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Abstract
Mesenchymal stem cells are undifferentiated cells able to acquire different
phenotypes under specific stimuli. In vitro manipulation of these cells is focused
on understanding stem cell behavior, proliferation and pluripotency. Latest
advances in the field of stem cells concern epigenetics and its role in maintaining
self-renewal and differentiation capabilities. Chemical and physical stimuli can
modulate cell commitment, acting on gene expression of Oct-4, Sox-2 and Nanog,
the main stemness markers, and tissue-lineage specific genes. This activation or
repression is related to the activity of chromatin-remodeling factors and
epigenetic regulators, new targets of many cell therapies. The aim of this review
is to afford a view of the current state of in vitro and in vivo stem cell applications,
highlighting the strategies used to influence stem cell commitment for current
and future cell therapies. Identifying the molecular mechanisms controlling stem
cell fate could open up novel strategies for tissue repairing processes and other
clinical applications.

Key words: Stem cells; Epigenetics; Self-renewal; In vitro differentiation; Physical
stimuli; Stem cell fate; Clinical practice; Cell transplantation
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self-renewal and differentiation capability. Activation or silencing of genes controlling
stemness and tissue-lineage specification are related to chromatin-remodeling factors and
epigenetic regulators. In this review, we focused on the principal epigenetic markers that
regulate stem cell pluripotency, in vitro manipulation and the current state-of-the-art in
vivo applications of human mesenchymal stem cells.
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INTRODUCTION
Stem cells are known for their self-renewal and their capability to differentiate into
various lineages, participating in tissue regeneration after damage[1]. Since human
embryonic stem cells (ESCs) are isolated from the inner cell mass of the blastocyst[2]

their application in vitro and in vivo is burdened by ethical issues, causing researchers
to turn their interests toward other sources[3,4]. Mesenchymal stem cells, defined by
other  authors  as  mesenchymal  stromal  cells[5],  have  shown  a  high  proliferative
potential in vitro,  being identified as the elements that maintain the bone marrow
microenvironment, improve hematopoiesis and give rise to various cell lineages[6,7].
The most common source for human mesenchymal stem cells (hMSCs) is the bone
marrow, usually obtained from the iliac crest of adult patients. Bone marrow-derived
stem cells (BM-MSCs) can be separated from the tissue by centrifugation in a density
gradient media and, once placed in culture, they can be easily induced to differentiate
towards  different  phenotypes[8].  MSCs  are  found  in  many  other  adult  tissues,
including the dental pulp[9],  adipose tissue (ASCs)[10],  umbilical cord blood[11]  and
Wharton’s jelly of umbilical  cord12].  Despite some differences in terms of growth
kinetics and pluripotency, donor age- and -gender-related features[13,14],  MSCs can
differentiate under a variety of external cues, acting to replace damaged cells and
maintain  tissue  homeostasis[15].  In  order  to  reduce  manipulation  of  the  stromal
fraction, minimize enzymatic digestion and ensure maximum yield in culture, the
interest of researchers has turned to the optimization of MSC isolation protocols[16,17].
In particular, new devices have been developed for adipose tissue, based only upon
mechanical forces, thus allowing a micro-fragmented tissue fraction in one-step that is
enriched in hMSCs and pericytes[18,19].  Stem cells represent an important model to
study the molecular pathways involved in disease onset  and progression and to
develop drug delivery system and differentiation processes, in view of a successful
application  in  tissue  engineering  and  clinical  practice[20,21].  In  this  review,  we
summarize the influence of specific chemical and physical agents able to affect stem
cell behavior and fate, pointing out the current development of hMSCs applications in
vivo.

EPIGENETIC REGULATION OF SELF-RENEWAL AND
PLURIPOTENCY
Stem cell differentiation is an essential complex process involved in the maintenance
of  tissues  homeostasis,  being  in  turn  orchestrated  by  a  wide  range  of  signaling
pathways[22].  In  vitro  differentiation  involves  different  molecular  mechanisms
influencing  the  expression  of  the  main  markers  of  stemness:  Octamer-binding
transcription factor 4 (Oct-4), sex determining region Y-box 2 (Sox-2) and Homeobox
protein Nanog[23,24]. These transcription factors are essential for maintaining stem cell
pluripotency and are also involved in adult somatic cell reprogramming[25,26].

