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Association between long-term 
orthokeratology responses and 
corneal biomechanics
Andrew K. C. Lam1, Ying Hon1, Stanley Y. Y. Leung2, Lu Shu-Ho2, Jones Chong2 & 
David C. C. Lam2

Myopia is very prevalent worldwide, especially among Asian populations. Orthokeratology is a proven 
intervention to reduce myopia progression. The current study investigated association between 
baseline corneal biomechanics and orthokeratology responses, and changes of corneal biomechanics 
from long-term orthokeratology. We fitted 59 adult subjects having myopia between −4.00D to 
−5.00D with overnight orthokeratology. Corneal biomechanics was measured through dynamic 
bidirectional corneal applanation (in terms of corneal hysteresis, CH and corneal resistance factor, CRF) 
and corneal indentation (in terms of corneal stiffness, S and tangent modulus, E). Subjects with poor 
orthokeratology responses had lower E (mean 0.474 MPa) than subjects with good orthokeratology 
responses (mean 0.536 MPa). Successful orthokeratology for 6 months resulted in reducing CH (reduced 
by 5.8%) and CRF (reduced by 8.7%). Corneal stiffness was stable, but E showed an increasing trend. 
Among subjects with successful orthokeratology, a higher baseline S resulted in greater myopia 
reduction (Pearson correlation coefficient, r = 0.381, p = 0.02).

The increase in myopia has reached epidemic proportions in Asia. Holden et al.1 estimated that by 2050, more 
than 5.6 billion people worldwide would be affected by myopia. Recent meta-analysis reports have confirmed 
that orthokeratology is an effective intervention to slow the progression of myopia2–5. In orthokeratology, myopia 
reduction occurs through alteration of the anterior corneal shape6,7, whereas myopia control has been hypothe-
sized to be due to myopic defocus at the peripheral retina following changes in the anterior corneal shape8–10. The 
retina is capable of responding to different types of optical defocus to drive eye growth11,12.

Altering the physical dimensions of the cornea may affect corneal biomechanics. After the launch of the 
Ocular Response Analyzer (ORA; Reichert Inc., USA) over a decade ago to clinically measure corneal biome-
chanics, numerous studies have confirmed changes in these measurements after orthokeratology13–16. Corneal 
hysteresis (CH), which is a measure of the viscoelastic properties of the cornea, is derived from the inward and 
outward intraocular pressures measured using the ORA. The corneal resistance factor (CRF) indicates overall 
corneal resistance. CH and/or CRF have been reported to be reduced after orthokeratology. However, few studies 
have investigated the association between orthokeratology responses and baseline corneal biomechanics. For 
example, Gonzalez-Meijome et al.16 reported that eyes with lower CH had relatively faster responses following 
orthokeratology, but their study involved lens wearing for only 3 hours.

Corneal indentation is an alternative method for measuring corneal biomechanics17,18. The corneal tangent 
modulus can be measured at both the central and peripheral corneas19,20 and is a stable parameter throughout 
the course of a day21. Our group previously studied variation in the tangent modulus after short-term orthoker-
atology22. Although short-term overnight orthokeratology did not change the tangent modulus, a higher base-
line tangent modulus had greater corneal flattening along the flattest meridian. The current study incorporated 
both the ORA and corneal indentation to investigate the association between baseline corneal biomechanics and 
long-term orthokeratology responses and changes in corneal biomechanics following long-term orthokeratology. 
This study had two objectives: to monitor changes in corneal biomechanics from long-term successful orthoker-
atology and to determine which baseline parameters in corneal biomechanics were significantly associated with 
successful orthokeratology.
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Results
Fifty-nine subjects were eligible and fitted with orthokeratology lenses, of whom 37 completed the 6-month 
wearing period. These subjects included 7 males and 30 females with ages ranging from 18 to 30 years. Table 1 
summarizes the reasons the 22 subjects dropped out of the study. Among these 22 subjects, 14 had poor myopia 
reduction from orthokeratology with a significant amount of residual refractive errors. Among the remaining 8 
subjects, seven withdrew from the study within the first week of orthokeratology. Lens fitting was optimal, and 
we attempted to modify the lenses. Unfortunately, these 7 subjects did not wait for new lenses to arrive from 
overseas and discontinued the study. One subject had significant corneal staining at the 3-month follow-up visit. 
We advised the subject to stop wearing the lenses until complete corneal health recovery, but she decided to dis-
continue this study. A comparison of the baseline ocular parameters of the 37 subjects (37 eyes) who completed 
the study and the 14 subjects (14 eyes, randomly selected) who dropped out due to lack of an orthokeratol-
ogy response or significant residual refractive error revealed that these two groups shared similar CH, CRF, and 
asphericity along the steepest (Steep-Q) and flattest meridians (Flat-Q) (Table 2). The eyes of the subjects who 
dropped out had significantly flatter keratometry results along the steepest and flattest meridians; in addition, 
they had similar corneal stiffness, but the normalized corneal tangent modulus was significantly lower.

