Skip to main content
. 1965 Sep-Oct;69A(5):461–479. doi: 10.6028/jres.069A.049

Table 9.

Reduction from 622 to 222

Space group of unstrained crystal, order 12 per lattice point If stressed so that y and z ∥ any two of X, Y, and Z Space group of strained crystal, order 4 per lattice point
Coordinates referred to axes of unstrained crysta
No. Symbol 1st Subset 2d Subset 3d Subset No. Symbol
177 P622 (x, y, z) (y¯,x-y, z) (y-x,x¯, z) 21 C222
(x,x-y, z¯) (y¯, x¯, z¯) (y-x,y, z¯)
(x¯, y¯, z) (y, y -x, z) (x-y,x, z)
(x¯, y-x, z¯) (y, x, z¯) (x- y, y¯, z¯)
178 P6122 (x, y, z) (y¯,x-y,⅓+z) (y-x,x¯,⅔+z) 20 C2221
(x,x-y,⅙-z) (y¯, x¯,⅚-z) (y-x,y,½-z)
(x¯, y¯,½+z) (y, y -x,⅚+z) (x-y,x,⅙+z))
(x¯, y-x,⅔-z) (y x,⅓-z) (x- y, y¯, z¯)
179 P6522 (x, y, z) (y¯,x-y,⅔+z) (y-x,x¯,⅓+z) 20 C2221
(x,x-y,⅚-z) (y¯, x¯,⅙-z) (y-x,y,½-z)
(x¯, y¯,½+z) (y, y -x,⅙+z) (x-y,x,⅚+z)
(x¯, y-x,⅓-z) (y x,⅔-z) (x- y, y¯, z¯)
180 P6222 (x, y, z) (y¯,x-y,⅔+z) (y-x,x¯,⅓+z) 21 C222
(x,x-y,⅓-z) (y¯, x¯,⅔-z) (y-x,y, z¯)
(x¯, y¯, z) (y, y -x,⅔+z) (x-y,x,⅓+z)
(x¯, y-x,⅓-z) (y x,⅔-z) (x- y, y¯, z¯)
181 P6422 (x, y, z) (y¯,x-y,⅓+z) (y-x,x¯,⅔+z) 21 C222
(x,x-y,⅔-z) (y¯, x¯,⅓-z) (y-x,y, z¯)
(x¯, y¯, z) (y, y -x,⅓+z) (x-y,x,⅔+z)
(x¯, y-x,⅔-z) (y x,⅓-z) (x- y, y¯, z¯)
182 P6322 (x, y, z) (y¯,x-y, z) (y-x,x¯, z) 20 C2221
(x,x-y,½-z) (y¯, x¯,½-z) (y-x,y,½-z)
(x¯, y¯,½+z) (y, y -x,½+z) (x-y,x,½+z)
(x¯, y-x, z¯) (y, x, z¯) (x- y, y¯, z¯)