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Abstract
Up until the mid 2000s, the capacity to generate every cell of an organism was
exclusive to embryonic stem cells. In 2006, researchers Takahashi and Yamanaka
developed an alternative method of generating embryonic-like stem cells from
adult cells, which they coined induced pluripotent stem cells (iPSCs). Such iPSCs
possess most of the advantages of embryonic stem cells without the ethical
stigma associated with derivation of the latter. The possibility of generating
“custom-made” pluripotent cells, ideal for patient-specific disease models,
alongside their possible applications in regenerative medicine and reproduction,
has drawn a lot of attention to the field with numbers of iPSC studies published
growing exponentially. IPSCs have now been generated for a wide variety of
species, including but not limited to, mouse, human, primate, wild felines,
bovines, equines, birds and rodents, some of which still lack well-established
embryonic stem cell lines. The paucity of robust characterization of some of these
iPSC lines as well as the residual expression of transgenes involved in the
reprogramming process still hampers the use of such cells in species preservation
or medical research, underscoring the requirement for further investigations.
Here, we provide an extensive overview of iPSC generated from a broad range of
animal species including their potential applications and limitations.

Key words: Pluripotency; Embryonic; Stem cell; Reprogramming; Animal; Wild; Induced
pluripotency

©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

WJSC https://www.wjgnet.com August 26, 2019 Volume 11 Issue 8491

https://www.wjgnet.com
https://dx.doi.org/10.4252/wjsc.v11.i8.491
http://orcid.org/0000-0002-3780-6046
http://orcid.org/0000-0001-9862-5874
http://orcid.org/0000-0001-9480-2386
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
mailto:kkf@sund.ku.dk


First decision: June 5, 2019
Revised: June 18, 2019
Accepted: June 20, 2019
Article in press: June 20, 2019
Published online: August 26, 2019

P-Reviewer: Binetruy B, Kim YB
S-Editor: Yan JP
L-Editor: Filipodia
E-Editor: Xing YX

Core tip: Induced pluripotent stem cells (iPSC) have opened up the possibility of
converting literally any mature cell type into an embryonic like pluripotent state. This
procedure has had a large impact on biomedical sciences for patient specific disease
modeling, cell-type specific differentiation and regenerative medicine with or without
gene editing. These advances are clearly not restricted to human iPSCs, and indeed it
was mouse iPSCs that were derived first. In this review we will provide a comprehensive
overview of iPSC generated throughout the animal kingdom as well as an elaboration on
their possible applications and limitations.
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INTRODUCTION
The ability to differentiate into any given cell type within an organism was limited
solely  to  embryonic  stem  cells  (ESC)  until  2006.  ESCs  possess  the  capacity  to
proliferate indefinitely without differentiation, form chimeras and display germline
transmission. Currently, ESCs with these characteristics have only been confirmed in
mice and rats[1]. In regard to culturing ESC of other species, besides human, mice and
rats, undefined culture conditions already present the first hurdle.

In 2006, an alternative means was developed to generate embryonic-like stem cells
whereby differentiated adult cells are reprogrammed into induced pluripotent stem
cells  (iPSC)[2].  This  reprogramming  process  entails  the  delivery  of  so-called
pluripotency factors to mature cells to induce their conversion into ESC-like cells,
which  subsequently  triggers  the  transcriptional  and  translational  activation  of
endogenous pluripotency factors. These pluripotency factors are all regulators of ESC
proliferation, renewal and pluripotency.

The most  commonly used genes  for  achieving such conversion are:  Homeobox
protein (NANOG); octamer-binding transcription factor 4 (OCT4/POU5F1); SRY-Box 2
(SOX2); Kruppel Like Factor 4 (KLF4); proto-oncogene MYC (c-MYC) and Lin-28 Homolog
A (LIN28). NANOG is a key transcription factor inhibiting differentiation towards
extraembryonic  endoderm  and  trophectoderm  lineages.  Moreover,  by  directly
inhibiting SMAD Family Member 1, NANOG prevents bone morphogenetic protein-
induced mesoderm differentiation[3]. NANOG also plays an important role in binding
and activating the OCT4 promoter and is consequently a transcriptional activator of
OCT4[4]. OCT4 is required for naïve epiblast formation, and OCT4-null embryos lack
pluripotent characteristics within their inner cell mass[5]. Furthermore, abrogation of
OCT4 expression in ESCs results in trophoblast differentiation of the inner cell mass[6].
OCT4 therefore plays prominent roles in pluripotency maintenance in ESCs and
during the reprogramming of mature cells to iPSC. SOX2 forms a complex with OCT4
to bind DNA and govern the expression of several genes required for embryonic
development[7].

