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Abstract
Ischemic stroke is a critical disease which causes serious neurological functional
loss such as paresis. Hope for novel therapies is based on the increasing evidence
of the presence of stem cell populations in the central nervous system (CNS) and
the development of stem-cell-based therapies for stroke patients. Although
mesenchymal stem cells (MSCs) represented initially a promising cell source,
only a few transplanted MSCs were present near the injured areas of the CNS.
Thus, regional stem cells that are present and/or induced in the CNS may be
ideal when considering a treatment following ischemic stroke. In this context, we
have recently showed that injury/ischemia-induced neural stem/progenitor cells
(iNSPCs) and injury/ischemia-induced multipotent stem cells (iSCs) are present
within post-stroke human brains and post-stroke mouse brains. This indicates
that iNSPCs/iSCs could be developed for clinical applications treating patients
with stroke. The present study introduces the traits of mouse and human iNSPCs,
with a focus on the future perspective for CNS regenerative therapies using novel
iNSPCs/iSCs.

Key words: Ischemic stroke; Stroke patients; Central nervous system; Neural
stem/progenitor cells; Multipotent stem cells; Stem-cell-based therapies
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Core tip: Ischemic stroke is a critical disease that is accompanied by serious symptoms,
such as paresis. Until recently, it was believed that areas affected by stroke mainly
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consist of necrotic and inflammatory cells. However, we have recently demonstrated that
novel ischemia-induced stem cells can be isolated from not only mouse brains after
stroke but also human brains after stroke. These stem cells exhibited the multipotency
and differentiated into electrophysiologically functional neurons. In this article, we
introduce the future perspectives for patients suffering from ischemic stroke using these
regionally derived stem cells.
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INTRODUCTION
Cerebrovascular diseases, including stroke, are a leading cause of death worldwide.
Owing to recent therapeutic advances such as reperfusion therapies by intravenous
administration  of  recombinant  tissue  plasminogen  activator  (IV  t-PA)  and
neuroendovascular treatment, including mechanical thrombectomy[1-3], some patients
can recover from stroke without sequelae. With the increased implementation of these
therapies, it is speculated that more stroke patients can benefit from them. In addition,
the therapeutic time window of IV t-PA was extended to 4.5 h[4]. Moreover, there is a
possibility, when guided by imaging, for the IV t-PA indication to be expanded in
patients  with  acute  ischemic  stroke  of  unknown  onset[5].  As  for  mechanical
thrombectomy, the therapeutic time window was expanded up to 16 h from onset or
to 24 h if the acute stroke patients had a mismatch between the ischemic core and
hypoperfusion area[6,7]. However, many patients with stroke are not eligible for these
therapies because of excluding factors (e.g., time after onset and portion of vascular
obstruction). Currently, approximately 13%-20% of acute ischemic stroke patients are
potentially eligible for mechanical thrombectomy[7,8]. In patients who had mechanical
thrombectomy, the rate of good clinical outcome was below 50%[3].  Alternatively,
patients receive rehabilitation, but many continue to suffer from various sequelae
such as paresis.

Thus, more attention is paid to reparative medicines, particularly to those based on
stem cell therapies. Various types of stem cells, including neural stem/progenitor
cells (NSPCs)[9-12],  mesenchymal stem cells (MSCs)[13,14]  (e.g.,  bone marrow-derived
MSCs, adipose-derived MSCs [15,16]), embryonic stem (ES) cell-derived NSPCs[17], and
induced pluripotent stem (iPS) cell-derived NSPCs[18], are considered as candidates for
cell transplantation following ischemic stroke.

Although the  central  nervous  system (CNS),  brain  and spinal  cord,  was  long
considered not to have regeneration potential after injury, accumulating evidence
indicate that the adult CNS contains NSPCs[19,20].  Therefore,  CNS repair might be
achieved through endogenous stem cells. However, no concrete evidence showing
that stem-cell-based therapies by NSPCs are clinically useful for patients with various
CNS diseases, including stroke, was reported. Although the reason remains unclear,
increasing evidence shows that the traits of not only stem cells themselves but also a
stem-cell  niche  surrounding  stem  cells  (e.g.,  endothelial  cells)  alter  after
ischemia/hypoxia and differ among the developing ages of mice in the CNS[21-24].
Thus, the lack of data may be due to the NSPCs being derived not from pathological
but from normal conditions (e.g., developmental fetal NSPCs)[9,10] and investigation
having focused on the reparative mechanism not emerging from the pathological
CNS.

