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Abstract

Vector autoregressive (VAR) models aim to capture linear temporal interdependencies amongst 

multiple time series. They have been widely used in macroeconomics and financial econometrics 

and more recently have found novel applications in functional genomics and neuroscience. These 

applications have also accentuated the need to investigate the behavior of the VAR model in a 

high-dimensional regime, which provides novel insights into the role of temporal dependence for 

regularized estimates of the model’s parameters. However, hardly anything is known regarding 

properties of the posterior distribution for Bayesian VAR models in such regimes. In this work, we 

consider a VAR model with two prior choices for the autoregressive coefficient matrix: a non-

hierarchical matrix-normal prior and a hierarchical prior, which corresponds to an arbitrary scale 

mixture of normals. We establish posterior consistency for both these priors under standard 

regularity assumptions, when the dimension p of the VAR model grows with the sample size n (but 

still remains smaller than n). A special case corresponds to a shrinkage prior that introduces 

(group) sparsity in the columns of the model coefficient matrices. The performance of the model 

estimates are illustrated on synthetic and real macroeconomic data sets.
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1 Introduction

There has been recent interest in modeling high-dimensional time series data sets. In 

macroeconomics, Mol et al. (2008) advocated the need to include a large number of 

variables in econometric models to improve forecastability, while Billio et al. (2012) 

examined stock returns of many financial institutions to assess systemic risk of the financial 

system. Similar modeling challenges arise in functional genomics for the reconstruction of 

regulatory networks as discussed in Basu et al. (2015), while in neuroscience one is 

interested in understanding functional connectivity between brain regions Seth et al. (2015).

A popular and informative model has been vector autoregressions (VAR), that captures 

linear temporal dependencies between time series. The VAR model and its properties have 

been thoroughly explored in low-dimensional settings both from a frequentist (for a 

comprehensive overview see Lütkepohl (2007)) and a Bayesian perspective Bańbura et al. 

(2010).
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More recently, Basu and Michailidis (2015) provided an in depth analysis of the model for 

Gaussian data in a high-dimensional setting under sparsity assumptions, while Melnyk and 

Banerjee (2016) extended the results to other regularizers (e.g. group lasso, sparse group 

lasso, etc.). The results of Basu and Michailidis (2015); Melnyk and Banerjee (2016) and 

related follow-up work (Raskutti and Yuan (2015); Schweinberger et al. (2017); Lin and 

Michailidis (2017)) indicate that the resulting estimation error rates are those obtained for 

independent and identically distributed data times a factor that captures the temporal 

dependence in the data.

On the Bayesian front, there has been primarily methodological/computational work for 

low-dimensional VAR models. The so-called Minnesota prior Litterman et al. (1979); Doan 

et al. (1984) has been a staple of applied econometric work involving VAR models. This is a 

normal prior distribution on the elements of the transition matrix that puts stronger weights 

on the “own” lags of each time series, since they are considered more informative for 

forecasting purposes than lags from “other” time series. For large size VAR models, Bańbura 

et al. (2010) advocate normal-inverted Wishart distribution that leads to a posterior mean 

that can be interpreted as a ridge shrinkage estimator, suitable for such models. A first 

attempt for Bayesian estimation of VAR models combined with variable selection is 

presented in Korobilis (2013), where an indicator variable is specified for each parameter in 

the transition matrix that indicates whether the cross-autocorrelation coeffcient is included 

or set to zero. A prior is specified for the indicator variables that in principle can also be 

combined with the Minnesota prior.

On the other hand, Bayesian investigations into high-dimensional asymptotics of statistical 

models that incorporate sparsity with temporally dependent data are not in general available 

to the best of our knowledge. Hence, the main objective of this work is to study posterior 

(estimation) consistency for a VAR model, which asserts that the posterior concentrates 

around the “true” parameter value (in an appropriate norm) as the sample size increases. 

There is a rich literature on high-dimensional posterior estimation consistency for linear 

regression models for independent and identically distributed data. Ghoshal (1999) 

established posterior consistency and asymptotic normality with a general prior on the p-

vector of regression coefficients (with appropriate positivity and Lipschitz assumptions) 

when p3 log p/n → 0 and p4logp/n → 0, respectively. Bontemps (2011) extended the work 

of Ghoshal (1999) by permitting the model to be misspecified and the number of predictor 

variables to grow proportionally to the sample size. Armagan et al. (2013) focus on 

shrinkage priors, which are appropriate scale mixtures of normal priors and induce weak 

sparsity in the vector of regression coefficients (see Carvalho et al. (2010); Griffin and 

Brown (2010); Armagan et al. (2011, 2013)). They establish posterior consistency under a 

simple sufficient condition on prior concentration when p = o(n). Lee and Oh (2013) 

establish posterior consistency under a high dimensional Bayesian PCA regression setup 

with p > n under appropriate assumptions on the rank of the design matrix. Posterior 

estimation consistency in linear regression models with g-priors has also been addressed in 

Sparks et al. (2015).