Table 3 shows variations in different ocular parameters throughout the study period. The refractive sphere 
declined rapidly within the first month and continued to reduce thereafter, albeit more slowly (RMANOVA: 
F = 403.4, p < 0.001). Refractive astigmatism was relatively stable initially but increased slightly at the first month 
and at the end of the study (RMANOVA: F = 3.910, p = 0.002). Compared with that of the baseline, a mean 
increase in astigmatism of 0.24 ± 0.36D was observed. The spherical equivalent (SEQ, refractive sphere plus half 
refractive astigmatism) was also significantly reduced throughout the study period (RMANOVA: F = 380.2, 
p < 0.001). The subjects achieved good and stable uncorrected visual acuity after wearing the lenses during the 
first week (Friedman: p < 0.001). Both the steepest and flattest corneal curvatures flattened significantly after one 
night and one week of orthokeratology, respectively. CCT had a small thinning effect and stabilized one week after 
orthokeratology (Friedman: p < 0.001).

Both CH and CRF decreased throughout the study. Compared with those at the baseline, the CRF at 6 months 
was decreased by 8.7% (−0.87 ± 0.76 mmHg), and CH was decreased by 5.8% (−0.61 ± 0.76 mmHg). Corneal 
stiffness did not change significantly, but the normalized tangent modulus showed an increasing trend (Table 3), 
this measure was significantly higher than the baseline after one month and three months of orthokeratology.

Only the baseline corneal stiffness demonstrated a significant correlation with sphere reduction after 6 months 
of orthokeratology (r = 0.381, p = 0.020). A linear regression model revealed how the myopia reduction was 
related to the baseline corneal stiffness (Fig. 1). The baseline tangent modulus was positively correlated with 
myopia reduction, but this correlation did not reach statistical significance (r = 0.311, p = 0.061). Correlations 
between other ocular parameters (namely CH, CRF, steepest and flattest keratometry, steepest and flattest 

Main reason of dropout Number of cases

Non-responsive 2

Significant residual refractive error 12 (residual sphere was −1.90D ± 0.76D in 24 eyes)

Poor lens centration 2

Significant corneal staining 3

Lens discomfort 1

Personal reason 2

Table 1.  Summary of dropout cases.

Parameters
Completed subjects (37 
eyes from 37 subjects)

Dropout subjects (14 
eyes from 14 subjects)

Comparison between 
two groups

Steep-K (D) 44.03 ± 1.74 43.15 ± 1.14 t = −2.118, p = 0.041

Flat-K (D) 42.91 ± 1.58 42.02 ± 1.13 t = −2.227, p = 0.033

Steep-Q −0.184 ± 0.148 −0.115 ± 0.133 t = 1.602, p = 0.121

Flat-Q −0.341 ± 0.098 −0.323 ± 0.106 t = 0.554, p = 0.585

CH (mmHg) 10.40 (1.50) 10.78 (1.49) p = 0.441*

CRF (mmHg) 9.95 ± 1.30 10.31 ± 1.26 t = 0.919, p = 0.367

S (N/mm) 0.061 ± 0.007 0.058 ± 0.008 t = −0.947, p = 0.353

EN (MPa) 0.536 ± 0.118 0.474 ± 0.085 t = −3.073, p = 0.046

Table 2.  Mean ± standard deviation, or median (interquartile range) of ocular parameters in the completed 
and dropout groups. Significant difference was bold. Steep-K: keratometry along the steepest meridian; Flat-K: 
keratometry along the flattest meridian; Steep-Q: asphericity along the steepest meridian; Flat-Q: asphericity 
along the flattest meridian; CH: corneal hysteresis; CRF: corneal resistance factor; S: corneal stiffness; EN: 
normalized corneal tangent modulus. Comparisons using unpaired t-tests, except CH using Mann-Whitney 
test*.
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asphericity) and myopia reduction were even weaker (Pearson’s correlation coefficient or Spearman’s rho ranged 
between 0.045 and 0.188).