INSPCS/ISCS DERIVED FROM MICE ISCHEMIC BRAINS
In our laboratory, we aimed to develop a method to isolate and utilize endogenous
NSPCs specifically induced by brain injury such as ischemic stroke (injury/ischemia-
induced NSPC; iNSPC). We used a mouse model of cerebral infarction whose post-
ischemic areas were highly reproducible[25,26]. As a result, we demonstrated for the first
time  that,  although  mature  neural  cells  such  as  neurons,  astrocytes,  and
oligodendrocytes underwent cell death within ischemic regions, iNSPCs that had the
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potential  to  differentiate  into  these  cells  developed within  the  same areas[27].  In
addition,  we have shown that  activation of  iNSPCs promoted neural  repair  and
functional recovery following ischemic stroke[22,28].

BRAIN PERICYTES FOLLOWING ISCHEMIA: DO THEY
FUNCTION AS NSPCS?
Many  types  of  cells,  including  astrocytes  in  the  subventricular  zone  (SVZ)[29,30],
reactive astrocytes[31], resident glia[32], oligodendrocyte precursor cells (OPCs)[33,34], and
ependymal cells[35,36], have been reported as NSPC candidates. Although the origin of
iNSPCs remains unclear, previous studies showed that several types of NSPCs such
as SVZ astrocytes[37,38] and OPCs[39,40] reside near blood vessels, in close association
with endothelial cells. We have previously shown that nestin+ iNSPCs within ischemic
areas express various pericyte markers such as platelet-derived growth factor receptor
beta (PDGFRβ), neuronal/glial 2 (NG2), and alpha smooth muscle actin (αSMA)[21,24,41].
Importantly, nestin+ cells were absent from non-ischemic areas in the cortex of adult
mice, indicating that normal pericytes in the adult brain do not express nestin. Thus,
we proposed that brain pericytes, localized near blood vessels, are potentially giving
rise to iNSPCs after injuries such as ischemic stroke[24,42].

Pericytes are localized near blood vessels and form a neurovascular unit (NVU)
together with endothelial  cells  and neural lineage cells  (neurons and astrocytes).
Pericytes are heterogeneous cells:  although PDGFRβ, NG2, nestin,αSMA, CD146,
Glast, Tbx18, and regulator of G protein signaling 5[24,43-51] are expressed on pericytes,
none of those are specific markers. Birbrair et al[44] divided skeletal-muscle-derived
pericytes into two subtypes (nestin−/NG2+ type-1 pericytes and nestin+/NG2+ type-2
pericytes). Using their proposed categorization, iNSPCs would be classified as type-2
pericytes as they express both nestin and NG2. In addition, Birbrair et al[52] reported
that nestin+/NG2+ type-2 pericytes have NG2+ glia-like traits. However, NG2+ glia is
identical  to  OPCs[53],  and  both  pericytes  and  OPCs  express  common  markers,
including NG2 and PDGFRα[54]. Thus, the precise connection between iNSPCs and
resident glia should be determined in further studies (Figure 1).

BRAIN PERICYTES FOLLOWING ISCHEMIA: DO THEY
FUNCTION AS MULTIPOTENT STEM CELLS?
Brain  pericytes  are  a  key component  of  the  NVU and play an important  role  in
maintaining this unit[55]. Even after severe stress such as ischemic stroke, cells forming
the NVU, including pericytes[42] and endothelial cells[23], survive, suggesting that these
cells play an essential role under pathological conditions as well as under normal
conditions.

Besides  endothelial  cells[56-59],  pericytes  possess  plasticity[54,60]  and  function  as
multipotent stem cells as well[43,44,47,61-67]. Therefore, we investigated whether iNSPCs
maintain  their  multipotency  under  pathological  conditions.  We  found  out  that
iNSPCs  can  differentiate  into  not  only  neural  but  also  mesenchymal  lineages,
including  osteoblasts,  adipocytes,  and  chondrocytes[21,41].  Thus,  under  ischemic
conditions following stroke,  brain pericytes might convert  into injury/ischemia-
induced multipotent stem cells (iSCs) by acquiring the stemness, thereby producing
iNSPCs (Figure 1). Consistent with our previous reports[21,41], using a mouse model of
cerebral  infarction,  other groups have also shown that  brain pericytes following
ischemia display the potential  to  differentiate  into multilineage cells[68].  We also
showed that iSCs share angioblast features and give rise to hematopoietic cell lineages
such as microglia[21,41]. Consistent with these reports, a recent study showed that brain
pericytes  and endothelial  cells  share  certain  traits[69].  Interestingly,  a  subtype of
pericytes  was  reported  to  be  derived  from  hematopoietic  lineages,  including
microglia[70-72].  Thus,  the  relationship  among iSCs,  pericytes,  and hematopoietic
lineages remains to be elucidated in future studies.