Consequently, it has been claimed that NANOG, OCT4 and SOX2 act as master
regulators of ESC pluripotency[8] at least for the generation of mouse, human and rat
iPSC. However,  less is  known about gene expression requirements for achieving
pluripotency in other species. Therefore, several additional genes have been tested for
their ability to generate iPSC. These include KLF4, which regulates the expression of
key transcription factors during embryonic development, including NANOG[9]. MYC
has been shown to play a role in maintaining the glycolytic energy metabolism in
stem cells[10]. Additionally, while not essential, MYC has been shown to promote the
generation of iPSC from human and mouse skin fibroblasts[11]. Finally, LIN28 is an
RNA-binding protein and regulates gene expression at a post-transcriptional level.
The products of genes regulated by LIN28 function in developmental timing and self-
renewal in ESCs[12].

Other less commonly used genes involved in achieving and/or maintaining the
undifferentiated state will be discussed directly in the following description of the
various  iPSCs  generated  from  various  species.  In  addition  to  the  plethora  of
pluripotency factors applied for reprogramming, several methods exist with which to
deliver them into adult  cells.  Both early protocols and reprogramming efforts in
notoriously  challenging  species  use  viral  approaches,  such  as  retrovirus  and
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lentivirus[13,14]. Whilst the human and mouse fields have progressed to employing non-
integrative methods such as Sendai-viral[15], episomal[16] and mRNA transfection[17],
very few attempts have been made to apply these to other species. In the following
sections we will  provide a  comprehensive overview of  the iPSCs available  from
various species, their method of generation, their pluripotent characteristics and their
applications in science.

DOMESTIC RUMINANTS
The establishment of  iPSC from domestic  ruminants  was reported for  human[13],
mouse[2], monkey[18], rat[19,20], pig[21-24], dog[25] and rabbit[26]. These species, from which
iPSCs have already been generated, unsurprisingly comprise commonly used animal
models in the field of regenerative medicine. However, ruminants, especially small
ruminants, are equally attractive for biomedical research. For example, sheep are
often employed as the preferred model for human pregnancy and perinatal-related
studies[27],  as  models  for  rare  or  degenerative  diseases[28,29],  for  several  chirurgic
procedures[30,31] and cancer[32]. This is predominantly based on the fact that ruminants
share more phylogenetic characteristics, similar size and longevity with humans than
do rodents[33].

Aside from being explored as biomedical  models,  small  ruminants,  cattle  and
buffalo present  significant  commercial  value and agricultural  importance,  being
raised for meat or milk production and for wool and other animal-derived products.
In this context, the generation of genetically modified animals for the production of
therapeutic proteins in milk (bioreactors), with increased resistance to diseases or
selection for other valuable traits is highly desirable. To date, robust pluripotent stem
cells derived from these species are still lacking[34-36] despite very recent encouraging
efforts[37]. The production of genetically modified livestock is usually accomplished
through somatic cell  nuclear transfer (SCNT) after genetic modification of donor
cells[38-40].

The generation of iPSCs from these species presents a major objective to facilitate
the application of advanced reproductive technologies[41] including allowing easier
genetic manipulation (knock-ins or knock-outs) in pluripotent cells used for chimera
generation,  improving  SCNT  efficiency  by  using  iPSCs  as  nuclei  donors[42,43]  or
producing functional gametes in vitro[44-46]. The first studies in cattle reported that the
four Yamanaka factors were insufficient for inducing pluripotency, and that NANOG
or NANOG plus LIN28 were additionally required[47,48]. In 2012, Cao et al[49] reported
bovine iPSCs derived from buffalo defined factors [OCT4, SOX2, KLF4, and MYC
(OSKM)] and fetal fibroblasts that could be differentiated into putative female germ
cells,  a  first  step  towards  future  use  in  reproductive  sciences.  Subsequently,
Kawaguchi  et  al [50 ]  contributed  to  chimera  production  (90  d  of  gestation)
(Supplemental material 1).