We calculated the post hoc power using G-power version 3.1.9.2 (Franz Faul, Universität Kiel, Germany). 
Based on the 5.8% decrease in CH after 6 months of orthokeratology, the current study had over 99% power to 
detect changes in corneal biomechanics at an alpha value of 5%.

Discussion
Orthokeratology is an effective technique to temporarily reduce myopia23 and even reduce myopia progres-
sion24–26. This technique alters the corneal dimensions by flattening the anterior curvature6,27, reducing the cen-
tral thickness, and increasing the mid-peripheral thickness28. After orthokeratology, the corneal epithelium is 
reduced29,30, but the corneal stroma thickens31,32. These changes in the morphological and histological properties 
of the cornea may alter its biomechanical properties33. The current study applied both a dynamic bidirectional 
corneal applanation technology (i.e. the ORA) and corneal indentation to monitor changes in corneal biome-
chanics through the 6-month orthokeratology period. The corneal stiffness was stable, whereas the tangent mod-
ulus exhibited a significant increasing trend (Table 3). Previous studies that have used the ORA have reported 
changes in CH or the CRF14–16,34.

Following initiation of orthokeratology, our subjects showed a significant reduction in the spherical compo-
nent during the first month, and good uncorrected visual acuity was achieved in the first week (Table 3). These 
findings are consistent with those of previous studies that have used the same type of lens35. By contrast, the astig-
matic component increased slightly. Orthokeratology usually cannot provide a significant reduction in refractive 
astigmatism. Even for studies using toric orthokeratology lenses, the purpose was mainly to improve lens centra-
tion rather than reducing astigmatism totally36–38.

We previously reported a reduction in the CRF with a relatively stable CH after one session of overnight 
orthokeratology15,22. Orthokeratology for longer periods exerts different effects on CH and the CRF. Chen et 
al.33 reported that both CH and the CRF declined significantly after one week of orthokeratology and that the 
reduction in the CRF was greater. This result was affirmed by Yeh et al.13, who monitored CH and the CRF 
for one month. The reduction in the CRF was greater (7.4%) than that in CH (2.8%). Moreover, Nieto-Bona et 
al.14 reported a similar reduction in CH and the CRF (6%) after one month of orthokeratology. Fewer studies 
have monitored CH and CRF throughout the course of long-term orthokeratology. One study in China found a 

Ocular 
parameter Baseline 1 night 1 week 1 month 3 months 6 months Statistics

Sphere (D) −4.44 ± 0.35 −2.66 ± 0.76* −0.87 ± 0.67* −0.32 ± 0.60* −0.24 ± 0.65* 0.11 ± 0.57*
RMANOVA
F = 403.4, 
p < 0.001

Astigmatism (D) −0.50 ± 0.33 −0.62 ± 0.38 −0.55 ± 0.36 −0.70 ± 0.45* −0.66 ± 0.36 −0.74 ± 0.34*
RMANOVA
F = 3.910, 
p = 0.002

SEQ (D) −4.69 ± 0.32 −2.97 ± 0.81* −1.15 ± 0.76* −0.67 ± 0.68* −0.56 ± 0.65* −0.26 ± 0.64*
RMANOVA
F = 380.2, 
p < 0.001

BCVA (logMAR) −0.10 (0.10) −0.10 (0.10) −0.10 (0.10) −0.10 (0.10) −0.10 (0.10) −0.08 (0.10) Friedman, 
p = 0.110

UCVA (logMAR) 1.02 (0.16) 0.70 (0.36) 0.10 (0.14)* 0.02 (0.18)* 0.01 (0.14)* 0.00 (0.16)* Friedman, 
p < 0.001

Steep-K (D) 44.03 ± 1.74 43.40 ± 1.68* 42.44 ± 1.68* 42.05 ± 1.67* 42.08 ± 1.66* 42.09 ± 1.66*
RMANOVA
F = 140.0, 
p < 0.001