It remains unclear whether brain pericytes behave as multipotent stem cells in vivo.
Ideally, this should be clarified in mice using pericyte markers. A recent study using
genetic mapping by the Cre-loxP system failed to demonstrate that Tbx18+  brain
pericytes function as multipotent stem cells in vivo following mild injury, although
they  behave  as  multipotent  stem cells  in  vitro[50].  However,  phenotypes  of  cells
expressing certain genes (e.g.,  nestin) in transgenic mice differ depending on the
intron  regions  in  which  a  tag  (e.g.,  green  fluorescent  protein)  is  inserted[73-75].
Accumulating evidence also shows that genetic mapping techniques by the Cre-loxP
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Figure 1

Figure 1  Schematic representation of the fate of injury/ischemia-induced multipotent stem cells and injury/ischemia-induced neural stem/progenitor cells
following ischemic stroke. Under ischemic conditions following stroke, brain pericytes, which constitute the neurovascular unit together with endothelial cells and
neural lineage cells, may convert into induced multipotent stem cells (iSCs) by acquiring stemness. iSCs may generate induced neural stem/progenitor cells, which
have the potential to differentiate into various neural lineage cells, including neurons, astrocytes, and oligodendrocytes. NG2: Neuronal/glial 2; iSCs: Injury/ischemia-
induced multipotent stem cells; PDGFRβ: Platelet-derived growth factor receptor beta; iNSPCs: Injury/ischemia-induced neural stem/progenitor cells.

system  present  several  pitfalls[76-78].  For  example,  gene  expression  patterns  and
localizations of certain genes (e.g., nestin) are different depending on the reporter mice
used for crossbreeding[78]. Additionally, recombination efficiency following tamoxifen
treatment differs among the developing stages of  mice[77].  Furthermore,  we have
previously demonstrated that induction of iNSPCs/iSCs varies with the degree of
ischemic stimuli and that a severe injury is essential for inducing iNSPCs/iSCs[42].
Therefore, whether brain pericytes function as multipotent stem cells following injury
in vivo should be carefully investigated in further studies.

Moreover, to confirm that iSCs are multipotent, it is necessary to show that iSCs
derived  from  a  single-cell  type  can  differentiate  into  multiple  cell  types.  We
previously proposed that iSCs might be composed of subpopulations each specifically
differentiating into neural or mesenchymal lineages[79]. If so, these subpopulations
once  isolated  could  be  useful  for  clinical  applications.  For  example,  the  sub-
population that can predominantly differentiate into neuronal lineages would be used
for neural repair following CNS injuries. However, the precise relations between
iNSPCs and iSCs should be clarified in further studies (Figure 1).

BRAIN PERICYTES FOLLOWING ISCHEMIA: HOW DO THEY
ACQUIRE THE STEMNESS?
Although the  mechanism by which  brain  pericytes  acquire  multipotency  under
ischemic conditions remains unclear, we have previously demonstrated that brain
pericytes display up-regulated expression of various stem cell and undifferentiated
cell markers when they are incubated under oxygen–glucose deprivation (OGD) that
mimics  ischemia/hypoxia[21,41].  In  general,  pericytes  have  the  characteristics  of
mesenchymal lineages, and NSPCs have traits of epithelial lineages. Following OGD
stimuli, we showed that the mesenchymal-epithelial transition (MET) was facilitated
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in  brain  pericytes  as  demonstrated  by  the  up-regulated  expression  of  the  Sox2
gene[21,41].

These  findings  suggest  that  iNSPCs/iSCs  are  derived from brain  PCs  having
developed stemness through cellular reprogramming and MET. In support of this
viewpoint,  accumulating evidence shows that  brain PCs reprogrammed by gene
transduction (e.g.,  Sox2  gene)  acquire  neural  lineage traits,  including NSPC and
neuron phenotypes[48,80].