In cattle, different cell types such as adult or fetal fibroblasts, amniotic, mammary
and retina-derived cells have been used in conjunction with integrative vectors[47-54].
Testicular cells were induced into pluripotency after electroporation of OCT4 alone[55].
However, silencing of exogenous factors when integrated was not reported, and some
studies  were  unable  to  characterize  bovine  iPSCs  (biPSCs)  after  culture  due  to
characteristics related to quiescence in vitro[56,57]. It has been shown that buffalo fetal
fibroblasts can be retrovirally reprogrammed into iPSC by buffalo OSKM, and that the
generation efficiency of  biPSCs can be increased by inhibiting p53 expression[58]

(Supplemental material 1).
In  small  ruminants,  both  ovine  and  caprine  iPSCs  were  reported  only  from

fibroblasts, either embryonic, fetal or adult[59-69]. Although integrative methodologies
(retro- and lentiviral) are still most commonly used, silencing of exogenous factors has
already been reported[63,64] (Supplemental material 2). This is a significant achievement
considering  the  objective  of  producing  new  organisms  from  pluripotent  cells.
Recently,  induction  of  pluripotency  using  an  mRNA  approach  with  OSKM
transcription factors was achieved in goats[69]. Regarding generation of animals from
iPSCs,  ovine iPSCs were already reported contributing to  the inner  cell  mass  of
blastocysts[63] and live born chimeras[62]. BiPSCs were used as donor cells in SCNT, and
cloned  embryos  were  generated  in  cattle.  Despite  initial  beliefs  that  the  use  of
pluripotent cells might enhance cloning success, low rates of embryonic development
were  observed.  No  live-born  animals  have  yet  been  reported  probably  due  to
persistent expression of transgenes and increased numbers of aneuploidies in iPSC
donor cells[67,68].
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SWINE
The generation of  pluripotent  cell  lines  from swine has  very clear  and common
objectives even between different research groups, being either the use of these cells
for regenerative medicine or to preserve and/or augment agriculturally important
traits in this species. The pig is considered the most attractive non-primate animal
model for biomedical purposes due to its similarities to human immunology, genome
organization, aging and whole animal physiology[70-72]. The use of this large domestic
animal (or also its miniature version-the minipig) enables long-term studies on tissue
or organ transplantation or for modeling specific diseases[73-75]  in a more ethically
acceptable  environment  when  compared  to  the  use  of  non-human  primates  or
domestic  pet  animals  (dogs  and cats).  It  is  envisaged that  pluripotent  cells  will
facilitate  the  generation of  transgenic  animals  for  use  as  preclinical  models  and
production of animals with valuable traits through the use of chimeric or nuclear
transfer technologies.

The swine, however, is considered one of the “non-permissive” species meaning
that bona fide robust pluripotent stem cells derived from blastocysts-ESCs have not
yet been successfully generated[41,76,77]. The generation of iPSCs is of great importance.
The pig was the first domesticated species from which iPSCs were derived, which was
after ESCs had already been established for mouse, human, rat and monkey[78-82].

At least 25 studies have already described porcine iPSC (piPSC) production via
various  reprogramming  and  characterization  protocols  in  the  last  decade
(Supplemental material 3). The first three reports date from 2009 and describe human
ESC-like  cells  dependent  or  not  on  basic  fibroblast  growth  factor  (bFGF)
supplementation[21-23].  Most of the subsequent studies focused upon dissecting the
differences between naïve or primed cell generation, especially attempting to obtain
naïve  cells  in  order  to  produce  chimeric  offspring  through the  use  of  leukemia
inhibitory factor (LIF)  supplementation with or without other inhibitors such as
CHIR99021, PD0325901, 5-AZA and others[83-92].