Epigenetics refers to the range of heritable changes in the structure of chromatin
able  to  affect  gene  expression  and  represents  the  molecular  reaction  to  all  the
environmental  changes[27].  These  chromatin  modifications  are  orchestrated  by
different kind of enzymes, such as DNA methyltransferases (DNMTs), or enzymes
controlling post-translational histone modification, as Histone deacetylase (HDACs)
and  histone  acetyltransferases[28].  Epigenetic  mechanisms  are  involved  in  the
progression from the undifferentiated to differentiated state, through silencing of self-
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renewal genes and activation of differentiation markers. The onset of these specific
gene expression patterns is stimulated by developmental and environmental stimuli,
causing changes in the chromatin structure, thus allowing a specific transcriptional
program, with a mechanism not fully clarified yet[29-31]. Therefore, epigenetics has a
central role not only during embryogenesis but also in maintaining tissue homeostasis
and  controlling  the  regenerative  potential  through  adulthood[32].  Wang  et  al[33]

demonstrated that HDAC6 takes part in dental MSC differentiation and osteoblast
maturation by maintaining dental and periodontal tissue homeostasis. Interactions
between the HDAC Sirtuin 6 (Sirt6) and Ten-eleven translocation (Tet) enzyme are
directly involved in the regulation of Oct-4, Sox-2 and Nanog genes, finely tuning
pluripotency  and  differentiation  balance  in  ESCs[34].  Santaniello  et  al[35]  (2018)
demonstrated that a combination of melatonin and vitamin D activates HDAC1 and
the (NAD)-dependent deacetylases Sirtuins 1 and 2 in ASCs. The final effect was an
inhibition of adipogenic differentiation, even when cells were cultured in a medium
able to prime adipogenic differentiation[35].

Exposure  of  human  amniotic  fluid  stem  cells  to  DNMT  inhibitors  induces
cardiomyogenic differentiation via chromatin remodeling, upregulation of cardiac-
related genes and repression of HDAC1 expression[36]. In addition, a combination of
DNMT and HDAC inhibitors counteracts cancer stem cell growth, reducing the tumor
mass in mouse mammary tumor models, thus increasing mice survival, and unfolding
novel epigenetic-based therapies for drug-resistant breast cancer[37]. DNA methylation
plays a key role in maintaining the undifferentiated state in stem cells by silencing the
differentiation genes, and it is also implicated in somatic cell reprogramming[38,39]. All
of these classes of enzymes promote changes in chromatin structure, exerting a crucial
role in regulating the balance between pluripotency and differentiation[40].  On the
whole,  continuous  efforts  to  unravel  epigenetic  regulation  holds  promise  for
continuous innovation in strategies aimed at controlling stem cell pluripotency and
tissue  homeostasis.  MicroRNAs (miRNAs),  small  non-coding  RNAs,  have  been
discovered as regulators of different signaling pathways, stem cell pluripotency and
somatic cell reprogramming[41].  The modulation of cell differentiation by miRNAs
could be used to treat  various kind of  diseases,  including myocardial  infarction,
neurodegenerative and muscle diseases[42]. Moreover, epigenetic mechanisms could
unravel many deregulated cellular dynamics, as those involved in cancer, aging and
age-related diseases[43] (Figure 1).

IN VITRO MODULATION OF STEM CELL BEHAVIOR
In  the  last  years,  several  molecules  capable  of  orchestrating  the  multilineage
repertoire  of  stem cells  have  been largely  used to  generate  specific  conditioned
media[44,45].  Within this context,  some authors found that medium conditioned by
factors such as activin A, bone morphogenetic protein 4 (BMP4), vascular endothelial
growth  factor  (VEGF)  or  Dickkopf-related  protein  1,  can  optimize  cardiac
development in mouse and human stem cell lines[46,47]. BMP4 itself, in combination
with inhibitors of the Activin/Nodal signaling pathways, induces differentiation of
ESCs into trophoblastic cells, which show similar trophectoderm profile and are able
to secrete placental hormones[48]. Concerning the use of chemistry to push stem cells to
specific  phenotypes,  molecules  that  can  affect  the  epigenetic  code  to  activate  a
molecular differentiation program have largely been used. Ventura et al[49,50] described
for the first time how a hyaluronan mixed ester of butyric and retinoic acids (HBR)
increases  the  transcription  of  cardiogenic  genes,  acting  through  the  epigenetic
regulation of a cardiogenesis program in vitro. HBR was also able to promote cardiac
regeneration  in  infarcted  rat  hearts,  decreasing  the  number  of  apoptotic
cardiomyocytes without the need for stem cell transplantation[49-52]. More recently, a
mixture of HBR and melatonin was successfully employed to induce an osteogenic
phenotype in dental pulp stem cells, suggesting the use of this cocktail for future in
vivo orthopedic and dental applications[53].