In addition to the NSPC marker nestin, iNSPCs/iSCs express various stem cell and
undifferentiated cell markers, including Sox2, Nanog, c-myc, and Klf4. However,
iNSPCs/iSCs  lack  Oct  3/4  gene  expression,  which  is  essential  in  producing  iPS
cells[21,24,81], even though iNSPCs/iSCs can differentiate into neural and mesenchymal
lineages. Therefore, iNSPCs/iSCs differ from pluripotent stem cells such as iPS cells
and ES cells. We also found out that it is not easy for somatic adult pericytes to be
reprogrammed into a pluripotent state even when subjected to severe stress such as
ischemia[21].  However, a recent study showed that an injury stimulus did convert
skeletal  muscle cells  into a pluripotent state[82].  Thus,  whether injury stimuli  can
induce somatic cells to become pluripotent cells should be carefully investigated in
future studies.

BRAIN PERICYTES FOLLOWING ISCHEMIA: ARE THEY
IDENTICAL TO OTHER TYPES OF MULTIPOTENT STEM
CELLS THAT RESIDE NEAR BLOOD VESSELS?
Akin  to  pericytes,  previous  studies  showed that  multipotent  stem cells  such  as
MSCs[83-87] and neural crest stem cells (NCSCs)[88] reside in the perivascular regions of
multiple organs. These cells also differentiate into various lineages, including neural
and mesenchymal lineages, consistent with the traits of iNSPCs/iSCs.

Comparing iNSPCs/iSCs with other types of multipotent stem cells such as bone-
marrow-derived  MSCs,  iNSPCs/iSCs  differentiate  into  mesenchymal  lineages,
including osteoblasts and adipocytes as well as MSCs. Using multi-electrode arrays[89],
we  recently  reported  that  iNSPCs/iSCs,  but  not  MSCs,  have  the  potential  to
differentiate  into  electrophysiologic-functional  neurons[90].  On the  basis  of  their
developmental origin in multiple organs, the majority of non-CNS pericytes originate
from the mesoderm. However, brain pericytes are likely neural crest derivatives[91,92].

The cells of the neural crest originate from the neural tube through the epithelial-
mesenchymal  transition.  The cells  of  the  neural  crest  are  multipotent  stem cells
(NSCs) that share both neural and mesenchymal traits[79,93,94].

Considering their origin, iNSPCs/iSCs have a stronger neural phenotype than
MSCs. Thus, it is likely that iNSPCs/iSCs are stem cells which differ from previously
reported ones. However, recent studies show that the traits of MSCs vary among
organs[87]. Thus, brain MSCs might have features differing from those of MSCs derived
from other organs (e.g., bone-marrow-derived MSCs)[95], and further investigations are
necessary regarding the relations among iNSPCs/iSCs, brain pericytes, and brain
MSCs.

INSPCS/ISCS DERIVED FROM HUMAN ISCHEMIC BRAINS
To translate the non-clinical findings obtained in mouse iNSPCs/iSCs into clinical
applications, it is essential to understand the traits of human iNSPCs/iSCs obtained
from patients with stroke.

Using  brain  samples  obtained  from  stroke  patients  who  needed  both
decompressive craniectomy and partial lobectomy as a life-saving therapy for diffuse
cerebral  infarction,  we  attempted  to  isolate  human  iNSPCs/iSCs.  We  detected
iNSPCs/iSCs within post-stroke areas of the human brains, consistent with those of
mouse brains[21,24,41,90].

Isolation and characterization of human iNSPCs/iSCs from stroke patients
Recently, we have reported the traits of iNSPCs/iSCs obtained from two patients with
cerebral infarction[96]. The samples obtained from two elderly patients displayed gross
necrosis  and histological  cell  death.  Immunohistochemical  analysis  showed that,
although mature neural cells disappear within post-stroke areas, nestin+ cells were
present within these areas. The nestin+ cells localized near blood cells and expressed
pericyte markers such as NG2 and αSMA. After the cells isolated from post-ischemic
human tissues were incubated in medium with basic fibroblast growth factor (bFGF)
and epidermal  growth factor  (EGF),  many proliferative  cells  emerged,  and they
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expressed the dividing cell marker Ki67. The cells isolated from post-ischemic human
tissues expressed not only nestin but also the pericyte markers NG2, PDGFRβ, and
αSMA. However, these nestin+ cells did not express endothelial cells and astrocytes
markers.  These  findings  indicate  that  brain  pericytes  convert  into  nestin+