Contribution to embryo development at short term (embryos and/or fetuses) was
reported by several groups, even though the status of exogenous gene silencing was
not described and/or teratoma formation was not robust in some lineages[24,85,87,90-93]. In
contrast, contribution to live chimeric offspring and germline contribution has been
proven by only one group thus far[24,94], with piPSCs resembling primed, human ES-
like cells. The study reports[24] contribution of piPSCs to both embryo and placenta
during gestation and 85.3% efficiency of chimerism in live-born piglets. As only naïve,
but not primed pluripotent cells are believed to support chimerism, this suggests that
the classical definitions differentiating between the two types of pluripotent cells may
be a lot more complex and still poorly-defined in other species compared to mouse
and human.

PiPSCs have also  been tested for  specific  in  vitro  differentiation potential;  for
example, they were able to differentiate into beating cardiomyocyte-like cells[95,96] and
neuronal lineage[97]. PiPSCs have also been used as donor cells for nuclear transfer
experiments.  Although  blastocysts  were  produced,  the  efficiency  rate  did  not
significantly increase when compared to blastocyst developmental  rate achieved
using embryonic fibroblasts as nuclei donors, and no born piglets were reported[85].

In summary, the production of piPSCs until now has predominantly relied upon
the use of integrative vectors, lenti- or retrovirus-carrying human or mouse OSKM,
including some variations such as NANOG, LIN-28 or the absence of OCT4 or SOX2
and KLF4. Few studies have described the use of porcine or monkey factors. Even
when episomal non-integrative approaches have been used, persistence or integration
of plasmids, and therefore silencing of the transgenes, was reported (please refer to
Supplemental material 3 for details). Failure to inactivate the exogenous factors is
considered a major flaw in the generation of bona fide iPSCs. Defining proper culture
conditions and reprogramming protocols is still the major objective of most of the
reported studies, even though differentiation is possible in this sub-optimal condition.
Ji et al[89] reported that two cell lines transduced with lentivirus containing monkey
OSKM and cultured with LIF, bFGF and inhibitors presented silencing of exogenous
factors. Using episomal vectors, Li et al[93] were the first to report the generation of cell
lines  able  to  maintain pluripotent  characteristics  for  20 passages and absence of
integration  at  this  time.  This  represents  a  great  advance  in  the  generation  of
pluripotent cells from pig, which arguably remains the most desirable model for both
human and veterinary medicine.

HORSES
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According to the latest report from The American Horse Council Foundation, the
United States horse industry has an economic impact of United States $122 billion
with 74% of horses participating in the sports sector (racing and competition). Sports
horses  are  constantly  exposed to  risks  of  career-ending or  even life-threatening
musculoskeletal  injuries[98].  Besides  the  magnitude  of  the  horse  industry,  the
possibility of using these animals as models for human musculoskeletal injuries or
diseases[99] has contributed to intensify the stem cell and regenerative research in the
last few years.

During the past decade, equine iPSCs (eiPSCs) have been produced using both
integrative and non-integrative systems carrying mouse or human reprogramming
factors in conjunction with multiple cell sources, including adult or fetal fibroblasts,
adipose tissue mesenchymal cells, keratinocytes, myogenic mangioblast, peripheral
mesenchymal stem cells and umbilical cord cells (Supplemental material 4)[100-108].
Although subsequent attempts were made using episomal vectors[107], only the initial
eiPSCs report  succeeded in producing equine pluripotent stem cells  with a non-
integrative PiggyBac transposon system, which is considered safer for clinical uses but
allegedly with lower reprogramming efficiency[100,109].  Of the eiPSCs generated via
integrative systems, only one group has reported transgene silencing[106] with others
reporting partial silencing[102,104] and others conversely showing transgenes to still be
activated[101,103,108]. Other studies do not mention the state of transgene expression[105,107].
Regarding further characterization procedures, eiPSCs generated in the above studies
show in vitro or in vivo potential to generate cells of all three germ layers as well as
expression of multiple pluripotency markers (Supplemental material 4).

The safety of clinical and reproductive applications of iPSCs remains a concern,
especially regarding tumorigenesis, epigenetic abnormalities and eventual immune
rejection[110-112]. Fittingly, some reports do address these issues. Aguiar et al[113] analyzed
the  immunogenicity  of  allogenic  eiPSCs  intradermally  transplanted  into
immunosuppressant-free horses and observed moderate cellular response but not
acute rejection. This suggests that allogenic eiPSC banking might serve as a future
possibility for cell therapy. In the reproductive field, eiPSCs have been used as donor
cells in an attempt to improve SCNT efficiency, but blastocysts were not successfully
produced[114].