MODULATION OF STEM CELL COMMITMENT BY
PHYSICAL STIMULI
Electromagnetic  fields  can  interact  with  cells,  tissues  and  biological  systems  in
general[54,55] and are able to influence phenotypic features, gene expression patterns
and differentiation in MSCs, acting in a dose and time-dependent manner[56,57]. It has
been shown that 7 d of MSC growth on an electroconductive polymeric substrate was
sufficient to promote Nestin and β-3 Tubulin upregulation and the appearance of
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Figure 1

Figure 1  Epigenetic regulation of stem cell fate. Chromatin remodeling affects cell behavior and regulates the balance between pluripotency and differentiation.
HDACs: Histone deacetylases; Oct-4: Octamer-binding transcription factor 4; Sox-2: Sex determining region Y-box 2; NANOG: Nanog homeobox.

neural-like morphological extensions[58]. MSCs can be employed to improve cartilage
regeneration[59].  Synthetic scaffolds and biopolymers are incorporated in stem cell
cultures to induce their growth, mimicking the stem cell niche[60]. Biomaterials provide
a physical environment that can control cell function. The interaction between stem
cells  and  these  surfaces  modulates  multiple  processes  such  as  cell  migration,
proliferation and differentiation, as well as extracellular matrix deposition, providing
dynamic  signaling  able  to  regulate  cell  behavior[61,62].  Non-invasive  electrical
stimulation therapy exerts an important role in controlling calcium channels, thus
regulating  the  intracellular  calcium  concentration  during  chondrogenic  and
osteogenic stem cell differentiation, and opening novel approaches to improve tissue
repair in vivo[63,64]. Extracorporeal shock wave therapy (ESWT) is largely used to treat
orthopedic diseases, including tendinopathies or bone disorders, as well as wound
healing stimulation in radiation-damaged skin[65,66]. ESWT stimulates angiogenesis,
neovascularization,  and  recruitment  of  MSCs,  inducing  their  proliferation  and
differentiation.  These  processes  have  been  shown  to  involve  ATP  release  and
increased extracellular signal–regulated kinases Erk1/2 and p38 MAPK activation,
which is responsible for the proliferative and reparative effects[67]. Human and rat
ASCs exposed to repetitive ESWT retained all cell  surface markers and exhibited
increased multipotency into osteogenic and adipogenic lineages[68].

Radio electric fields asymmetrically conveyed by a medical device,  referred to
radioelectric asymmetric conveyer (REAC), are able to induce the transcription of
GATA-4, Nkx-2.5, VEGF, hepatocyte growth factor (HGF), Von Willebrand factor
(vWF), neurogenin-1, and myoD, genes orchestrating different tissue lineages, both in
mouse  embryonic  and  human  adult  stem  cells[69,70].  Moreover,  REAC  exposure
counteracted MSC senescence by downregulating the expression of p16INK4, ARF,
p53, and p21, involved in cell cycle regulation, reducing the number of senescence
associated-beta-galactosidase positive cells, while also preserving TERT expression
and  telomere  length[71-74].  Radio  electric  conveyed  fields  allowed  for  the  direct
reprogramming of human skin fibroblasts toward cardiac and neurogenic lineages
and synergistically enhanced the cardiogenic commitment in induced pluripotent
stem cells (iPSCs) cultured in cardiogenic medium[47,75].  In addition, radio electric
conveyed fields were sufficient to induce the neurogenic phenotype in PC12 cells, a
model for dopaminergic neuron studies[76]. Finally, concerning cell reprogramming,
several authors have shown that mechanical stimuli such as equiaxial stretching have
an important role in reprogramming somatic cells into iPSCs, with the formation of a
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great  number  of  iPSC  colonies  without  using  common  viral  mediated  gene
transduction[77]. These findings showed the prominence of physical stimuli in opening
up new strategies for cell manipulation and regenerative medicine[78,79].

BIOACTIVE MOLECULES IN ORCHESTRATING CELL
DIFFERENTIATION
The  use  of  nutraceuticals  has  recently  been  largely  employed  in  regenerative
medicine.