A crucial difference between the linear regression models considered in the above work and 

VAR models (expressed as a linear model) is that the design matrix in the latter case is 
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random, and exhibits dependencies both between its rows and across its columns, and also 

with the error term in the model (see Section 2). This leads to a significantly more involved 

and challenging theoretical analysis that we successfully resolve. In this paper, we 

investigate high-dimensional posterior consistency for Bayesian VAR models in two natural 

and relevant settings: (a) with a non-hierarchical matrix normal prior on the dp × p 
autoregressive parameter matrix and (b) a hierarchical prior which corresponds to a general 

scale mixture of normals. In particular, this includes spherically symmetric priors such as the 

multivariate-t and standard shrinkage priors which induce (group) sparsity in the columns of 

the coefficient matrices, such as the group structure in Basu et al. (2015). Further, we 

employ a flat (uniform) prior distribution for the error term. Note that the joint maximum 

likelihood estimation problem for a sparse VAR model, with a sparse error covariance matrix 

is investigated in Lin and Michailidis (2017). The posterior consistency results are 

established under mild regularity assumptions on the underlying spectral density and with p 
= o(n/ log n). The key to handling the dependencies, within the design matrix and also 

between the design matrix and the error term, is a pair of high-dimensional concentration 

inequalities established in the supplementary material (Propositions B1 and B3). Note that 

we are considering the “large p large n” setting with p = o(n). However, we make no 

assumption reducing the effective dimension of the “true parameter matrix”. We only 

assume that the matrix norm of the true parameter matrix is of the order p in the non-

hierarchical prior setting and bounded by a constant in the hierarchical prior setting. The 

large p small n situation, where p is allowed to grow at a much faster rate than n is also of 

interest, but assumptions such as sparsity/restricted eigenvalue type conditions are required, 

which in turn reduce the effective dimension of the true parameters. General posterior 

consistency results for VAR models in the large p small n setting are also not available to the 

best of our knowledge and are topics of future discussion/research.

The remainder of the paper is organized as follows. In Section 2, we introduce the VAR 

model and necessary notions of posterior consistency. We consider the non-hierarchical 

matrix normal prior on the coefficient matrix in Section 3.1 and establish posterior 

consistency under suitable regularity assumptions. In Section 3.2, we prove posterior 

consistency considering a hierarchical prior corresponding to a scale-mixture of matrix 

normals. In Section 4 and Section 5 the methodology/results of this paper are illustrated on 

simulated and real data sets, respectively. Finally, we conclude with a discussion in Section 

6.

1.1 Notation

Throughout this paper, ℤ, ℝ and ℂ denote the sets of integers, real numbers and complex 

numbers, respectively. We denote the cardinality of a set J by |J|. For a vector v ϵ ℝp, 

‖v‖ ≔ ∑v j
2 denotes the ℓ2-norm. For a matrix A, ‖A‖ and σmax(A) denote spectral norm i.e., 

‖A‖ = sup
x ≠ 0

‖Ax‖2
‖x‖2

 and the largest singular value of A, respectively. For a symmetric or 

Hermitian matrix A, we denote its maximum and minimum eigenvalues by λmax(A) and 

λmin(A). The vector ei is used for the i-th unit vector in ℝp. Bold uppercase letters are only 

used to denote matrices, and vectorized form of such matrices are represented by 
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corresponding lower cases. For example, if Φ is a p×p matrix then ϕ is vec(Φ). Also, O 
represents a zero-matrix of appropriate dimension, and in general vectors are denoted by 

italicized bold lowercase letters.

2 Model Formulation

For a p-dimensional stationary time series {Xt}, a vector autoregressive model of lag-d is 

given by

Xt = c + ∑
i = 1

d
AiX

t − i + εt . (1)

The temporal dependence structure of the VAR model is characterized by the p × p transition 

matrices A1,A2,· · · ·,Ad and c is a p×1 location vector which we choose to be 0. In the 

Gaussian VAR, the errors εt are i.i.d 𝒩p 0, Σε  where Σε is a p × p unknown error covariance 

matrix. The model in (1) can be rewritten in the Yule-Walker representation (Lütkepohl 

(2007)) as

Xt − μ = ∑
i = 1

d
Ai Xt − i − μ + εt,

where μ = (I – A1 – A2 – · · ·– Ad)–1c is known as the process mean. Usually μ will not be 

known in advance. In that case, μ may be estimated by the vector of sample means 

X = ∑1
n Xt. An alternative estimator is μ = I − A1 − A2 − ⋯ − Ad

−1c in which c and Ai’s are 

the least squares estimator. Henceforth we assume without loss of generality μ = 0. Based on 

the data {X0,··· ,XT}, we define the response matrix Y and design matrix X as follows,

Y =
XT ′

⋮

Xd ′
n × p

X =
XT − 1 ′ ⋯ XT − d ′

⋮ ⋱ ⋮

Xd − 1 ′ ⋯ X0 ′
n × dp

.

We can now rewrite the above model in a linear regression setup as

Y = XΦ + E (2)

where

Φ =

A1′

A2′

⋮
Ad′

E =
εT ′
⋮

εd ′

.
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In this formulation, the number of samples is n = T − d + 1 and the number of unknown 

parameters is q = dp2, respectively. Vectorizing (column-wise) each matrix, we get

y ≔ vec (Y) = Zϕ + ε,

where Z := (Ip⊗X), φ = vec(Φ) and ε = vec(E). In this paper, we consider a high-

dimensional setting where the dimension p of the VAR model increases with the sample size 

n. However, we assume that the lag d does not vary with n. This basic formulation of 

regression lends itself easily to a Bayesian analysis in which priors are placed on the 

unknown parameter matrices Φ and Σε.

