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Image-based Classification of 
Tumor Type and Growth Rate using 
Machine Learning: a preclinical 
study
Tien T. Tang1,2, Janice A. Zawaski 2, Kathleen N. Francis1, Amina A. Qutub   1 & 
M. Waleed Gaber 1,2

Medical images such as magnetic resonance (MR) imaging provide valuable information for cancer 
detection, diagnosis, and prognosis. In addition to the anatomical information these images provide, 
machine learning can identify texture features from these images to further personalize treatment. 
This study aims to evaluate the use of texture features derived from T1-weighted post contrast scans to 
classify different types of brain tumors and predict tumor growth rate in a preclinical mouse model. To 
optimize prediction models this study uses varying gray-level co-occurrence matrix (GLCM) sizes, tumor 
region selection and different machine learning models. Using a random forest classification model with 
a GLCM of size 512 resulted in 92%, 91%, and 92% specificity, and 89%, 85%, and 73% sensitivity for 
GL261 (mouse glioma), U87 (human glioma) and Daoy (human medulloblastoma), respectively. A tenfold 
cross-validation of the classifier resulted in 84% accuracy when using the entire tumor volume for feature 
extraction and 74% accuracy for the central tumor region. A two-layer feedforward neural network using 
the same features is able to predict tumor growth with 16% mean squared error. Broadly applicable, these 
predictive models can use standard medical images to classify tumor type and predict tumor growth, with 
model performance, varying as a function of GLCM size, tumor region, and tumor type.

Brain tumors are a common occurring cancer in the pediatric population, with approximately 24,000 new cases 
each year that are highly aggressive and generally have poor treatment outcomes, as demonstrated by a 5 year 
survival rate of 33.2%1,2. Management of these tumors usually includes intracranial surgery, radiation therapy 
and chemotherapy with treatment plans tailored to the diagnosed tumor type. Diagnosis of a brain tumor is made 
from a biopsy in combination with molecular tests on the resected tumor tissue. However for some patients, 
biopsy or surgical resection is not possible therefore diagnosis relies solely on medical images1. While biopsies 
are the gold-standard in diagnosis, they come with limitations such as surgical risks, limited spatial and temporal 
resolution, and subjectivity of immunohistochemical scoring3,4. Current advances in imaging technology and 
analysis has made it possible to establish tumor radiographic phenotype or radio-phenotype, offering an addi-
tional source of information to complement biopsies and an alternative diagnostic tool when biopsies are not 
possible5–8.

The prognoses for gliomas are extremely poor compared to medulloblastomas for the current standard of care, 
which includes surgical resection, radiation therapy and/or chemotherapy, in which 5 year survival is 15–35% 
compared to 70%, respectively9,10. For tumors such as medulloblastoma that are more responsive to treatment, 
it may not be necessary for young patients to undergo the inherently risky surgical resection. Furthermore, the 
ability to predict tumor growth can help clinicians make informed decisions in cases where treatment needs to 
be delayed. For children under the age of three, radiation therapy is delayed due to long-term side effects of radi-
ation on the developing brain. Therefore, establishing at tumor’s growth rate can identify critical treatment time 
points11,12.
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Currently in the clinic, imaging is primarily used for anatomical information such as assessing tumor volume 
and location, determining feasibility of surgical resection, and assessing response to treatment. Additional infor-
mation can be extracted from these images using radiomics by mining the images for quantitative image features 
that are not intuitively observable, such as variance in neighboring pixel values13,14. Recent studies have found that 
these features can be informative of the tumor’s underlying molecular processes when integrated with machine 
learning techniques to provide valuable diagnostic, prognostic and predictive information15–22. In this work, we 
focused on texture features, derived from the gray level co-occurrence matrix (GLCM) which are commonly used 
in many different texture analysis. The GLCM is a square matrix that captures the frequency in which a combi-
nation of gray scale intensities occur with the dimensions determined by the number of gray levels23. Features 
derived from this matrix are informative of the spatial relationships between grayscale intensities such as amount 
of variation, disorder, or contrast within an image23. These features, however, can be sensitive to image processing 
which include acquisition, reconstruction protocols, and inter-scanner variability24–28. Independent of these sys-
temic variations, the values of these features can also be affected by the GLCM size or the number of gray levels 
which is determined a priori to feature extraction. For a given image the number of gray levels (pixel intensity) 
is dependent on the bit depth of that image; with an 8 bit image having 256 possible values or 16 bit image having 
65,536 possible values. For a higher bit image it is not practical to construct a 65,536 by 65,536 GLCM therefore 
the image is often rescaled to a more manageable bit size which can ultimately affect the values of the texture 
features derived from the matrix. There have been few studies on the impact of GLCM size on the image’s features 
values even though these features are commonly used in radiomic studies and are included in image analysis 
software tools29–31. Preclinical studies can be valuable to investigate the influence GLCM size has on classifier 
performance where imaging parameters can be controlled and confounding factors can be eliminated.

