Cutoffs corresponding to the 99th (samtools) and 75th (GATK) percentiles of total
mutation supporting reads were separately computed for mock sites supported by
two or three of the mock kindred samples. Finally, kindred exclusive sites from the
true kindred group were classified as filtered if the total number of mutation
supporting reads across the kindred group did not exceed the appropriate cutoff.
For GATK, cutoffs were 5 and 7 for kindred exclusive sites with two or three
supporting kindred samples, respectively. Samtools cutoffs were 5 and 9. See
Supplementary Fig. 1 for a detailed mock analysis of TREs.

Increased DNA content simulation. BAMs for two single-cell samples with
imbalanced hSNP VAF distributions (IL-12 and IL-3) were downsampled by 50%
and combined into a single BAM using samtools. The two other imbalanced
samples, HL-1 and HL-2, were not used because a different, heat-based cell lysis
protocol was used that may have affected the shapes of their VAF distributions.
Downsampling was repeated 10 times to account for potential variance due to read
sampling. AB models were fit by SCAN-SNV on chromosome 1 for each mixed
BAM. The 10 replicates are summarized by a single, representative curve in Fig. 7
since essentially no variation between the trials was observed.

Cancer analysis. Raw FASTQ files for four ERBC tumor cells (BC1-4), tumor bulk
(BCT) and matched normal bulk (BCN) were downloaded from the NCBI SRA,
accession SRP013572. Reads were aligned with BWA-MEM to GRCh37 with decoy
and postprocessed using Picard MarkDuplicates, GATK indel realignment and
GATK base quality score recalibration. Putative sSNVs from all callers were
gathered and samtools mpileup -g 60 was used to determine read support for each
mutation across all six samples. sSSNVs were then classified according to Supple-
mentary Table 3. Haploid, diploid, and triploid chromosomes were identified by
previously reported copy number profiles obtained by sequencing the bulk tumor
population and 50 single cells!.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

Source single-cell sequencing data for synthetic diploid X chromosomes were
downloaded from dbGaP study phs001485.v1.p1. Single-cell sequencing data for the
kindred cell system were downloaded from NCBI SRA project SRP067062. Sequencing

data for single tumor cells were downloaded from NCBI SRA project SRP013572. All
other relevant data are available upon request.

Code availability

Source code for SCAN-SNV is available for download at https://github.com/parklab/
scan-snv. SCAN-SNV version 0.9 and r-scansnv version 0.1 were used to produce all
results in this study.
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