As previously mentioned, we let the dimension p = pn of the VAR model vary with n, so that 

our results are relevant to high dimensional settings. We assume that our data come from a 

true VAR model described as follows: for every, n ≥ 1, let 𝒴n ≔ Xn, 0, ⋯, Xn, n + d − 1  be the 

set of observations for sample size n, which satisfy Xn, k = ∑i = 1
d Ai, 0nXn, k − i + εn, k for d ≤ k 

≤ n + d − 1. The errors εn, k
k = d
n + d − 1

 are i.i.d. 𝒩pn
0, Σε, 0n . Here Φ0n n ≥ 1 denotes the 

sequence of the true coefficient matrices given by Φ0n′ ≔ A1, 0n A2, 0n ⋯ Ad, 0n , and 

Σε, 0n n ≥ 1 denotes the sequence of the true error covariance matrices. Let ℙ0 denote the 

probability measure underlying the true model described above.

Next, consider a Bayesian model which builds on (2) by placing priors on the parameters 

(Φ,Σε). In particular, let πn Φ, Σε n ≥ 1 and πn Φ, Σε 𝒴n n ≥ 1 denote the sequences of the 

corresponding (joint) prior and posterior densities. Analogously, {Πn(·)}n≥1 and 

Πn( ⋅ 𝒴n)
n ≥ 1 denote the corresponding sequences of (joint) prior and posterior 

distributions. We will also use the notation πn an Πn to denote the marginal prior and 

posterior densities/distributions for Φ and Σε as appropriate.

Note that our main parameter of interest is Φ, while the error covariance matrix Σε is more 

of an unknown nuisance parameter that we need to deal with. One would hope that as the 

sample size n tends to infinity, the posterior probability assigned to any ε neighborhood of 

Φ0n converges to 1 almost surely under ℙ0. We now formally define a notion of posterior 

consistency that formalizes this.

Definition 1. The sequence of posterior distributions Πn( ⋅ 𝒴n) is said to be consistent at 

Φ0n n ≥ 1, if for every ε > 0, Πn ‖Φ − Φ0n‖ > ε 𝒴 0 as n → ∞ a.s. ℙ0.

For ease of exposition, we will henceforth denote Φ0n as Φ0, and Σε,0n as Σε,0, and highlight 

their dependence on n as needed.

2.1 Stability of VAR(d) process

Since VAR models are dynamical systems, the notion of ‘stability’ plays an important role in 

their analysis and asymptotic properties.
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Definition 2. A VAR(d) process defined in (1) is said to be stable if the matrix valued 

polynomials 𝓐(z) ≔ Ip − ∑i = 1
d Aiz

i satisfies det (𝓐(z)) ≠ 0 on the unit circle of the complex 

plane {z ∈ ℂ: |z| = 1}.

The autocovariance function of a p-dimensional centered covariance-stationary time series 

{Xt} is defined as ΓX(h) = Cov Xt, Xt + h t, h ∈ ℤ and the corresponding spectral density is 

given by f X(θ) ≔ 1
2π ∑h = − ∞

∞ ΓX(h)e−ihθ, θ ∈ [−π, π]. For a Gaussian stable VAR(d) model 

the spectral density has a closed form expression,

f X(θ) = 1
2π Ip − ∑

j = 1

d
A je

−i jθ
−1

Σε Ip − ∑
j = 1

d
A je

−i jθ
−1

*,

where * denotes the Hermitian conjugate of a matrix and i ≡ −1 . The autocovariance 

function which characterizes a centered Gaussian process, can be used to quantify the 

temporal and cross-sectional dependence for VAR(d) models. The peak of the spectral 

density, measured by its maximum eigenvalue ℳ f X ≔ maxθ ∈ [ − π, π]λmax f X(θ)  can be 

used as a measure of stability of the process. Also the minimum eigenvalue 

𝔪 f X ≔ minθ ∈ [ − π, π]λmax f X(θ)  captures cross-dependence among its components. 

However, as mentioned in Basu and Michailidis (2015) instead of working with ℳ f X  and 

𝔪 f X  it is often easier to work with the eigenvalues of 𝓐*(z)𝓐(z) over the unit circle {z ∈ 

ℂ : |z| = 1}. Let

μmin(𝓐) ≔ min
z = 1

λmin 𝓐*(z)𝓐(z) = min
θ ∈ [ − π, π]

λmin Ip − ∑
i = 1

d
A j′ ei jθ Ip − ∑

i = 1

d
A je

−i jθ

μmax(𝓐) ≔ min
z = 1

λmax 𝓐*(z)𝓐(z) = max
θ ∈ [ − π, π]

λmax Ip − ∑
j = 1

d
A j′ ei jθ Ip − ∑

j = 1

d
A je

−i jθ

For stable VAR(d) process 0 < μmin(𝓐) ≤ μmax(𝓐) < ∞. Since each εt is i.i.d as 𝒩p 0, Σε , 

each row of X is distributed as 𝒩dp 0, CX , where the covariance matrix CX has the 

following structure,

CX =

Γ(0) Γ(1) ⋯ Γ(d − 1)
Γ(1)′ Γ(0) ⋯ Γ(d − 2)

⋮ ⋮ ⋱ ⋮
Γ(d − 1)′ Γ(d − 2)′ ⋯ Γ(0) dp × dp

(3)

The quantities μmin(𝓐) and μmax(𝓐) provide a useful bound for the eigenvalues of CX. As 

mentioned in Melnyk and Banerjee (2016) and from Proposition 2.3 and equation (2.6) of 