The aim of this work is to classify brain tumor type and predict tumor growth rate using texture features from 
T1-weighted post contrast MR scans in a preclinical model. Tumor regions were segmented using in-house soft-
ware with GLCMs constructed for a single tumor slice or entire tumor volume. We investigated the sensitivity of 
texture features values to different GLCM sizes and how this affects the performance of different classifiers. Our 
preclinical model also allowed for the opportunity to systematically follow the growth of these tumors. To further 
explore the potential application of texture features derived from diagnostics images we used these features to 
predict tumor growth rate. Using, a shallow neural network, image features were used to predict the αβ value of 
an exponential function, a simple growth model that assumes that growth is proportional to the cell population, 
where the α and β values describes the initial volume and the growth rate respectively. Using machine learning 
we assess whether radiomics approaches have the potential to classify tumor type and predict tumor growth rate 
noninvasively by allowing clinicians to make better informed treatment decisions using standard medical images.

Results
To construct our classification and prediction models, texture features were first extracted from the tumor region 
using in-house MATLAB program for three different types of tumors: GL261 (mouse glioma), U87 (human 
glioma) and Daoy (human medulloblastoma). The program consists of a graphical user interface (GUI) which 
allow users to import in DICOM files from T1-weighted post contrast scans either in batch or as a single image 
slice and perform manual segmentation of the region of interest (ROI). Image features were extracted from three 
different tumor regions (central, middle and edge) as well as the average of the entire tumor. Once segmentation 
is completed, the program calculates first and second order image features. First order features are derived from 
the grayscale intensity histogram of the selected ROI. Second order features are derived from ten different GLCM 
sizes. The extracted image features from the different GLCM sizes for each tumor type are used as inputs to train 
the three classifiers and tumor growth prediction models (Fig. 1).

Tumor type classification.  Overall, the three different classification models, decision tree, random forest 
and support vector machine, had similar performances. Figure 2 shows the validation accuracy of the different 
GLCM sizes for each classifier and tumor region. We observed an overall trend of increasing validation accuracy 
with the number of gray levels or GLCM size, however it was not a proportional increase and varied for differ-
ent classification models. The only instance in which increasing the GLCM size directly increased validation 
accuracy was when the entire tumor volume was used with a decision tree model (Fig. 2a). The selection of the 
tumor region used for GLCM construction also impacted the classifier’s accuracy. Using the entire tumor volume 
resulted in higher accuracy compared to a single image slice. The edge of the tumor was the least predictive while 
the central and middle regions were comparable (Fig. 2).

The best performing classification model was using random forest with 512 gray levels, equivalent to a GLCM 
size of 512, which achieved 84% validation accuracy. With the same model using the central, middle and edge 
tumor regions the validation accuracies were 74%, 74% and 52% respectively. The model resulted in an area 
under the curve (AUC) = 0.92, 0.88 and 0.85 for GL261, U87 and Daoy respectively (Fig. 2). While there was 
high specificity and sensitivity for both GL261 and U87 tumor classifications, sensitivity was only 0.77 for Daoy 
tumors (Tables 1–3). Even though the GLCM size of 256 had similar accuracy, the classifier performance was not 
as uniform for all tumor types as with the GLCM size 512. Therefore all subsequent analysis were performed on 
features extracted from the GLCM size of 512. We’ve also identified the four texture features dependent on GLCM 
size: autocorrelation, cluster prominence, sum of square and sum variance (p ≤ 0.01–0.0001) (see Supplementary 
Fig. S1).