iNSPCs/iSCs within post-stroke human brains, consistent with mouse brains[21].
Next, we examined the multipotency of human iNSPCs/iSCs. Even after several

passages,  nestin+  iNSPCs/iSCs retained the  expression of  various  stem cell  and
undifferentiated cell  markers,  including Sox2,  c-myc,  and Klf4.  When they were
incubated under conditions to promote the differentiation into mesoderm lineages
such as osteoblasts, adipocytes, and chondrocytes, they differentiated into these cells,
respectively. They also formed neurosphere-like cells under floating cultures and
differentiated into Tuj-1+ and MAP2+ neuronal cells. These findings demonstrate that
iNSPCs/iSCs are present within post-stroke human brains as well as in post-stroke
mouse brains.

However, more precise traits of human iNSPCs/iSCs remain unclear, including
their multipotency potential to differentiate into functional neurons. To address this
question, we are now investigating the features of human iNSPCs/iSCs obtained from
additional post-ischemic cerebral samples. Our preliminary study shows that human
iNSPCs/iSCs expanded from a single-cell lineage mainly differentiated into Tuj1+

neurons under neuronal differentiation conditions, and they differentiated into fatty
acid  binding  protein  4  (FABP4)+  adipocytes  under  adipogenic  differentiation
conditions. Our recent study also reveals that human iNSPCs/iSCs have the potential
to differentiate into functional neurons[97]. These results indicate that iNSPCs/iSCs (at
least  a  sub-population)  function as  multipotent  stem cells  that  differentiate  into
neuronal cells. Therefore, these cells should be renamed iSCs rather than iNSPCs
because they can differentiate into various cell lineages other than neural.

Other questions remain. For example, the traits of iNSPCs/iSCs may differ from the
time of injury onset to surgery. Also,  iNSPC/iSC features may vary among CNS
regions (e.g.,  cerebrum, cerebellum, brainstem, spinal cord).  Regarding the latter
question, our recent study demonstrated that iNSPCs/iSCs could be isolated from the
cerebellum[97]  as  well  as  the  cerebrum[96].  Comparative  gene  expression  profiles
showed that although the cerebellar iNSPCs/iSCs resembled cerebral iNSPCs/iSCs,
they expressed certain cerebellum-specific genes[97]. Thus, further studies are needed
using additional samples to identify comprehensively the traits of iNSPCs/iSCs.

THE PROSPECTS OF REGENERATIVE THERAPIES USING
INSPCS/ISCS
Evidence showing that iNSPCs/iSCs are present within post-stroke human brains
suggests that stem-cell-based therapies using iNSPCs/iSCs could contribute to neural
repair in patients with stroke in the future. Two strategies for clinical applications
using iNSPCs/iSCs could be implemented as follows.

A strategy targeting exogenously transplanted NSPCs/iSCs
The first strategy implies to transplant exogenous iNSPCs/iSCs within or near post-
ischemic areas (Figure 2A). iNSPCs/iSCs isolated from ischemic areas exhibit high
proliferative  activities  in  a  medium  containing  bFGF  and  EGF[96].  Thus,  after  a
satisfactory  expansion  of  iNSPCs/iSCs,  the  autologous  transplantation  of
iNSPCs/iSCs could be performed during subacute and chronic periods. This therapy
presents the advantage to repeatedly transplant iNSPCs/iSCs that satisfy certain cell
profiles. Another advantage is that the cell number (e.g., low dose of cells and high
dose of cells) and the transplant location (e.g., within ischemic areas, around ischemic
areas, and non-ischemic areas) can be chosen.

On the other hand, there are several disadvantages. For example, several weeks are
required  to  prepare  enough  iNSPCs/iSCs  in  vitro,  not  allowing  iNSPC/iSC
transplantation in stroke patients during acute phases. Furthermore, iNSPCs/iSCs
cannot be obtained from any stroke patients. Currently, iNSPCs/iSCs can only be
obtained from patients who needed both decompressive craniectomy and partial
lobectomy as  a  life-saving  therapy  for  diffuse  cerebral  infarction.  It  is  ethically
impossible to get iNSPCs/iSCs from patients with small infarcted areas (e.g., lacunar
infarction). Therefore, only a small portion of stroke patients would be eligible for this
treatment in the future.