Basu and Michailidis (2015) we have the following chain of inequalities,
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λmin Σε
μmax(𝓐) ≤ 2π𝔪 f X ≤ λmin CX ≤ λmax CX ≤ 2πℳ f X ≤

λmax Σε
μmin(𝓐) . (4)

We finally note that the p dimensional VAR(d) model in (2) can be equivalently written as a 

dp dimensional VAR(1) process. Let

Xt =
Xt

⋮

Xt − d + 1
dp × 1

, A1 =

A1 A2 ⋯ Ad − 1 Ad
Ip O ⋯ O O
O Ip ⋯ O O
⋮ ⋮ ⋱ ⋮ ⋮
O O ⋯ Ip O

dp × dp

and ωt =

εt + 1

0
⋮
0 dp × 1

.

Then the new representation becomes

Xt = A1Xt − 1 + ωt t = d, ⋯, n + d − 1. (5)

It follows that X = Xn + d − 2 Xn + d − 3…Xd − 1 ′, i.e., i-th row of X is denoted as (dp × 1 

vector) Xn + d − i − 1. Note that if the underlying VAR(d) process {Xt} is stable then the 

process Xt with the characteristic polynomial, 𝓐(z) ≔ Idp − A1z is also stable. This is 

because Xt  can be viewed as generated according to a stable VAR(1) process with 

transition matrix A1 and Xt  is stable if and only if {Xt} is stable (Lütkepohl (2007)). Based 

on 𝓐(z) we define

μmin(𝓐) ≔ min
θ ∈ [ − π, π]

λmin Ip − A1′ eiθ Ip − A1e−iθ

μmax(𝓐) ≔ max
θ ∈ [ − π, π]

λmax Ip − A1′ eiθ Ip − A1e−iθ

(6)

While μmin(𝓐) and μmax(𝓐) are not necessarily the same as μmin(𝓐) and μmax(𝓐) the 

inequalities in (4) still hold with μmin(𝓐) and μmin(𝓐) replaced by μmin(𝓐) and μmax(𝓐), 

respectively.

3 Bayesian Estimation and Posterior Consistency

In this section, we first discuss Bayesian estimation of VAR models with non-hierarchical 

and hierarchical scale mixture matrix normal prior distributions on the parameter matrix Φ 
(conditioned on Σε) and subsequently establish high-dimensional posterior consistency in 

this setting under mild regularity assumptions. We start by introducing the necessary 
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notation for the matrix-variate normal distribution. Let Ma,b denote the space of a × b 
matrices.

Definition 3. An a×b random matrix X is defined to follow a matrix-variate normal 

distribution ℳ𝒩a × b M, B1, B2  if its density function (on the space Ma,b ) is given by

B1
−b/2 B2

−a/2

(2π)ab/2 e
− 1

2tr B1
−1(X − M)B2

−1(X − M)′
.

Here M ∈ Ma,b. B1 ∈ Ma,a and B2 ∈ Mb,b which are both positive definite matrices 

corresponding to the variances among the rows and columns of X, respectively. Note that the 

matrix normal distribution is related to the multivariate normal distribution in the following 

way: X ∼ ℳ𝒩n × p M, B1, B2 , if and only if vec(X) ∼ 𝒩np vec(M), B2 ⊗ B1 .

3.1 Non-Hierarchical Matrix Normal Prior

We consider a matrix normal prior for Φ conditional on Σε, and a flat (uniform) prior on Σε. 

In particular,

Φ Σε ∼ ℳ𝒩dp × p O, U−1, Σε and π Σε ∝ 1, (7)

where U is a dp × dp known positive definite matrix. Note that under this matrix normal 

prior U−1 and Σε are the covariance matrices corresponding to the columns and rows of Φ, 

respectively. The posterior distribution of Φ (conditional on Σε) can easily be shown to be 

ℳ𝒩dp × p ΦPM, X′X + U −1, Σε , where ΦPM ≔ X′X + U −1X′Y is the (conditional) 

posterior mean which does not depend on Σε. Hence, the unconditional posterior mean of Φ 
is available in closed form and is given by ΦPM. It follows by standard computations using 

the multivariate normal density that the marginal posterior density of Σε is proportional to

Σε
−n/2e

−tr Σε
−1Σres ,

Where Σres = YT I − X XTX + U −1XT Y. This density is proper if and only if n > 2p. In this 

case, the marginal posterior density of Σε corresponds to the Inverse-Wishart density with 

scale parameter Σres and shape parameter n − p − 1. We summarize the above observations 

in the lemma below.

Lemma 3.1. Under the non-hierarchical prior in (7), the posterior density of (Φ,Σε) is proper 
if and only if n > 2p. In this case
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Φ |Σε, 𝒴 ∼ ℳ𝒩dp × p ΦPM, X′X + U −1, Σε
Σε |𝒴 ∼ Inverse‐Wishart Σres, n − p − 1 .

Assumptions for posterior consistency—We will establish our results under the 

high-dimensional setting from Section 2. Recall that Φ0 = Φ0n denotes the true underlying 

parameter matrix, and Σε,0 = Σε,0n denotes the true underlying error covariance matrix in this 

setting. The quantities μmin(𝓐), μmax(𝓐) and CX are as defined in (6) and (3), but with Φ0 

and Σε,0 as the underlying parameter values. We assume the following:

Assumption A1. The VAR(d) model given in (1) is stable.