Random forest is an ensemble learning technique which grows many decision trees where the final class 
is determined by a majority “vote” from all the decision trees. Analysis of the estimated feature importance 
reveals skewness (0.91) to be the most important feature followed by cluster shade (0.84), kurtosis (0.55), median 
intensity (0.40), mean intensity (0.30), sum average (0.30), sum variance (0.289), autocorrelation (0.26), max 
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probability (0.24) and entropy (0.23), where 0 represents the smallest possible importance and higher values have 
greater importance (Fig. 3).

Direct comparison of the image features derived from the GLCM with 512 gray levels showed cluster promi-
nence to be the only feature that differentiates glioma tumors from medulloblastoma. Cluster prominence, which 
measures the asymmetry of the GLCM, was significantly lower in both glioma models (p ≤ 0.0001 to U87 and 
GL261) compared to medulloblastoma (GL261 = (1.3 ± 1.7) × 106, U87 = (1.2 ± 0.6) × 106, Daoy = (1.6 ± 1.1) × 
106) (Fig. 3). This indicates that gliomas have a lower local variance in gray levels.

Growth curve prediction.  Using a shallow feedforward two layer neural network, the tumor growth curve 
could be established with mean square error of 16% (Fig. 4a). The neural network was trained to predict the αβ 
value for an exponential growth model. The inputs used to train the network were image features from similar 
tumor volumes and the αβ value from the fitted exponential of the experimental data (Fig. 4b). The experimen-
tal data showed U87 to be highly aggressive with a rapid growth rate (α = 1.2 ± 0.8, β = 0.21 ± 0.03) with Daoy 
having a slower growth rate (α = 0.9 ± 0.5, β = 0.08 ± 0.04) (Fig. 4c). GL261 tumors had higher variance in tumor 
growth compared to other tumor types (α = 0.7 ± 0.9, β = 0.15 ± 0.04) (Fig. 4d). Overall, the neural network was 
able to predict tumor growth more accurately for U87 and Daoy tumors than GL261. Additional results can be 
found in Supplementary Fig. S2.

Discussion
In this study we have demonstrated that by using texture analysis, standard medical images can be used to clas-
sify tumors and predict tumor growth rate in preclinical models. Furthermore we have shown that the size of 
the GLCM or number of gray levels impacts the performance of the classification models and have identified 
a classifier that outperformed all others. The best performing classifier was a random forest model with texture 
features derived from the 512 gray level GLCM that used the entire tumor volume. These derived texture features 
can be used to predict tumor growth using a shallow two layer neural network. Assuming an exponential growth 
curve, the neural network is able to predict the αβ value using only the diagnostic scan. These classification and 

Figure 1.  T1-weighted post contrast MR scan. (a) GL261, mouse glioma, (b) U87, human glioma, (c) Daoy, 
human medulloblastoma. (d) Schematic of workflow for feature extraction. Images are imported into a custom 
program for visualization and segmentation of the tumor region. The selected region used to extract 1st and 
2nd order image features. These features are then used to construct the three different supervised classifiers: 
Decision Tree, Random Forest, and Support Vector Machine.
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prediction models can provide an additional tool for tumor diagnosis and could be used to better personalized 
treatment planning without additional burden to the patient.

Previous works have shown that image features can be used for brain tumor classification and grading32–35. 
Studies aimed at using images to classify tumor type used different classification models and parameters and 
different scan sequences with varying degrees of success (77 to 91% accuracy)32,34,36. Our results of 84% accuracy 
is comparable to these other models by optimizing the GLCM size and classifier. Taking a more reductionist 
approach, our study focused on the robustness of texture features for different GLCM sizes and how this in turn 
affects the performance of different classifiers’ while controlling for any external confounding factors such as 

Figure 2.  Validation accuracy of classifier across tumor regions and GLCM size. Model performance: (a) 
Decision Tree, (b) Random Forest and (c) Support Vector Machine, was consistently poor at the edge of the 
tumor and high with the entire tumor volume. Each data point represents a different matrix size. Data is shown 
as mean ± standard deviation. (d) Receiver operator curve of the best performing model, 512 gray levels with 
random forest.