Flat-K (D) 42.87 (2.23) 42.17 (1.99) 41.48 (2.07)* 40.95 (2.23)* 41.14 (2.17)* 40.92 (1.93)* Friedman, 
p < 0.001

CCT (µm) 545.3 (42.7) 546.0 (43.3) 537.7 (43.7)* 535.0 (49.0)* 538.3 (47.7)* 538.0 (44.3)* Friedman, 
p < 0.001

CH (mmHg) 10.53 ± 1.19 10.22 ± 1.17* 10.00 ± 1.26* 9.99 ± 1.12* 9.91 ± 1.22* 9.92 ± 1.25*
RMANOVA
F = 9.320, 
p < 0.001

CRF (mmHg) 9.90 (1.80) 9.67 (1.77) 9.30 (1.70)* 9.10 (1.87)* 8.97 (1.60)* 8.90 (1.47)* Friedman, 
p < 0.001

S (N/mm) 0.060 (0.008) 0.060 (0.010) 0.059 (0.007) 0.057 (0.006) 0.059 (0.007) 0.057 (0.005) Friedman, 
p = 0.182

EN (MPa) 0.536 ± 0.118 0.539 ± 0.129 0.562 ± 0.093 0.578 ± 0.116* 0.579 ± 0.097* 0.571 ± 0.106
RMANOVA
F = 3.263, 
p = 0.008

Table 3.  Ocular parameters throughout the study period. Results are expressed in mean ± standard deviation, 
or median (interquartile range). Significant difference was bold. RMANOVA: repeated measures analysis 
of variance. *post-hoc test (Dunnett’s method) showing significant difference with baseline. SEQ: spherical 
equivalent; BCVA: best corrected visual acuity; UCVA: uncorrected visual acuity; Steep-K: keratometry along 
the steepest meridian; Flat-K: keratometry along the flattest meridian; CCT: central corneal thickness; CH: 
corneal hysteresis; CRF: corneal resistance factor; S: corneal stiffness; EN: normalized corneal tangent modulus.
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significant initial drop in both CH and the CRF, but these parameters returned to the pretreatment levels after 3 
months of orthokeratology34. The current study found significant reductions in both CH and the CRF throughout 
the 6-month orthokeratology period, with a greater reduction in the CRF. As shown in Table 3, the CH reduction 
plateaued after one month of orthokeratology whereas the CRF exhibited a sustained decreasing trend. Since the 
corneal stroma constitutes 90% of the entire corneal thickness, CH and the CRF are mainly associated with the 
corneal stromal thickness39. Supporting this hypothesis, Chen et al.33 reported significant associations of changes 
in CH and the CRF with changes in the stromal thickness.

Studying corneal biomechanics using the ORA has certain drawbacks because of the wide inter-subject var-
iation in CH and the CRF13. Corneal indentation is an alternative corneal biomechanics measurement method 
in vivo19. Corneal stiffness is defined as the force required to indent a cornea to a particular depth (1 mm in our 
device). This biomechanical property depends on the physical properties of the cornea, including its thickness 
and radius. Tangent modulus is an intrinsic mechanical property of a tissue. Hon et al.40 used both the ORA 
and corneal indentation to compare the corneal biomechanics of low and high myopes. Although high myopes 
exhibited lower mean CH than low myopes, as documented in the literature, the two groups demonstrated nearly 
the same CH spread due to wide inter-subject variation. Furthermore, high myopes had not only a lower mean 
tangent modulus but also a narrow spread of the tangent modulus.

One novel finding of the current study is that long-term orthokeratology increases the tangent modulus while 
the corneal stiffness remains stable. This result implies that even though the geometric properties (i.e. thick-
ness and radius) of the cornea change, some physical properties (e.g. stiffness) do not. However, orthokeratol-
ogy altered the intrinsic material properties of the cornea. A thorough evaluation of the sub-corneal layers is 
required, because these layers have different elastic properties41,42. For example, Zhong et al.43 found that the 
basal cell and stromal keratocyte densities declined after 5 years of orthokeratology. Nieto-Bona et al.44 obtained 
similar findings for the basal cell and anterior stromal keratocyte densities after 6 and 12 months of orthokera-
tology. In addition, they reported thinning of Bowman’s membrane during the same period and speculated that 
imaging artefacts due to epithelial compression might affect this measurement. Among the anterior sub-corneal 
layers, Bowman’s membrane has the highest elastic modulus, followed by the stroma among the other anterior 
sub-corneal layers41,42. Confocal microscopy can be incorporated to measure Bowman’s membrane and the stro-
mal thickness in future studies. Owens et al.45 compared rabbit eyes after two weeks of overnight orthokeratology 
with untreated eyes and did not find a significant difference in the stromal collagen fibril diameter. In vivo meas-
urement of corneal collagen fibres may further enrich our understanding of corneal biomechanics46,47.