Assumption A2. 
1 + μmax(𝓐)

μmin(𝓐)
 is O n

p
5  as n → ∞.

Assumption A3. 0 < inf
n ≥ 1

λmin CX < ∞ and λmax Σε, 0n = O(1).

Assumption A4. The true parameter matrix of the VAR model (2), Φ0 and the 

hyperparameter U of (7) are such that ‖Φ0
TUΦ0‖ = o(n) and ‖UΦ0‖ = o(n).

Assumption A5. p = o(n).

When d = 1, we deal with a VAR(1) model and CX becomes ΓX(0), while μmin(𝓐) is the 

same as μmin(𝓐) and μmax(𝓐) is also equal to μmax(𝓐). Assumption A1 is a standard 

assumption which ensures that the underlying VAR process is well-behaved. Assumption A2 

plays an important role in deriving high-dimensional concentration bounds for X′X/n and X
′E/n around CX and O, respectively (see Propositions B.1 and B.3 in the supplementary 

material). Assumption A3 is needed to ensure that λmin(X′X/n) is bounded away from 0 

with high probability. Further, if we consider that each column of Φ is independently and 

identically distributed according to a normal prior distribution, that is U = Idp, Assumption 

A4 reduces to Φ0′ Φ0 = o(n) and ‖Φ0‖ = o(n).

We now state the main theoretical result of posterior consistency with a non-hierarchical 

matrix normal prior distribution on Φ. The proof is given in Appendix C.1 of the 

supplementary material.

Theorem 3.2 (Posterior consistency for non-hierarchical prior). For any centered VAR(d) 
model (2) with non-hierarchical prior (7) on Φ satisfying Assumptions A1-A5, the posterior 
consistency of the parameter matrix can be achieved i.e. for every fixed every ε > 0

𝔼0 Πn ‖Φ − Φ0‖ > ε 𝒴 = X0, ⋯, Xn 0 as n ∞

where Φ0 is the true parameter matrix under the model (2).
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A natural question to ask is whether the assumption p = o(n) can be relaxed for posterior 

consistency. In the lemma below, we consider a situation in which Assumptions A1 - A4 are 

satisfied and p is the same order as n, and prove that the resulting posterior is not consistent. 
The proof is given in Appendix C.2 of the supplementary material.

Lemma 3.3. Consider a (sequence of) VAR(1) model with pn = γn, Φ0n = αIpn
 and Σε,0n = 

Ipn
, where γ ∈ 0, 1

2 , α ∈ (0,1) do not depend on n. If we use the non-hierarchical prior (7) 

on Φ with ‖U‖ = o(n), then there exists ε > 0 such that

lim inf
n ∞

𝔼0 Πn ‖Φ − Φ0‖ > ε 𝒴 = X0, ⋯, Xn > 0.

Remark Note that the condition ‖U‖ = o(n) assumed in Lemma 3.3 corresponds to 

Assumption A4 in the setting of the Lemma. The reason for making this assumption is that 

we want to show violating Assumption A5 (p = o(n)) can lead to posterior inconsistency, 

even if all of Assumptions A1-A4 hold. If we decide to violate Assumption A4 too by 

assuming ‖U‖ = o(n) or ‖U‖ ≫ n (goes to ∞ at the same rate or faster than n) then the 

posterior inconsistency proof becomes comparatively easier. We have provided the 

corresponding proofs in Supplemental Section C.3 and Supplemental Section C.4, 

respectively.

3.2 Hierarchical Normal-mixture Prior

Next, we study the posterior consistency of the parameter matrix in model (2) in which Φ 
has the following hierarchical prior

Φ Σε, U ∼ ℳ𝒩dp × p O, U−1, Σε ,
π Σε ∝ 1,

and U ∼ πscl( . )

(8)

where U is the dp×dp matrix having probability density πscl(·) over the space of dp×dp 

positive definite matrices, 𝕄dp
+ . As shown below, the group lasso and multivariate t 

distribution prior on Φ can be obtained from (8) using appropriate choices of πscl(·). The 

lemma below shows that the posterior is proper if n > (d+1)p, and provides the form of 

various conditional and marginal posterior densities. The proof is given in Appendix C.5 of 

the supplementary material.

Lemma 3.4. Under the hierarchical normal-mixture prior in (8), the posterior density of 
(Φ,Σε,U) is proper if n > (d + 1)p. In this case
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Φ |Σε, U, 𝒴 ∼ ℳ𝒩dp × p ΦPM, X′X + U −1, Σε

Σε |U, 𝒴 ∼ Inverse‐Wishart Σres, n − p − 1

π(U |𝒴) ∝ |U|dp/2

X′X + U dp/2 Σres
(n − p − 1)/2πscl(U) .