A wide range of natural molecules and compounds has been described as capable
to orchestrate stem cell commitment. Known as nutraceuticals or functional foods,
these  molecules  are  largely  used  for  their  therapeutic  or  preventive  effects[80,81].
Melatonin, the hormone secreted by the pineal gland, regulates many physiological
functions such as circadian rhythm, hemostasis and the immune system. An alteration
in its  secretion is  related to the onset  of  pathological  manifestations[82,83].  In vitro
studies  with  MSCs  demonstrated  that  melatonin  exerts  anti-oxidant  and  anti-
apoptotic  effects,  regulating  the  expression  of  pro-  and anti-apoptotic  proteins,
ameliorating the outcome of stem cell  transplantation[84,85].  Mendivil-Perez et al[86]

demonstrated that melatonin in transplanted mice was able to induce proliferation
and differentiation of neural stem cells into oligodendrocytes and astrocytes, reducing
oxidative stress produced by mitochondrial activity. Oxidative stress has a crucial role
in osteogenesis inhibition and in aging-related osteoporosis[87].  MSCs exposed to
melatonin exhibit  increased calcium stores and osteogenic differentiation.  These
events  include the  recruitment  of  AMP-activated protein  kinase  (AMPK),  Runt-
related transcription factor 2 and Forkhead box O3, with the latter usually being
downregulated under stress conditions[88]. AMPK activation is also involved in the
regulation of adipogenesis. It regulates the expression of peroxisome proliferator-
activated receptor γ (PPARγ), the main adipogenic orchestrator gene and a molecular
target of natural compounds used in obesity management[89,90].In combination with
other molecules, including vitamin D, melatonin has a synergistic effect on inhibiting
adipogenesis[91].  The  active  form  of  Vitamin  D  is  calcitriol,  which  is  naturally
synthesized following sun exposure or taken as dietary supplements.  It  controls
calcium  metabolism,  apoptosis,  and  stimulates  macrophages  and  immune
responses[92,93]. When ASCs are cultured in the presence of melatonin and vitamin D in
adipogenic-conditioned  medium,  adipogenic  differentiation  is  blocked.  This
inhibitory  effect  is  through  the  downregulation  of  specific  genes  controlling
adipogenesis, protein contents, and fat depots[91]. Moreover, the synergistic effect of
these two molecules epigenetically modulates ASC commitment towards osteogenic
differentiation through the activation of HDAC1 and SIRT1, even in the presence of
adipogenic conditions[35].  Natural compounds can therefore be considered potent
differentiating agents able to drive cell  proliferation and apoptosis resistance by
epigenetic regulations and post-transcriptional modifications[94,95]. At the same time,
they  can  act  as  anti-proliferative  agents  against  many  tumor  cells,  including
hepatocarcinoma cells, without affecting the cell cycle or viability of non-cancer cells,
thus representing novel specific tools for cancer prevention[96,97] (Figure 2).

FROM BENCH TO BEDSIDE
MSCs have largely attracted the attention of clinicians in regenerative medicine for
their easy expansion and differentiation potential, avoiding the ethical issues related
to the use of ESCs[98,99]. Stem cells are currently applied in gene therapy and treatment
of serious pathologies, sometimes representing the only alternative to conventional
treatments, to slow down the progression of the disease and improve life qualities of
the patients[100,101].  Moreover, when transplanted in both autologous and allogenic
fashion,  MSCs can migrate into the damaged tissue to control  inflammation and
immune responses[102]. The use of stem cells represents the most frequently applied
cell  therapy in hematological diseases[103],  although with the risk of rejection and
potential failure[104]. Starting with allogenic bone marrow transplantation in 1957[105],
stem cell therapy nowadays represent the main actor in many different clinical trials
for several diseases, such as neurological diseases like amyotrophic lateral sclerosis
(commonly known as ALS)[106].

BONE MARROW HEMATOPOIETIC STEM CELLS IN
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Figure 2

Figure 2  Natural molecules and stem cell fate. Bioactive molecules induce cell proliferation and differentiation, reducing ROS production and apoptosis, through
chromatin remodeling and epigenetic modifications. ROS: Reactive oxygen species; HDACs: Histone deacetylases.