One objective of our study was to evaluate whether baseline corneal biomechanics had significant associa-
tions with the orthokeratology success (i.e. myopia reduction). Myopia reduction was used as an indicator of 
the orthokeratology success because it was more than flattening of the corneal curvatures48–50. Furthermore, 
myopes seek orthokeratology for myopia reduction. In the 59 subjects fitted with orthokeratology lenses, 14 
did not have a good orthokeratology response and thus dropped out of this study. When we compared the ocu-
lar parameters between the subjects who completed the 6-month orthokeratology (37 eyes of 37 subjects) and 

Figure 1.  Linear regression analysis between myopia reduction at the 6th month of orthokeratology and 
baseline corneal stiffness. Pearson correlation coefficient (r) is 0.381, p = 0.02. Regression equation is 
y = 36.466x + 2.334.
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those who dropped out (14 eyes of 14 subjects), the dropout group had a flatter baseline corneal curvature and 
a significantly lower tangent modulus (Table 2). In myopic orthokeratology, the anterior corneal curvature is 
flattened6,27; thus, myopia reduction will be limited if the baseline corneal curvature is flat and spherical51,52. The 
dropout group had a flatter corneal curvature, but their corneal asphericity was similar to that of the completed 
group. The dropout could also be related to the lenses (Menicon Z Night contact lenses) used in the current study. 
Santodomingo-Rubido et al.50 used the same lens type and reported that only 68% of children could achieve an 
optimum lens fit from the first contact lens. Moreover, 32% of their subjects required a total of 35 adjustments to 
obtain an optimum lens fit. Chan et al.35 reported that myopia reduction only reached 57% and 81% after wearing 
these lenses for one night and one week, respectively. The prolonged trial period due to many lens modifications 
discouraged our adult subjects from continuing the study. Our lenses had fenestrations for better corneal health 
that could further reduce the rate of myopia reduction53. Among the measured corneal biomechanics, only the 
tangent modulus differed between the two groups; the baseline tangent modulus of the group that completed 
the study was 0.536 MPa, which was comparable with that of healthy subjects40, Hon et al.40 reported a mean 
tangent modulus of 0.57 MPa in low myopes (mean SER of −1.37D) and 0.47 MPa in high myopes (mean SER of 
−9.07D). The mean tangent modulus of our dropout group (0.474 MPa) was low in myopes with myopia between 
−4.00D and −5.00D. Therefore, incorporating an evaluation of corneal biomechanics may help screen good 
orthokeratology responders. However, orthokeratology practitioners should refer to both corneal curvatures and 
biomechanics (Table 2). Vinciguerra et al.54 suggested integrating biomechanical evaluation with tomographic 
and topographic analyses for diagnosis of subclinical keratoconus.

We performed a correlation analysis for the group who completed the study, but except for corneal stiff-
ness, no other baseline corneal parameter demonstrated a significant association with myopia reduction. 
Gonzalez-Meijome et al.16 was the first study to investigate whether orthokeratology responses were correlated 
with corneal biomechanics. They proposed that corneas with a low CH or CRF might respond faster to myopic 
orthokeratology. They used corneal curvatures as the response of interest, whereas we used myopia reduction 
in this study, because orthokeratology resulted in more myopia reduction than flattening of the corneal cur-
vature48–50. The difference in the results could be due to different wearing conditions: our subjects wore the 
lenses during sleep, whereas their subjects wore the lenses for only 3 hours and under an open-eye condition16. 
Furthermore, we set stringent inclusion criteria related to age and the myopia range to account for confounding 
factors that could affect corneal biomechanics. We concluded that neither the baseline CH nor CRF had a signif-
icant association with myopia reduction during long-term orthokeratology.