The Bayesian group lasso prior was proposed by Kyung et al. (2010) in the context of linear 

regression. We adapt it to the VAR setting as follows. Suppose the rows of Φ are divided in 

G groups Φ[1], ⋯, Φ[G], where each Φ[g] is an mg × p sub-matrix of Φ (hence ∑mg = dp) and 

Xg is the submatrix of X of order n × mg corresponding to the group Φ[g]. The frequentist 

group lasso estimator (conditional on Σε) is obtained by solving

min
Φ[1], ⋯, Φ[G]

Σε
−1/2 Y − ∑

g = 1

G
XgΦ[g]

F

2
+ ∑

g = 1

G
λg Φ[g]Σε

−1/2
F

,

where λg is a tuning parameter corresponding to the group g. The group lasso estimator 

(conditional on Σε) can also be expressed as the maximum a posteriori probability (MAP) 

estimate under model (2) with the prior

π(Φ |Σε) ∝ exp − ∑
g = 1

G
λg‖Φ[g]Σε

−1/2‖
F

which is a multivariate generalization of the double exponential prior and can also be 

expressed as a scale mixture of normals with Gamma hyperpriors (Park and Casella (2008), 

Kyung et al. (2010)) leading to the group lasso hierarchy,

Φ[g] |τg, Σε ∼ind ℳ𝒩mg × p O, τgImg
, Σε and τg ∼ind Gamma

mg + 1
2 ,

λg
2

2 , g = 1, ⋯, G .

Here Gamma(α,λ) denotes the Gamma distribution with shape parameter α and rate 

parameter λ. This can be alternatively presented as 

Φ |τ, Σε ∼ ℳ𝒩dp × p O, BDiag τ1, ⋯, τG , Σε  and τg ∼ind Gamma
mg + 1

2 ,
λg
2

2  where BDiag(τ1,· · 

·,τG) denotes a block-diagonal matrix with g−th block to be τgImg
. Note that under the above 

hierarchical prior, conditionally on (τ1,· · ·,τG) and Σε, the columns of Φ are independent. If 

mg = 1 ∀ g = 1,· · · ,dp we get the ordinary Bayesian lasso.
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Under the specification given in (8), suppose we assume U = Diag(τ1,· · ·,τdp) and 

1/τi ∼ind Gamma αi, λi/2  then it can be shown that the prior density for Φ given only Σε is 

proportional to

∏
i = 1

dp
‖Φi . Σε

−1/2‖2
2 + λi

−(αi + 1
2)

which corresponds to the multivariate t-distribution.

Estimation—For the hierarchical model given in (8), the posterior density of Φ is 

intractable and quantities such as the posterior mean are not available in closed form. Hence, 

we develop a Markov Chain Monte Carlo algorithm to generate values from the posterior 

density. It follows by straightforward calculations that

Φ |Σε, U, 𝒴 ∼ ℳ𝒩dp × p ΦPM, X′X + U −1, Σε

Σε |U, 𝒴 ∼ Inverse‐Wishart Σres,n − p − 1

π(U |Φ, Σε, 𝒴) ∝ |U |dp/2exp − 1
2tr ΦΣε

−1Φ′U πscl(U),

where Σres = YT I − X XTX + U −1XT Y. While the conditional posterior distribution of Φ 

given Σε,U and Σε given U are easy to simulate from (being Matrix-normal and 

InverseWishart), the tractability of the conditional posterior density of U given Φ,Σε depends 

on the form of the prior πscl(U). We show below that for three standard choices of πscl(U) 

corresponding to the Wishart prior, the group lasso prior and the multivariate t-prior π(U|Φ) 

becomes a tractable density and easy to simulate from.

Case 1: Wishart Prior—For a dp × dp positive definite matrix V, let U ~ Wishartdp(V,df = 

ν + dp) that is π(U) ∝ |U |
ν − 1

2 exp − 1
2 tr V−1U . In this case,

π(U |Φ, Σε, 𝒴) ∝ |U |
ν + dp − 1

2 exp − 1
2tr ΦΣε

−1Φ′ + V−1 U

which is Wishartdp ΦΣε
−1Φ′ + V−1 −1, d f = ν + 2dp . Note that as long as we have ν > −(dp

+1) the posterior of U given Φ,Σε, 𝒴 is proper.

Case 2: Bayesian Group Lasso—In this case as already discussed in Subsection 3.2, U
−1 has a block diagonal form BDiag(τ1,· · · ,τG) and τg’s are apriori independently 

distributed as Gamma with scale (mg + 1)/2 and rate λg
2/2. Hence, the conditional distribution 

of τg has the following form,
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1
τg

|Φ, Σε𝒴 ∼ind Inverse − Gaussian μg =
λg

‖Φ[g]Σε
−1/2‖

F

, λg
2 .

Case 3: Multivariate t-distribution—By taking U−1 = Diag(τ1,··· ,τdp) and 1/τi to be 

independently distributed as Gamma with scale αi and rate λi/2 we have the multivariate t-
distribution as the prior on Φ. In this case, the conditional distribution of τi has the following 

form

1
τi

|Φ, Σε, 𝒴 ∼ind Gamma αi + dp
2 ,

‖Φi .′ Σε
−1/2‖2

2 + λi
2 .

Assumptions for posterior consistency—We now introduce regularity conditions to 

establish posterior consistency under the hierarchical prior model.

Assumption B1. The VAR(d) model given in (1) is stable.

Assumption B2. 
1 + μmax(𝓐)

μmin(𝓐)
 is O n

p
5  as n → ∞.

Assumption B3. 0 < inf
n ≥ 1

λmin CX ≤ sup
n ≥ 1

λmax CX < ∞ and 0 < λmax(Σε,0n) = O(1).

Assumption B4. The singular values of the true parameter matrices Φ0n n ≥ 1 are 

uniformly bounded. Equivalently, the eigenvalues of Φ0n′ Φ0n n ≥ 1 are uniformly bounded.