The  possibilities  of  applying  eiPSCs  in  tissue  engineering  and  regenerative
medicine are also being actively explored. While some have reported failure of eiPSCs
to  generate  artificial  tendons  after  induced  differentiation [115],  others  have
demonstrated  eiPSCs  to  be  capable  of  inducing  muscle  regeneration  in
immunodeficient mice with dystrophin deficiency[105]. Furthermore, Aguiar et al[116]

showed that eiPSCs could be differentiated into keratinocytes focusing on skin trauma
and wound management.  Other research groups have studied eventual  uses for
mesenchymal-like progenitors capable of chondrogenesis and adipogenesis[117] or even
induction into functional osteoblasts[118] and transgenic induced myocytes[119], thus
providing extra cell sources for regenerative veterinary medicine. Although some
studies have already tested the potential and applicability of eiPSCs as seen above,
there is  still  a long road ahead until  eiPSCs and their derivatives are completely
understood and deemed safe to use in disease models and regenerative veterinary
medicine.

DOGS
Dogs play multiple roles in modern society, ranging from livestock management,
rescue and security services and emotional and disability assistance besides their
major role as companion and best friend[120]. Every year, the number of households
with pets increases, having reached 68% in the United States during 2017-2018 with
the  majority  of  people  owning  dogs  ,  and  secondly  cats.  This  represented  an
expenditure of around United States $70 billion during that period of which a little
over United States $17 billion was spent on veterinary services. If that alone was not
ample  reason  to  increase  dog-related  research  on  innovative  therapies  like
regenerative  medicine  and  stem cells,  dogs  are  also  considered  physiologically
relevant model of  human diseases.  In addition to hundreds of  canine hereditary
diseases having equivalent human disorders, humans also share a similar physiology
and environment with their canine companions[121].  The first  canine iPSC (ciPSC)
report was published in 2010[25], and since then around ten reports on new ciPSCs
lineages have been published. The main cell source used for reprogramming was
adult fibroblasts[122-126] followed by fetal or embryonic fibroblasts[25,127-129] and adipose
tissue mesenchymal cells[123,130].

As  seen in  Supplemental  material  5,  with the exception of  studies  using non-
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integrative Sendai viruses[126,129] the majority of the ciPSCs reported were generated
using retroviral or lentiviral systems. Although they are considered more efficient
than non-integrative systems, their use in research with clinical applications raises
concerns,  specifically  through potentially  dangerous viral  integration in the cell
genome, transgene reactivation and epigenetic changes[131]. Transgene expression on
these  ciPSC was  reported  in  variable  levels  from silenced[128,130]  to  low levels  of
expression[124,125] to expression in different states[122,127,128] and not reported[25]. These
ciPSCs  also  vary  widely  on  the  pluripotency  markers  used  for  characterization
purposes (Supplemental material 5).

Further  studies  on  ciPSC  applications  have  been  performed  by  few  research
groups.  Lee  et  al[123]  generated  endothelial  cells  from  ciPSCs  and  tested  their
therapeutic  potential  in  mouse  models  of  myocardial  infarction  and  hindlimb
ischemia,  besides transplanting labeled ciPSCs autologously into dogs’  hearts  to
monitor  cell  fate  in  large  animal  models  of  cardiac  delivery.  Others  derived
mesenchymal  stem cells  from ciPSCs that  exhibited high proliferative  potential,
capacity to differentiate into mesodermal-derived tissues and both mesenchymal and
pluripotent markers but did not form teratoma-like tissues, a desired characteristic for
stem cell therapy[132]. Chow et al[126] compared ciPSC-derived mesenchymal cells with
adipose tissue and bone marrow mesenchymal cells  with regard to their  surface
markers,  gene expression profiles  and immune modulation potency.  The results
showed ciPSCs-derived mesenchymal cells to present a slightly different surface
phenotype than regular mesenchymal cells but to be capable of inducing suppression
of in vitro immune function much like the other analyzed cells. Taken together, these
studies demonstrate the continued efforts of the veterinary and research fields, not
only in order to pursue longer and healthier lives for our pets, but also to develop
disease and therapeutic models for human disorders.