In the current study, corneal stiffness was defined as the force required to induce unit corneal displacement. 
This measure is influenced by the corneal dimensions, including its curvature and thickness. Corneas with a 
higher baseline stiffness appear to lead to greater myopia reduction (Fig. 1). However, we should interpret this 
result with caution. Our data points were very scattered, and higher corneal stiffness only accounted for 14.5% 
(r = 0.381) of the cases with greater myopia reduction. Therefore, other factors should contribute to the higher 
myopia reduction in these eyes. Neither central corneal curvatures nor asphericity had significant correlations 
with myopia reduction. Consistent with our observation, Chan et al.55 previously reported that corneal aspheric-
ity could not predict myopia reduction after overnight orthokeratology.

Other factors could affect the performance of overnight orthokeratology. Younger patients, such as children, 
were more likely to have adverse effects from overnight lens wear56. The incorporation of fenestrations in our 
orthokeratology lenses could reduce lens binding53. Additionally, the experience of the practitioner is crucial in 
orthokeratology57. Our frequent aftercare visit schedule, which involved an experienced orthokeratology practi-
tioner, and conduct of the study at a university clinic ensured a high standard of performance58.

The current study monitored corneal biomechanics in long-term orthokeratology using two technologies: 
dynamic bidirectional corneal applanation and corneal indentation. The strength of this study lies in its stringent 
inclusion criteria regarding baseline myopia and age, because corneal biomechanics differ with age and refractive 
groups. However, our study has several limitations. Corneal biomechanics is age-dependent59–62. Our subjects 
were all adults, although orthokeratology usually is offered to children for myopia control. Answering the ques-
tion of whether our findings apply to children requires further research. Corneal responses could vary based 
on the orthokeratology lens design63. Further studies can include confocal microscopy to evaluate histological 
changes. We concede that no single parameter can adequately describe all corneal biomechanical properties. CH 
represents the viscoelastic property of the cornea62; thus, evaluating corneal deformation and deflection through 
dynamic Scheimpflug imaging is another promising technology to study corneal biomechanics in vivo64,65.

To conclude, intrinsic corneal tissue properties together with corneal curvature contribute to successful over-
night orthokeratology. A cornea with a flat corneal curvature together with an unusually low tangent modulus 
may not respond well to myopic orthokeratology. In successful overnight orthokeratology, the baseline corneal 
stiffness has a weak but significant association with myopia reduction.

Data collection.  Subjects.  In total, 275 subjects were screened for eligibility to participate in this study. The 
inclusion criteria were an age between 18 and 30 years, myopia between −4.00D and −5.00D in sphere power, 
and with-the-rule astigmatism within 1.50D. In addition, differences in refractive errors for both the sphere 
and astigmatic components, of the left and right eyes were required to be within 1.00D. These stringent criteria 
eliminated confounding factors in corneal biomechanics, such as age61,66 and myopia39,40. The exclusion criteria 
were long-term contact lens use or a history of ocular diseases. In addition, those with a best-corrected visual 
acuity of less than 0.10 logMAR in each eye measured using the Early Treatment Diabetic Retinopathy Study 
chart (Prevision Vision, La Salle, IL) under normal room lighting conditions were excluded. All procedures were 
performed in accordance with the ethical standards of the institution and the 1964 Declaration of Helsinki. Ethics 
clearance was obtained from the institutional review board of The Hong Kong Polytechnic University. Informed 
consent was obtained from all participants included in the study. This study was registered at ClinicalTrials.gov 
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(NCT02719535, registered March 25, 2016) and in the University of Hong Kong HKU Clinical Trials Register 
(HKUCTR-1957, registered Feb 1, 2016).