Assumption B5. p = O n
logn .

Assumption B6. There exists (fixed and not-depending on n) α > 0 such that 

lim inf
n ∞

πscl, n λmax(U) > α > 0 and for every β > 0 we have lim
n ∞

πscl, n λmax(U) > βn = 0.

We now discuss these assumptions and compare them to the assumptions for the non-

hierarchical prior model.

• Assumptions B1 and B2 are identical to A1 and A2, while B3 is fairly similar to 

A3.

• One key difference is the permissible scaling of p as a function of the sample size 

n in Assumption B5, which is slightly more stringent than the permissible scaling 

for the nonhierarchical matrix normal prior in Assumption A5.

• Note that Assumption B6 is a mild one. For example, a sufficient condition for 

this assumption to be satisfied is that limsupn ∞max1 ≤ i ≤ p𝔼πscl, n
Uii

δ < ∞ for 
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some δ > 0 and liminfn ∞πscl, n U11 > α > 0. It can be easily checked that this 

condition, and hence Assumption B6, is satisfied in the case of Wishart, Inverse-

Wishart, Bayesian group lasso, multivariate t-distribution, Horseshoe (Carvalho 

et al. (2010)), Strawderman-Berger and generalized double Pareto (Armagan et 

al. (2013)) priors as long as the prior parameters do not depend on n.

• In the non-hierarchical prior case, assumptions regarding Φ0 and U (non-

random) are simultaneously and exclusively provided in Assumption A4 through 

the conditions ‖Φ0
TUΦ0‖ = o(n) and ‖UΦ0‖ = O(n). For the hierarchical prior 

case, for clarity of exposition, we provide the assumptions regarding Φ0 in 

Assumption B4, and those regarding the distribution of U (random) in 

Assumption B6. Combining these two assumptions it can be easily shown that a 

priori ‖Φ0
TUΦ0‖ and ‖UΦ0‖ converge to zero in Πscl,n-probability as n → ∞. In 

that sense, the assumptions on (Φ0,U) in the hierarchical model are stronger than 

in the non-hierarchical model case.

With these assumptions in hand, we state our key consistency result, whose proof is 

delegated to Appendix C.6 of the supplementary material.

Theorem 3.5 (Posterior Consistency for Hierarchical Prior). For any centered VAR(d) 
model with the hierarchical prior (8) on the transition matrix satisfying Assumptions B1-B6, 
the posterior consistency of the transition matrix can be achieved i.e. for every fixed cε > 0

𝔼0 Πn ‖Φ − Φ0‖ > ε |𝒴 = X0, ⋯, Xn 0 as n ∞

where Φ0 is the true parameter matrix under the model (2).

4 Performance Evaluation

To illustrate the performance of our Bayesian modeling framework for VAR processes, we 

design three sets of numerical experiments involving: (a) Small VAR (p = 10), (b) Medium 

VAR (p = 100) and (c) Large VAR (p = 500) models, each with two lags - (i) d = 1 and (ii) d 
= 2.

In each setting, we use transition matrices Ai’s with 10−30% non-zero entries that are 

generated from U(0,2) ∪ U(−2,0) selected at random and rescaled to ensure that the process 

is stable with SNR = 2. For small VAR models, we generate n = 40,80,120 time points, for 

medium VAR models, n = 400,800,1200, while for large VAR models we use n = 

2000,4000,6000. The hyper-parameters for the prior distributions are selected using the 

Deviance Information Criterion (DIC). Note that DIC = 2D − D Φ, Σε , where 

D Φ, Σε ≔ − 2logL(𝒴 |Φ, Σε) = nlog Σε + tr Σε
−1 Φ′X′XΦ − 2Φ′X′Y + Y′Y , D is the 

posterior expectation of D(Φ,Σε) and Φ and Σε are the posterior expectation of Φ and Σε 

respectively.
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4.1 Non-hierarchical prior

We generate two different error processes using Σε = σ2Ip and Σε = σ2 ρ|i − j|
i j (Toeplitz 

form). For each of the small, medium and large VAR models, U is taken to be a diagonal 

matrix, c Ip where c is chosen according to the minimum DIC value over the interval [0,10]. 

In Table 1, for both the posterior mean (PM) and least squares estimator (LS), we report 

their relative estimation error ‖Φ − Φ0‖2/‖Φ0‖2  and the standard error of ‖Φ‖2 within 

parenthesis averaged over 10×p replicates for small and medium VAR and 100 replications 

for large VAR (p = 500). Since the true parameter matrix Φ0 is sparse, we identify entries 

whose 95% posterior credible intervals contain zero, and set them to zero in both parameter 

matrix estimates (PM and LS).

First, we assume the true error covariance matrix Σε is diagonal i.e. σ2Ip. Here % denotes 

percentage of non-zero entries in Φ and d represents lag length of the underlying VAR 

process. Recall that the sample sizes used for small VAR models are n1 = 40, n2 = 80, n3 = 

120, for medium VAR ones n1 = 400, n2 = 800, n3 = 1200, and for large VAR ones n1 = 

2000, n2 = 4000, n3 = 6000.