RABBITS
Rabbits  have long been used as animal models  in research.  They are considered
highly  physiologically  relevant  even  for  some  human  pathology  such  as  heart
diseases[133].  Their  larger  size  compared with  mice  and rats  enables  their  use  in
surgical procedures, they possess a longer life span and rabbits are phylogenetically
more similar to humans. When compared to other suitable larger animal models such
as pigs and dogs, rabbits are easier to handle and maintain, are more economical to
keep and have shorter reproductive cycles, which facilitates breeding and long-term
research analyses[26,134]. It has been reported that rabbit ESCs are very similar to human
ESCs  in  regard  to  their  morphology  as  well  as  biochemical  and  pluripotency
features[26].

Rabbit iPSCs (rbiPSCs) have been described in few reports. Honda et al[26] generated
rbiPSCs from adult liver and stomach cells using lentivirus and human OSKM. These
rbiPSCs were silenced after about 18 passages. Interestingly, the authors were not
successful in reprogramming fibroblasts using the same methodology. The rbiPSCs
produced in this  report  were LIF-  and bFGF-dependent and expressed the same
pluripotency markers as rabbit ESCs (Supplemental material 6). In a follow-up study,
the rbiPSCs generated were converted to a naïve-like state via forced expression of
human OCT3/4 increasing these cells’ potential for in vitro neural differentiation[135].

Using a retroviral system also containing human OSKM, Osteil et al[136] compared
adult  fibroblast-derived  rbiPSCs  with  ESCs.  Theses  rbiPSCs  showed  transgene
silencing at passage 25 and expressed the pluripotency markers OCT4 and NANOG.
Later, the same group showed that via expression of KLF2 and KLF4, rbiPSCs could
be converted into epiblast-like cells, capable of colonizing pre-implantation rabbit
embryos[137].

Finally,  the  most  recently  published study on rbiPSCs  also  employed human
OSKM in a retroviral system to reprogram embryonic fibroblasts. The cells generated
were  dependent  upon  LIF  and  bFGF,  expressed  key  pluripotency  markers  and
showed no transgene expression. Focusing on the use of rabbits as heart models, the
authors showed these cells to be capable of successful differentiation into cardiac cells,
underscoring a possible future application as a disease model[133].

AVIAN
According to the United States Department of Agricultureâs Production and Value
Summary, the combined value of avian products reached United States $42.7 billion in
2017, besides the over 20 million birds kept as pets currently in the United States
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(APPA,  2018),  denoting  the  significance  of  these  animals  to  modern  society.  In
research, avian models are considered extremely important because they permit easy
monitoring of embryonic development[138] and can also be used as disease models[139].

Avian iPSCs (aiPSCs) were the first non-mammalian iPSCs to be derived[140] and
were reported for quail,  chicken and zebra finch (Supplemental  material  7).  The
majority of the reports published used embryonic fibroblasts[140-145], but they were also
isolated from adult feather follicles[146].  Although non-viral approaches have been
applied[142,144],  retroviral and lentiviral methodologies have mostly been used and
transgene expression was either  detected[140,145,146]  or  not  discussed[142-144]  with the
exception of the chicken iPSCs reported by Rosselló et al[141] where transgenes were
silenced after five passages.

Further characterization of aiPSCs was performed by Dai et al[138], who were able to
produce  aiPSCs-derived  neurons.  So  far,  perhaps  the  most  exciting  potential
application of these cells is vaccine production and related research[147,148]. In those
reports, it is shown that aiPSCs grown in modified conditions possess great potential
as  candidates  for  Newcastle  disease  virus  production  serving  as  a  suitable
replacement for the embryonating eggs currently used for vaccine generation[147]. It
should be possible to generate aiPSCs more tolerant to the Newcastle disease virus,
which might eventually also be employed in disease-resistant poultry studies[148].
These newly developed methodologies represent a great potential  application of
aiPSCs to future livestock, health and food security.