Currently, we are investigating the safety (e.g., tumorigenesis onset and formation)
and  efficiency  (e.g.,  cell  survival,  neuronal  differentiation,  and  functional
improvement)  upon transplantation of  human iNSPCs/iSCs in mice post-stroke.
Theoretically, the above-mentioned problems would be solved if iNSPCs/iSCs are
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Figure 2

Figure 2  Prospects of regenerative therapy using injury/ischemia-induced neural stem/progenitor cells and injury/ischemia-induced multipotent stem
cells. A: Strategic targeting of exogenously transplanted iNSPCs/iSCs. iNSPCs/iSCs exhibit high proliferative activity and differentiate into electrophysiologically-
functional neurons in vitro. Thus, it is expected that transplanted iNSPCs/iSCs can differentiate into neuronal cells in vivo, thereby promoting central nervous system
repair; B: A strategy for activating endogenous iNSPCs/iSCs. Administration of bioactive molecules has the potential to promote neural repair by regulating cell
proliferation, cell differentiation, and cell death of endogenous iNSPCs/iSCs. iSCs: Injury/ischemia-induced multipotent stem cells; iNSPCs: Injury/ischemia-induced
neural stem/progenitor cells.

expandable in allograft and autograft transplantations. However, we have to carefully
evaluate whether iNSPCs/iSCs can be utilized as an allograft because iNSPCs/iSCs
are stem cells that originated from brains that differ from stem cells derived from non-
CNS (e.g., bone marrow-derived MCS).

These problems may be solved using iNSPCs/iSCs derived from iPS cells.  For
example, using iPS-cell-derived iNSPCs/iSCs obtained from skin fibroblasts of stroke
patients,  patients  may  receive  an  autologous  transplantation  therapy  using
iNSPCs/iSCs. However, when making iPS cells, new problems could emerge, such as
tumor formation.

A strategy activating endogenous iNSPCs/iSCs
The  second  strategy  involves  identifying  the  factors  regulating  the  fate  of
iNSPCs/iSCs (e.g., factors promoting cell proliferation and differentiation, and factors
inhibiting cell death) and to develop those as innovative drugs (Figure 2B).

Using  a  mouse  model  of  cerebral  infarction,  we  previously  showed  that
iNSPCs/iSCs isolated from ischemic areas differentiated into electrophysiologic-
functional neurons and did express mature neuronal markers[27]. In vivo, the number
of  nestin+  iNSPCs/iSCs  peaked  around  post-stroke  day  3  and  then  gradually
decreased. In addition, immature newly born neurons were identified within and near
ischemic  areas  at  post-stroke  day  3,  and  their  numbers  decreased  thereafter  as
well[24,42,49].

This  suggests  that,  although iNSPCs/iSCs  are  present  within  ischemic  areas,
several factors regulate their survival, proliferation, and differentiation. In support of
this viewpoint, we have previously demonstrated that the endothelial cells residing
around  iNSPCs/iSCs  promote  their  survival,  proliferation,  and  neuronal
differentiation[22,28]. This suggests that endothelial-derived trophic factors exhibit a
positive  effect  on  iNSPCs/iSCs.  Alternatively,  endothelial  cells  and/or  the
extracellular matrix produced by endothelial  cells[98]  may function as a niche for
iNSPCs/iSCs, as it is the case with NSPCs[99].

Further  investigations  are  needed  to  understand  the  factors  involved  in  the
regulation of iNSPCs/iSCs. However, our previous studies indicated that a subset of
lymphocytes that infiltrated into ischemic areas during acute phases inhibited the
survival  of  iNSPCs/iSCs[100,101].  In  addition,  our  preliminary  study  showed that
inflammatory cells such as microglia/macrophages rapidly increase at the time when
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nestin+ iNSPCs/iSCs disappear. These findings indicate that iNSPC/iSC regulation
also relies on environmental factors surrounding them (e.g., inflammatory cells), and
both intrinsic and extrinsic factors play an essential role in neural regeneration.

CONCLUSION
Our studies showed that iNSPCs/iSCs are present within post-stroke areas of mouse
and human brains. Further studies are needed to identify the traits, fate, proliferation,
and differentiation factors of iNSPCs/iSCs for their clinical applications. However,
iNSPCs/iSCs represent a cornerstone in contributing to CNS repair because they are
stem cells that develop within ischemic areas following CNS injuries. Evidence of the
presence of iNSPCs/iSCs within post-ischemic human brains is encouraging for the
development of new stem-cell-based therapies for stroke patients.
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