CLINICAL PRACTICE
MSCs are multipotent cells that are able to differentiate into different lineages, and
they can also be easily expanded for clinical practice[107]. Bone marrow is a mesen-
chymal specialized connective tissue composed of progenitor cells that can undergo
adipogenic, osteogenic, chondrogenic and myogenic differentiation[108]. Thus, bone
represents  a  microenvironment  in  which  hematopoietic  stem  cells  (HSCs)  can
maintain their undifferentiated state and participate in hematopoiesis when exposed
to different  stimuli[109].  Hematopoiesis  is  a  complex process,  during which HSCs
undergo asymmetric division to become progenitor blood and bone marrow cells, as
erythrocytes, lymphocytes and monocytes[110]. HSC self-renewal potential is regulated
by different  signaling pathways.  Among them,  physiological  Notch signaling is
required for  bone formation,  regulates  the  HSC microenvironment  and cell  fate
decisions,  and is  also associated with tumorigenic  potential  and leukemia when
dysregulated[111]. Moreover, the crosstalk between Notch and Wnt signaling is crucial
for tissue development and turnover[112]. Wnt/β-catenin signal is essential for HSC
growth and homeostasis in vitro  and in vivo,  and its inhibition causes cell growth
arrest with a related decline in self-renewal potential of stem cells. On the other hand,
activation  of  Wnt  patterning  increases  Notch  expression  and supports  the  self-
renewal  potential  of  progenitor  cells  from  different  tissues,  suppressing
differentiation[113,114]. Alterations in signaling pathways and normal microenvironment
play a crucial role in the development of hematopoietic diseases, such as chronic and
acute myeloid leukemia[115].  HSCs are employed as therapeutic  tools  in stem cell
transplantations[116] due to their immunomodulatory properties, secretion of growth
factors  and  regeneration  of  injured  tissues,  especially  in  patients  refractory  to
conventional chemotherapy[117]. Autologous transplantations are used in leukemia,
lymphomas, multiple myeloma and other hematological malignancies[118]. There are
several retrospective studies in which patients were monitored after 10-12 years from
the  transplant  to  evaluate  survival  and  transplant-related  mortality[119-121].  HSC
transplantation was shown to be effective in counteracting the progression of the
disease, notably at the early stages of disease[122].

MSC TRANSPLANTATION FOR AMYOTROPHIC LATERAL
SCLEROSIS
ALS is the most frequent neurodegenerative dysfunction of the midlife[123]. ALS is
characterized by progressive degeneration of spinal cord motor neurons,  muscle
paralysis and death in 3-5 years due to respiratory failure. Degeneration involves
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toxicity and inflammatory processes associated with proliferation of resident cellular
populations[124].  Genetic and epigenetic risk factors are certainly the main causes
related to progression of the disease. Superoxide dismutase 1 (SOD1), which encodes
Cu/Zn superoxide dismutase 1, was the first gene whose alteration was associated
with ALS. Its mutation is related to protein misfolding and loss-of-function, and it is
found  in  many  familiar  forms[125,126].  Misfolded  proteins  have  a  central  role  in
neurodegenerative  disease,  since  in  their  abnormally  aggregated forms,  cellular
proteins  are  prevented  from  exerting  their  essential  roles  in  RNA  binding/
metabolism and cellular homeostasis[127]. MicroRNAs (miRNAs) are able to regulate
gene  expression  and  promote  or  repress  mRNA  stabilization  through  post-
transcriptional modification and by binding specific targets[128]. MiRNAs are involved
in different physiological mechanisms, such as cell growth and apoptotic processes,
while orchestrating pluripotency and differentiation in stem cells[129]. Altered miRNA
expression in the skeletal muscle is related to neurological symptoms and disease
progression. Some in vivo and in vitro studies have described how MiR-206 is enrolled
upon muscle  denervation in  the attempt to  regenerate  neuromuscular  synapses,
highlighting the role of  this  miRNA in different stages of  ALS progression[130,131].
Actually, there are no curative therapies for ALS. While drugs that suppress oxidative
stress can be used to try to maintain motor neuron function[132] to slightly increase
patient  survival,  novel  compounds  are  now  being  tested[133].  An  alternative  to
conventional therapy may be autologous MSC transplantation. Stem cells, thanks to
their immunomodulatory properties, secrete neurotrophic factors and other anti-
inflammatory  cytokines,  thus  supporting  motor  neuron  survival  and
functionality[134,135]. Notwithstanding, bone marrow is the most common source for
MSCs, Wharton jelly, umbilical cord blood and in particular ASCs, represent a valid
alternative in ALS therapy[136], due to their efficient isolation and high toleration by the
patients.

In several clinical studies, patients received intravenous injection of MSCs while
being monitored at regular time intervals. In all trials, autologous cell therapy proved
to be a safe procedure. The recipient tissues did not exhibit any structural changes,
tumor formation or toxicity related to transplantation,  while it  was shown to be
effective in counteracting disease progression, improving the quality of patient’s
life[137-139].

CONCLUSION
Epigenetic regulators were identified as new promising therapeutic targets in patients
with hematological,  breast cancer and other malignancies, as well as in neurode-
generative diseases[140,141].  The rescuing potential  of stem cells is  under control of
different kinds of signals, including the environment, which epigenetically regulate
their differentiation processes[142]. Understanding the molecular pathways involved in
stem cell fate is critical to develop novel tools for both the prevention and treatment of
a variety of diseases, with great impact in regenerative medicine, bioengineering and
clinical transplantation.
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