EXOTIC ANIMALS
The  most  obvious  reason  for  generating  iPSC  from  exotic  animals  is  species
conservation. Genetic material can be stored and expanded on demand in the form of
viable and proliferating iPSCs. Ideally, protocols would be developed to differentiate
such iPSCs into primordial germ cells and subsequently generate egg and sperm cells
to facilitate in vitro fertilization. Such efforts form the basis for the generation of iPSC
from Madrillus leucophaeus (primate/drill) and Ceratotherium simum cottoni (northern
white rhinoceros). Both species teeter on the brink of extinction, and the generation of
iPSCs might be beneficial for species conservation. Drill iPSC lines were generated
using retroviral vectors containing the human sequences for OCT4, SOX2, KLF4 and c-
MYC. The fibroblast source originated from a 15-year-old drill. All factors integrated
successfully into the drill genome and the authors were able to show that exogenous
transcription factors ceased to be expressed whilst the endogenous drill transcription
factors became activated. Drill iPSC were karyotypically normal and exhibited the
potential to form teratomas containing all three lineages (ectoderm, endoderm and
mesoderm)[149].

The same report describes the generation of iPSC from northern white rhinoceros.
Here, the same human genes for OCT4, SOX2, KLF4 and c-MYC were delivered using
the retro VSV-G virus system. These also integrated successfully with the exception of
KLF4.  Similar  to  the  drill  iPSC,  exogenous  gene  expression  was  silenced  and
endogenous  gene  expression  initiated.  Northern  white  rhinoceros  iPSCs  were
karyotypically normal and gave rise to teratomas[149] (Supplemental material 8). These
are extremely promising results for species conservation, but it remains to be seen
whether these iPSCs can be used for SCNT or for the generation of in vitro germ cells.

Most efforts have centered upon the generation of iPSC from monkeys. Again,
species  conservation  forms  one  aspect  of  such  efforts,  but  another  facet  is  the
possibility  of  applying  these  monkeys  and  their  iPSCs  in  biomedical  research.
Monkeys share a high degree of genetic, anatomical, physiological and cardiological
similarities with humans[150-152].  Consequently, monkey iPSCs and monkey models
represent  powerful  models  for  drug  development.  To  date,  iPSCs  have  been
generated from rhesus monkeys[18,153,154]. Whilst the first two of these studies[18,154] used
retroviral approaches, the more recent report[153]  generated rhesus monkey iPSCs
using non-integrative episomal plasmids (Supplemental  material  8).  In a further
notable study[155], the retroviral method was employed to derive iPSCs from rhesus
monkeys with Huntington’s disease (Supplemental material 8). These monkeys and
their iPSCs were not only very valuable for testing potential drug candidates but
could also be used to investigate autologous and allogenic cell transplantations and
graft  incorporations  as  well  as  safety  assessment  of  CRISPR/Cas9  gene-edited
transplants.

Further iPSCs have been generated from cynomolgus monkeys[156,157]. Cynomolgus
monkeys are commonly used in biomedical research and the described iPSCs have
been derived using both retroviral approaches[156] and non-integrative Sendai virus[157]

approaches.  Whilst  in  the  retroviral  approach  pluripotency  was  confirmed  via
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teratoma  assays,  the  Sendai  virus  reprogrammed  cells  were  not  subjected  to
pluripotency assays and were directly differentiated into the cell  type of interest
(Supplemental material 8). Marmoset iPSCs have been generated from fetal liver cells
via retroviral-mediated transduction with the six human pluripotency factors OCT4,
SOX2, KLF4, c-MYC, NANOG and LIN28. These cells displayed a normal karyotype
and pluripotency capacity as  tested by embryonic body formation and teratoma
assays (Supplemental material 8).

Lastly, even iPSCs of great apes such as orangutans have been derived using the
retroviral approach with the classical four human pluripotency factors OCT4, SOX2,
KLF4  and  c-MYC  and  pluripotency  potential  confirmed  via  teratoma  assays[158].
Common amongst all of these studies is the lack of in vivo chimeric analyses using
monkey-derived iPSCs. Only upon demonstration of bona fide germline chimeras will
we be able to confirm the pluripotent status of monkey-derived iPSCs.

With the ultimate goal of species conservation, efforts have been made to generate
iPSCs from wild feline species such as snow leopards[159] and Bengal tigers, servals
and jaguars[160]. For all of these feline species, iPSC retroviral reprogramming was
applied using OCT4, KLF4, SOX2, c-MYC and NANOG (Supplemental material 8).
Similar to the iPSCs from monkeys, only teratoma assays were performed. Thus it
cannot be excluded that germline transmission for actual cloning of these animals
may prove challenging.