Methods
The following baseline data were collected: non-cycloplegic manifest refraction, ocular biometry through par-
tial coherence interferometry (Zeiss IOLMaster; Zeiss Humphrey, Dublin, CA), corneal topography (Medmont 
E300, Medmont Pty Ltd., Vermont, VIC, Australia), corneal thickness through swept-source optical coherence 
tomography (Casia SS-1000, Tomey, Nagoya, Japan), and corneal biomechanics using an ORA. CH, CRF, and 
corneal-compensated intraocular pressure (IOPcc) were measured using the ORA. Three acquisitions were 
obtained, each with a waveform score of at least 6.067. The CRF is a measure of the overall resistance of the cornea. 
The IOPcc is a measure of intraocular pressure (IOP) and is less affected by corneal parameters, such as the central 
corneal thickness (CCT)68. After all non-contact procedures were completed, the cornea was anaesthetized using 
one drop of 0.4% benoxinate. The IOP was measured through Goldmann applanation tonometry, followed by 
corneal indentation. The corneal stiffness and tangent modulus measurements were described in detail in the lit-
erature19. Briefly, first, the indenter is brought into contact with the central cornea. Then, the preload is stabilized 
(as confirmed by an audible sound), and the indenter is moved forwards and backwards at 12 mm/s to indent 
the cornea by 1 mm. Each indentation is completed in less than 0.25 seconds. Finally, the corneal stiffness is read 
from the indentation device. In this study, the average stiffness from three measurements was used to calculate 
the tangent modulus using the central corneal radius and CCT. Because the corneal tangent modulus varies with 
the IOP17, the tangent modulus was normalized to the mean IOP in normal eyes (15.5 mmHg) using the IOPcc40.

Lenses used.  Menicon Z Night contact lenses (NKL Contactlenzen, Netherlands) made of super-high gas 
permeable material (Dk: 163 × 10−11) were used. The back optic zone radius of the lenses ranged from 7.20 to 
9.50 mm in 0.05 mm steps. The lens diameters were either 10.20 mm or 10.60 mm. Three fenestrations were 
located in the reverse curve 120°apart to enhance tear exchange. The lenses were fitted according to the manu-
facturer’s instructions using a computer programme (Easy Fit Software, Menicon Co Ltd., Nagoya, Japan). This 
computer-assisted lens fitting method has a very high first-fit success rate for myopic orthokeratology in low to 
moderate myopes35. Lens fitting requires ocular information, such as corneal topography and non-cycloplegic 
manifest refraction. The required lenses were ordered, and a trial fitting was arranged.

Wearing schedule.  After a successful trial fitting, a delivery visit was arranged. Subjects were asked to return 
to the University Optometry Clinic for regular follow-up per the following schedule: after the first overnight wear 
and after 1 week, 1 month, 3 months, and 6 months of lens wear. Each visit was completed within two hours of 
waking in the morning and removing the lenses. Lens parameters were modified when necessary, especially in 
case of poor lens centration or significant residual refractive error.

At each follow-up visit, the corneal topography, thickness, and biomechanics were measured using both the 
ORA and corneal indentation in addition to the subjective refraction and ocular biometry. Both the habitual 
uncorrected visual acuity (UCVA) and best-corrected visual acuity (BCVA) were measured.

Statistical analysis.  Data of one eye of each subject who completed the 6-month orthokeratology were 
analyzed. Only one eye per subject was included to avoid inter-eye correlation that could influence the analy-
sis results. We compared the refractive sphere, refractive astigmatism, and BCVA between the two eyes at the 
6-month visit. No significant difference was found between the two eyes (refractive sphere, p = 0.657; refrac-
tive astigmatism, p = 0.364; BCVA, p = 0.390). Since we used myopia reduction rather than corneal flattening to 
represent orthokeratology success48–50, the eye with the residual sphere closer to plano at the 6-month visit was 
selected. If the residual sphere was the same in both eyes, then the eye with less residual astigmatism was selected. 
For subjects with the same residual refractive errors in both eyes, the right eye was selected. Some previous stud-
ies also selected a “better” eye rather than using a random order to select an eye for data analysis69–71. Normality 
was checked using the Shapiro-Wilks test. Repeated-measure analysis of variance (RMANOVA) or the Friedman 
test was used to compare changes in ocular parameters throughout the study (i.e. from baseline to the end of the 
6-month orthokeratology period). When a significant difference was found, a post hoc test (Dunnett’s method) 
was used to compare results from the different follow-up visits with the baseline data. Baseline ocular parame-
ters that were significantly correlated (Pearson or Spearman) with myopia reduction were identified. A linear 
regression model was applied when a significant correlation was found. Reduction of the sphere at the 6-month 
visit was used as the dependent outcome response, and the various baseline ocular parameters were treated as 
independent predictors. All data analyses and graphical presentations were completed using SigmaPlot 13 (Systat 
Software, Inc.).
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