All 95% CI

Model Performance Evaluation: GL261

95% CICenter 95% CI Middle 95% CI Edge

AUC 0.923 — 0.909 — 0.960 — 0.732 —

Accuracy 0.908 0.904, 0.911 0.840 0.837, 0.843 0.87 0.861, 0.875, 0.72 0.72, 0.73

Specificity 0.92 0.91, 0.92 0.811 0.808, 0.815 0.919 0.910, 0.928 0.69 0.68, 0.70

Sensitivity 0.893 0.889, 0.90 0.88 0.87, 0.88 0.786 0.779, 0.793 0.77 0.76, 0.78

F-Score 0.888 0.884, 0.891 0.824 0.821, 0.827 0.821 0.812, 0.829 0.69 0.69, 0.70

Table 1.  Classification model performance for GL261 in different tumor regions.

All 95% CI

Model Performance Evaluation: U87

95% CICenter 95% CI Middle 95% CI Edge

AUC 0.879 — 0.842 — 0.813 — 0.708 —

Accuracy 0.892 0.890, 0.894 0.841 0.839, 0.844 0.779 0.775, 0.782 0.71 0.71, 0.72

Specificity 0.909 0.907, 0.911 0.910 0.908, 0.912 0.768 0.765, 0.772 0.85 0.84, 0.86

Sensitivity 0.85 0.84, 0.86 0.66 0.65, 0.67 0.80 0.78, 0.80, 0.34 0.33, 0.36

F-Score 0.81 0.80, 0.82 0.69 0.68, 0.70 0.73 0.72, 0.74 0.40 0.38, 0.41

Table 2.  Classification model performance for U87 in different tumor regions.
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machine variance by using our preclinical tumor models. Changing the distance between neighbors to construct 
the GLCM is another variable that can be optimized. However our preclinical tumor volume is limited, therefore 
extending the distance between neighboring pixels would not produce meaningful results. However, Chen et al.  
has shown in texture analysis of breast lesions that extending the distance of neighbors does not significantly 
affect the GLCM, a finding which may be applicable to brain tumor studies37. We have identified four features 
(autocorrelation, cluster prominence, sum of squares, and sum variance) that were dependent on the number 
of gray levels while the other texture features were independent. Cluster prominence, which is a measure of the 
GLCM asymmetry, was the only feature that was significantly lower in the glioma (GL261 and U87) tumors than 
medulloblastoma. The observed lower local variance, as defined by cluster prominence, in the glioma tumor 
model can be attributed to the well-defined tumor border in gliomas unlike the diffuse borders of medulloblas-
tomas (Fig. 1). This finding agrees partially with Brynolfsson’s et al. work using apparent diffusion coefficient 
(ADC) maps of glioma and prostate data38. However, this study identified more features being influenced by 
GLCM size and noted a greater effect of GLCM size on the texture feature value38. This seems to indicate that 
the influence of the GLCM size on texture feature value may vary between image acquisition protocols. Our 
results indicate that GLCM size is an important parameter to consider when constructing classification models. 
Therefore to have meaningful comparison across acquisition protocols, the GLCM size should be standardized 
and not part of the optimization process.

Classifier performance was impacted by the GLCM size, but the selection of the ROI for the derivation of 
the GLCM had the greatest impact on performance. Using the entire tumor volume resulted in higher accuracy 
than using a single image slice alone. This may be due to an increase in counting statistics and less sparse GLCMs 
which allows for extraction of meaningful features. This was the case at the edge of tumors where the ROI was 
small which resulted in poor performance for all three classifiers. Furthermore, using the entire tumor region 
would better approximate the tumor’s heterogeneity.

To our knowledge, this is the first demonstration of the use of texture features to predict tumor growth using 
a neural network. While there are many classical models of tumor growth, we chose to fit the experimental data 
to an exponential growth curve since the model is straightforward (with only two parameters) and provides a 

All 95% CI

Model Performance Evaluation: Daoy

95% CICenter 95% CI Middle 95% CI Edge

AUC 0.848 — 0.775 — 0.865 — 0.565 —

Accuracy 0.861 0.858, 0.863 0.781 0.777, 0.784 0.79 0.77, 0.79 0.64 0.63, 0.65

Specificity 0.919 0.916, 0.923 0.86 0.86, 0.87 0.88 0.88, 0.89 0.75 0.74, 0.76

Sensitivity 0.73 0.73, 0.74 0.59 0.58, 0.59 0.48 0.46, 0.49 0.40 0.39, 0.42

F-Score 0.77 0.76, 0.77 0.62 0.61, 0.62 0.51 0.49, 0.53 0.42 0.40, 0.43

Table 3.  Classification model performance for Daoy in different tumor regions.