Likewise, it is hoped that iPSC generation will safeguard the future of Tasmanian
devils,  which are currently precariously close to extinction.  For their  generation,
OCT4,  KLF4,  SOX2,  c-MYC,  LIN28  and  NANOG  were  transduced  via  lentiviral
approaches into dermal skin fibroblasts[161].  It is to be hoped that these iPSCs will
provide excellent tools with which to develop strategies to treat Tasmanian devil
facial tumor disease, which is desperately needed to halt the extinction of devils.

Other exotic animals from which iPSCs have been generated include the prairie
vole using PiggyBac delivery of mouse Oct4, Klf4, Sox2, c-Myc, Lin28 and Nanog[162].
The authors proposed that studying oxytocin and vasopressin effects on neurons
derived from these iPSCs might be of benefit in dissecting the functional roles and
effects (including on gene expression) of these factors in social animals.  Another
intriguing application would be bat iPSCs. Bats are considered long-lived animals in
relation to their body size and thus might hold some interesting answers on how to
extend  lifespan  in  other  species  including  humans.  Moreover,  bats  possess  an
immune system, which allows them to carry viruses in high titers without deleterious
effects.  Studying  specific  immune  cells  in  vitro  might  prove  a  possibility  with
successfully derived iPSCs. Bat iPSCs have been generated using the PiggyBac system
delivering  human  OCT4,  SOX2,  KLF4,  c-MYC,  NANOG,  LIN28,  NR5A2  and  bat
MIR302/367[163].

Additional exotic animals for which iPSCs have been generated include platypus[164]

and mink[165]  (Supplemental  material  8).  In contrast,  it  has proven challenging to
generate  iPSCs  from  more  common  but  non-mammals  model  species  such  as
drosophila and zebrafish. These attempts used mouse Oct4,  Sox2,  Klf4  and c-Myc
lentiviral delivery and resulted in only partially reprogrammed iPSCs[141].

CONCLUSION AND FUTURE DIRECTIONS
Taken together, the data reviewed here highlights some interesting and conflicting
aspects of iPSC research throughout the animal kingdom. Although there exist a
reasonable number of well-established animal iPSCs, the lack of description for some
species,  for  example  the  domestic  cat,  draws  attention  to  the  fact  that  a  global
mechanism of cellular reprogramming has certainly not yet been unraveled. The non-
standardized reports in most species hamper the comparison of some features, such
as reprogramming efficiency. This information was estimated in some of the studies
as the ratio between emerging colonies and seeded cells, and in others as the ratio
between Alkaline Phosphatase (AP)-positive colonies and seeded cells. In some cases,
reprogramming  efficiency  was  not  reported  at  all  or  was  even  reported  as
transduction efficiency through evaluation of fluorochrome-labeled reprogramming
vectors. Another important matter is the lack of proper and robust characterization of
some of the generated cell lines. Regarding in vitro characterization, perhaps the lack
of criteria, based on the fact that no ES-derived cell lines exist, makes it difficult to
define whether a given cell line is truly pluripotent or not.

Furthermore, residual expression of transgenes, even in high passage cells, is still
observed in most of the cell lines derived, a flawed hallmark of true reprogramming.
Alongside this, many of the animal iPSC lines established were not tested or even
failed to produce viable chimeras, the golden standard validation in vivo of these cells’
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ability to give rise to cells from all three germ layers. This introduces a veil of doubt
regarding the actual reprogramming state of those cells.

Regardless, even if the generated cells lines are incompletely reprogrammed, there
is no doubt that the production of iPSCs is a major breakthrough, especially for those
“non-permissive” species. However, more comprehensive studies are still very much
required to elucidate pluripotency acquisition mechanisms for each of them, once it is
already known that they differ from human and mouse. Perhaps a deep dive into
genomics or proteomics can enlighten us regarding the roles of specific pathways
involved in  those  reprogramming processes  and bring us  closer  to  the  practical
application of iPSCs in such fields as stem cell research, regenerative medicine and
reproduction.
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