Table 4.
. Reduction from 432 to 32
| Space group of unstrained crystal order 24 per lattice point | If stressed so that X=Y; [111] ∥ Z | Space group of strained crystal order 6 per lattice point | |||||
|---|---|---|---|---|---|---|---|
| Coordinates referred to axes of unstrained crystal | |||||||
| No. | Symbol | 1st Subset | 2d Subset | 3d Subset | 4th Subset | No. | Symbol |
| 207 | P432 | ( x, y, z) | ( x, , ) | ( , y, ) | ( , z) | 155 | R32 |
| ( , z, x) | ( , , x) | ( y, , ) | ( , z, ) | ||||
| ( z, x, y) | ( , x, ) | ( , , y) | ( z, , ) | ||||
| ( , , ) | ( y, , z) | ( , x, z) | ( y, x, ) | ||||
| ( , , ) | ( z, y, ) | ( z, , x) | ( , y, x) | ||||
| ( , , ) | ( , z, y) | ( x, z, ) | ( x, , y) | ||||
| 208 | P42,32 | ( x, y, z) | ( x, , ) | ( , y, ) | ( , , z) | 155 | R32 |
| ( y, z, x) | ( , , x) | ( y, , ) | ( , z, ) | ||||
| ( z, x, y) | ( , , ) | ( , , y) | ( z, , ) | ||||
| (½-y,½-x,½-z) | (½+y,½-x,½+z) | (½-y,½-x,½+z) | (½+y,½+x,½-z) | ||||
| (½-z, ½-y, ½-x) | (½+z, ½+y, ½-x) | (½+z, ½-y, ½+x) | (½-z,½+y,½+x) | ||||
| (½-x, ½-z, ½-y) | (½-x,½+z, ½y) | (½+x, ½+z, ½-y) | (½+x, ½-z,½+y) | ||||
| 209 | F432 | ( x, y, z) | ( x, , ) | ( , y, ) | ( , , z) | 155 | R32 |
| ( y, z, x) | ( , , x) | ( y, , ) | ( , z, ) | ||||
| ( z, x, y) | ( , x, y) | ( , , y) | ( z, , ) | ||||
| ( , , ) | ( y, , z) | ( , x, z) | ( y, x, ) | ||||
| ( , , ) | ( z, y, ) | ( z, , x) | ( , y, x) | ||||
| ( , , ) | ( , z, y) | ( x, z, ) | ( x, , y) | ||||
| 210 | F4132 | ( x, y, z) | ( x, , ) | ( , y, ) | ( , , z) | 150 | 1132 |
| ( y, z, x) | ( , , x) | ( y, , ) | ( , z, x) | ||||
| ( z, x, y) | ( , x, ) | ( , , y) | ( z, , ) | ||||
| (¼-y,¼-x¼,-z) | (¼+y,¼-x,¼+z) | (¼-y, ¼+x, ¼+z) | (¼+y, ¼+x, ¼-z) | ||||
| (¼-z, ¼-y, ¼-x) | (¼+z, ¼+y, ¼-x) | (¼+z, ¼-y, ¼+x) | (¼-z, ¼+y, ¼+x) | ||||
| (¼-x, ¼-z, ¼-y) | (¼-x, ¼+z, ¼+y) | (¼+x, ¼ +z, ¼-y) | (¼+x, ¼-z, ¼+y) | ||||
| 211 | I432 | ( x, y, z) | ( x, , ) | ( , y, ) | ( , , z) | 155 | R32 |
| ( y, z, x) | ( , , x) | ( y, , ) | ( , z, ) | ||||
| ( z, x, y) | ( , x, ) | ( , , y) | ( z, , ) | ||||
| ( , , ) | ( y, , z) | ( , x, z) | ( y, x, ) | ||||
| ( , , ) | ( z, y, ) | ( z, , x) | ( , y, x) | ||||
| ( , , ) | ( , z, y) | ( x, z, ) | ( x, , y) | ||||
| 212 | P4332 | ( x, y, z) | (½+z, ½-y, ) | ( ,½+y,½-z) | (½,-x, , ½+z) | 155 | R32 |
| ( y, z, x) | (½-y, ,½+x) | ( +y, ½-z, ) | ( , ½+z, ½-x) | ||||
| ( z, x, y) | ( , ½+x,½-y) | (½-z, , ½+y) | (½+z, ½-x, ) | ||||
| (¼-y, ¼-x, ¼-z) | (¾+y,¾-x,¼+z) | (¾-y,¼+x,¾+z) | (¼+y,¾+x,¾-z) | ||||
| (¼-z,¼-y,¼-x) | (¼+z, ¾+y, ¾-x) | (¾+z,¾-y,¼+x) | (¾-z,¼+y, ¾+x) | ||||
| (¼-x,¼ -z, ¼-y) | (¾-x,¼+z,¾+y) | (¼+x,¾+z,¾-y) | (¾+x,¾-z,¼+V) | ||||
| 213 | P4132 | ( x, y, z) | (½-x, ½-y, ) | ( ,½+y,½-z) | (½,-x, , ½+z) | 155 | K32 |
| ( y, z, x) | (½-y, , ½-x) | (½+y,½-z, ) | ( , +z, ½-x) | ||||
| ( z, x, y) | ( , ½+x, ½-y) | (½-z, ,½-y) | (½+z, ½-x, ) | ||||
| (¾-y,¾-x,¾-z) | (¼+y, ¼-x, ¼+z) | (¼-y,¾+x,¼+z) | (¾+y,¼+x,¼-z) | ||||
| (¾-z,¾-y,¾-x) | (¾+z,¼+y,¼-x) | (¼+z, ¼-y, ¾+x) | (¼-z,¾+y,¼+x) | ||||
| (¾-x, ¾-z, ¾-y) | (¼-x, ¾+z, ¼+y) | (¾+x, ¼+z,¼-y) | (¼+x,¼ -z,¾+y) | ||||
| 214 | I4132 | ( x, y, z) | (½+x, ½-y, ) | ( ,½+y,½-z) | (½-x, ,½+z) | 155 | R32 |
| ( y, z, x) | (½-y, , ½+x) | (½+y,½-z, ) | ( ,½+z,½-x) | ||||
| ( z, x, y) | ( , ½+x, ½-y) | (¾-z, ,½+y) | (½+z,½-x, ) | ||||
| (¼-y,¼-x,¼-z) | (¾+y, ¾-x, ¼+z) | (¾-y,¼+x,¾+z) | (¼+y,¾+x,¾-z) | ||||
| (¼-z,¼-y,¼-x) | (¼+z, ¾+y, ¾-x) | (¾+z, ¾-y,¼+ x) | (¾-z,+,¼-y,¾+x) | ||||
| (¼-x,¼-z,¼-v) | (¾-x, ¼+z,¾+y) | (¼+x,¾+z,¾-y) | (¾+x,¾-z,¼+y) | ||||