Figure 3.  Importance of features in tumor classification. (a) Feature importance was estimated for the random 
forest model using the entire tumor volume and a GLCM of size 512. The top 10 most important features 
included both 1st and 2nd order texture features. (b) Cluster prominence derived from a GLCM of size 512 was 
calculated for each tumor type. Cluster prominence was significantly difference between medulloblastoma and 
glioma, both U87 and GL261 tumors. Box plot represents 25th and 75th percentiles; bar = min and max values; 
line = median, ***p < 0.0002, ****p < 0.0001.
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good fit to our data39. More complex mathematical models of tumor growth hasve also been proposed which are 
driven by the tumor’s biological processes however the majority of these models are derived and optimized for 
gliomas40–42. Using a simple two-parameter growth model with minimal assumptions about the underlying tumor 
biology allows us to test the predictive power of image features with different tumor types. Overall the neural 
network is able to predict the αβ with better performance for U87 and Daoy tumors with 16% mean square error. 
The prediction model was best for tumors that had lower growth variance which helps reinforce the network. 
The high variance in the GL261, a mouse glioma cell line, tumor growth curve may be due to immunological 
factors in the animal model (Fig. 4). In the GL261 model, cells are implanted into an immunocompetent animal, 
unlike the human U87 or Daoy cells, potentially leading to an immune response that could delay tumor growth 
to varying degrees.

While there are other image features that can be used, in this study we are limited to features derived from 
the signal intensity histogram (first order) and features derived from the GLCM (second order). Differences in 
image processing between our in-house MATLAB program and other publicly available software tools means 
that the extracted features’ values are not necessarily identical or universally comparable even though the same 

Figure 4.  Prediction of tumor growth curve. (a) Two-layer feedforward network with a sigmoid transfer 
function in the hidden layer and linear transfer function in the output layer. Tumor growth is different between 
the different tumor types. (b) Growth curve of the three different tumor type with the experimental data, the 
fitted exponential growth model and the predicted growth curve from the neural network. (c,d) Growth curve 
of each tumor type. Data is shown as mean ± standard deviation.
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mathematical equations were used29–31. As such, the use of image features from other software can impact the 
performance of the classifiers we developed. The classifiers were also trained on scans that were acquired from 
the same animals at different time points with the assumption that these scans are not necessarily equivalent. 
This assumption allowed the classification models to be constructed with the use of large cohorts; however this 
assumption should be investigated in future studies. Another limitation of our work is the use of preclinical brain 
tumor models that prevents the findings from this study from being directly extrapolated to patient data. Since we 
are using supervised machine learning algorithms, the classifier relies heavily on the training dataset. Preclinical 
models can generate these datasets in a timely manner while controlling for confounding factors such as acquisi-
tion and reconstruction protocols which are not always readily available in clinical data sets. While there are data-
sets available for adult gliomas including glioblastoma and low grade glioma43,44 and multi- institutional efforts 
to manually annotate data from The Cancer Imaging Archive (TCIA)45, to our knowledge, there are no publically 
available imaging datasets, at this time, for medulloblastomas. As datasets become available, the established work-
flow can be implemented to test clinical data. Furthermore, with a preclinical model, we can track tumor growth 
and establish the growth curve which is not possible with patient data. This work provides proof-of-concept that 
texture features can classify tumor types with high accuracy and when interpreted by neural networks, these 
features can map out tumor growth.

These findings demonstrate that image features extracted from standard medical images have the ability to 
make diagnoses and even predict tumor growth rate. For patients who are not eligible for a biopsy or tumor resec-
tion, with further validation using clinical data, this modeling can be an alternate source of information to help 
clinicians make better informed treatment plans. Furthermore, for patients who may not be immediately eligible 
for treatments such as radiation therapy, mapping out the growth curve of these tumors can help clinicians iden-
tify critical time points when planning the course of treatment. More importantly, this study adds to the previous 
body of work on the impact of GLCM size on texture feature value.

Conclusion
Features derived from standard-of-care images can be used to classify tumor type and map tumor growth using 
machine learning algorithms. The number of gray levels in the construction of the GLCM influenced the perfor-
mance of the predictive models. A GLCM size of 512 with a random forest classification model yielded an accu-
racy of 84% based on a tenfold cross-validation in our preclinical glioma and medulloblastoma tumor models. 
These results are promising in achieving a noninvasive marker for tumor type classification. These texture features 
are also found to be informative of tumor growth. Using a two layer neural network, the αβ values were predicted 
from the image features. The neural network had mean squared error of 16.02% with better performance for U87 
and Daoy tumors compared to GL261 tumors. The performance of these models can be greatly improved with 
the addition of new data sets since both the random forest and neural network relied heavily on training data 
sets. Finally, standardization of feature extraction and exploration of deep learning techniques can contribute to 
a more accurate prediction of tumor type and growth curve, including a standardized GLCM that can allow for 
meaningful comparison of texture features.

Method
Tumor implantation.  All animal studies were approved and performed in accordance with guidelines estab-
lished by Baylor College of Medicine Institutional Animal Care and Use Committees (IACUC). Severe combined 
immunodeficient mice (Jackson Lab, Bar Harbor, ME) were implanted in the cerebellum with 1 × 106 Daoy cells 
(ATCC, Manassas, VA) suspended in matrigel (Sigma-Aldrich, St. Louis, MO) to establish the medulloblastoma 
tumor model (n = 10). Glioma models were established in the caudate putamen. The human glioma model was 
established in severe combined immunodeficient mice with 1 × 106 U87 (ATCC, Manassas, VA) cells suspended 
in matrigel (n = 8). The mouse glioma model was established in C57BL/6 Albino with 5 × 105 GL261 (ATCC, 
Manassas, VA) cells in matrigel (n = 17). Animals were monitored for general health and euthanized according 
to the established protocol.

Texture feature extraction.  Animals were imaged either weekly or biweekly based on tumor type, 
with T1-weighted relaxation time = 1500 ms, echo time = 8.5 ms, matrix size 256 × 256, pixel spacing 
0.117 × 0.117 mm, slice thickness 0.5 mm) post contrast scan on a 9.4 T magnet (Bruker BioSpin). Gadolinium 
(Magnevist®, 0.1 µL/g diluted in sterile saline) was administered intravenously 10 minutes prior to start of image 
acquisition. The acquired axial scans (n = 87 scans) were used for texture feature extraction. Due to tumor bur-
den, not all animals were imaged the same number of times.

Image features were extracted using a custom program developed in the 2016 MATLAB program (The 
MathWorks Inc., Natick, MA). The program allows the users to import the image files and manually select a 
region of interest (ROI) using a graphical user interface (GUI). The GUI provides visualization of the image and 
the user segments the ROI by manually defining the perimeter of the tumor. Tumor region segmentation was 
performed on the central, middle, edge and entire tumor region. The central slice was defined as the slice with the 
largest cross section (n = 73); the edge of the tumor was designated as the second to last slice where the tumor was 
visible (n = 69); and the middle tumor region was defined as halfway between the center and tumor edge (n = 34). 
The middle and edge slices were random slices selected from either side of the tumor. If the tumor was too small, 
we did not include the edge and/or middle tumor region in the analysis hence there were differences between the 
number of slices analyzed for each tumor region. For the GLCM representing the entire tumor region, the tex-
ture features were calculated by averaging the GLCM from each image slice. Tumor segmentation was manually 
performed by selecting the tumor border as delineated by the enhancement from the imaging contrast agent. The 
GLCM was constructed using MATLAB’s built-in graycomatrix function which creates a GLCM from an image 
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with the specified number of gray levels, offset. In this study the segmented tumor region gray level intensity 
binning is performed in the entire image.

Once the ROI or tumor region was segmented 33 different image features are automatically extracted as 
defined by Harlick et al. with the corresponding unique code provided by the international Image Biomarker 
Standardization Initiative (IBSI)23,46 (see Supplementary Table S1). These image features include both first and 
second order features. Second order features were derived from the gray level co-occurrence matrix (GLCM). The 
GLCM is a N × N matrix which represents the frequency in which combination of grayscale intensity occurs. The 
GLCM is defined as for a given matrix size N:

δ αP i j( , ; , ) (1)

Where N is defined by the number of discrete gray level intensities, each (i,j) element represent the frequency in 
which the combination of intensity level i and j occur as separated by pixel distance (δ) in direction (α).

First order features were derived from the grayscale intensity distribution histogram of the pixels from the 
selected ROI (tumor region). Second order image features were derived from the GLCM constructed with 10 
different dimensions (N = 8, 16, 24, 32, 48, 64, 98, 128, 256, 512) which included features from Haralick et al., Soh 
et al. and Clausi et al.23,47,48. The final texture features were extracted from the normalized GLCM by averaging 
the four different offsets (α = 0°, 45°, 90° and 135° with symmetry and pixel distance of δ = 1). The list of image 
features can be found in Supplementary Table S1.

Tumor type classification model.  The classifications models were constructed in MATLAB with three 
classes: GL261, U87 and Daoy and the image features as inputs. In this study, three different classification models 
were investigated; decision tree, random forest, and support vector machine. Each model used the extracted 
image features as inputs to predict the three tumor classes or tumor type. Decision tree models were constructed 
using the fitctree function in MATLAB which fits binary decision trees for multiclass classification, with the 
default setting and split criterion set to Gini’s diversity index. Hyperparameters were optimized to minimize the 
cross-validation error for all eligible parameters which included max number of splits and minimum number of 
observation at each node. Random forest models were constructed using the TreeBagger function in MATLAB 
which grows the decision tree by bootstrapping samples of the dataset and selecting a random subset of predic-
tors to use at each split. Default settings were used with the exception of using an ensemble of 500 decision trees. 
Support vector machine models were constructed using the fitcecoc function in MATLAB which produces a mul-
ticlass support vector machine model using a Gaussian kernel function. The models were trained using default 
settings and hyperparameters were optimized to minimize the cross-validation error. The following parameters 
were optimized:, box constrainedt, penalty imposed on samples for outside of margins), kernel scale, polynomial 
kernel function order to compute the Gram matrix and the standardization of the input features. To evaluate 
each algorithm’s performance and prevent overfitting during the training phase, a 10-fold cross validation was 
performed, where 90% of the data is randomly sampled for training and 10% withheld for testing. The training 
and testing dataset is partitioned based on individual imaging scans and not by animal. All hyperparameters were 
optimized using Bayesian optimization. Feature importance for random forest was determined by the summation 
of changes in error due to node removal and normalizing by the number of branching points.

Tumor growth rate prediction.  Tumor growth curves from each individual tumor were first fitted to a 
one-term exponential:

⁎α= βtumor volume e (2)time

The αβ values were fitted using the Trust-Region algorithm with default setting using MATLAB for each 
tumor. The values found from the fit was used as the target value for the neural network with image features 
derived from early scans (first imaging session) used as input. The two layer neural network used consistied of 33 
hidden neurons with a sigmoid transfer function in the hidden layer and linear transfer function in the output. 
The network was trained with Levenberg-Marquardt back-propagation algorithm where 60% of the data was used 
for training, 35% used for validation and 5% used for testing (n = 6, 2 test cases for each tumor type from separate 
cohort). Training and testing samples were divided to have similar distribution and equal representation of all 
three tumor types.

Statistical analysis and model performance evaluation.  Statistical analysis was performed using 
GraphPad Prism (GraphPad Software, La Jolla, CA). Model performance was assessed with the following metrics: 
accuracy, specificity, sensitivity and F-score. TP = true positive, TN = true negative, FP = false positive, FN = false 
negative:

Accuracy TP TN
TP FP FN TN (3)

=
+

+ + +

=
+

Specificity TN
FP TN (4)

Sensitivity TP
TP FN (5)

=
+

https://doi.org/10.1038/s41598-019-48738-5


9Scientific Reports |         (2019) 9:12529  | https://doi.org/10.1038/s41598-019-48738-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

Fscore TP
TP FP FN

2
2 (6)

=
∗

∗ + +

The metrics were computed for each individual tumor class from the confusion matrix. Analysis of variance 
(ANOVA) was used to compare multiple means for each image feature between different tumor types. Bonferroni 
correction was used for multiple comparisons with P-values presented as multiplicity adjusted p-values with 
alpha set to 0.05, threshold for significance = 0.000505051, to determine statistical significance of the image fea-
tures. This stringent correction accounts for 99 potential hypotheses for the three tumor types and thirty-three 
possible image-based features. P-values were not additionally adjusted for GLCM size, which was set during the 
choice of optimal model.

Data Availability
The datasets generated and/or analyzed during the current study are available on https://github.com/tien-tang/
tumor-classification_growth-rate.
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