It can be seen that the relative estimation error decreases with an increase in the number of 

time points (sample size) n for both lags d = 1,2; further, its values are significantly larger in 

medium and large size VAR models than in small VAR ones. Moreover, the estimation error 

for lag 1 is uniformly smaller than that for lag 2, and the same holds true for their respective 

standard errors. Regarding the percentage of non-zero entries in the true transition matrices, 

the results show that for fixed n and p, the more true non-zero entries in A1,A2, the less 

accurate the posterior mean and the LS estimator are, while their variability as indicated by 

their standard errors also follows the same pattern. However, the posterior mean clearly 

outperforms the LS estimates, especially in settings with large p. This is to a large extent due 

to the fact that the true transition matrices A1,A2 exhibit weaker signal as p or the number of 

non-zero edges increases (this is to ensure stability of the underlying VAR model) and due to 

our choice of U = cIdp the posterior mean is the ridge regression estimator which applies 

shrinkage on the coefficients.

Next, we introduce correlation in the error components by specifying Σε to be of Toeplitz 

form. As discussed in Section 3.2.1 of Lütkepohl (2007) the generalized least squares 

estimate in this multivariate regression set up is the same as the ordinary one; i.e. (X′X)–1X
′Y, a result due to Zellner (1962). In Table 2, we compare the performance of least squares 

and posterior (ridge) estimates with noise covariance Σε =Toeplitz (ρ = 0.8).

In this setting, the relative estimation error of both the least squares and ridge estimators 

increases compared to that with an uncorrelated error structure given in Table 1; in 

particular, the performance of the LS estimator deteriorates even further. However, with an 

increase in sample size, the accuracy of both estimates significantly improves. Further, as 

gleaned from the entries of the Table corresponding to lag 2, the relative error exhibits a 

further increase, a pattern consistent with the results in Table 1. This is quite expected as we 
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not only have Toeplitz type error covariance structure, but also the total number of unknown 

parameters has increased by p2.

Finally, we study the support recovery under both error processes. In Table 3, we provide the 

percentage of true positives recovered by using 95% posterior credible intervals based on the 

same sample sizes n1, n2, and n3 as used previously.

The above table indicates that support recovery is not sensitive to the sample size, or to the 

lag; however, it deteriorates for all VAR models and error covariance settings, as the density 

of non-zero entries increases and exhibits a small increase with model dimension.

4.2 Hierarchical Priors

As discussed in Section 3.2, three types of hierarchical priors (Wishart, group-lasso and 

multivariate t) are studied. Analogously to the non-hierarchical prior case, the performance 

of the LS estimator is not at all satisfactory in this set up as well. Thus, we only compare the 

relative accuracy of the three prior choices in this setting. We select V = cIp and df = ν = dp 
for the Wishart prior, λi = λ for all 1 ≤ i ≤ dp for the group-lasso prior and αi = 1, λi = λ for 

all 1 ≤ i ≤ dp for the multivariate t prior. The hyper-parameters c and λ are chosen using 

DIC. In Table 4, we report the relative estimation error ‖Φ − Φ0‖2/‖Φ0‖
2
, d = 1, 2  of the 

three hierarchical estimators when the error process covariance is set to σ2Ip and d represents 

lag length in the underlying VAR model.

In the following table, we present relative estimation errors with the same 3 hierarchical 

priors when Σε =Toeplitz (ρ = 0.6).

All of our hierarchical estimates outperform the ridge estimator (Table 1 and Table 2) across 

all settings considered. This is again expected, since the Ai’s have sparse structure by 

construction and the group lasso prior favors sparsity. However, the above results are not 

conclusive whether the group lasso estimate exhibits better accuracy than the Wishart or 

multivariate t estimates. To gain some insight into this issue, we use a VAR(1) model with p 
= 9 and transition matrix A1 in which the columns form three groups each containing three 

columns. The sparsity increases as we move from group 1 to group 3. Finally, we rescale the 

coefficient matrix so that the corresponding VAR process is stable with SNR= 2. The 

structure of the resulting A1 transition matrix is depicted next, where * indicates non-zero 

entries.

A1 =

* * * * * * 0 0 0
* * * * * * 0 0 0
* * * * * * 0 0 0
* * * * 0 0 0 0 0
* * * 0 * 0 0 0 0
* * * 0 0 * 0 0 0
0 0 0 0 0 0 * 0 0
0 0 0 0 0 0 0 * 0
0 0 0 0 0 0 0 0 * 9 × 9

Ghosh et al. Page 16

J Am Stat Assoc. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We generate n = 100 observations from the above VAR(1) model using two white noise 

variances (1) Σε = σ2Ip and (2) Σε =Toeplitz (ρ = 0.80) and report the relative estimation 

error (‖A1 − A1‖2/‖A1‖2) of five different estimates - least squares (LS), posterior mean for 

non-hierarchical normal prior (Non H), hierarchical Wishart (W), group lasso (GL) and 

multivariate t prior (Mult. t), in Table 6.

The results show that the group lasso estimator exhibits the best performance, followed by 

the multivariate t one, whereas the LS estimator is the least accurate. The result is consistent 

with the structure of the underlying transition matrix, since the group lasso prior can 

capitalize on it.

In Appendix A.1 of the supplementary document we illustrate the posterior estimate of a 

VAR(1) model transition matrix A1, 95% credible intervals and estimated posterior densities 

of several entries of A1. We also look into the performance of Σε when the true error 

covariance is Toeplitz(ρ = 0.8). The relative error of Φ under all the four different priors 

using a new noise covariance matrix which is generated from a Wishart distribution with 

degrees of freedom ν = p and scale matrix Ip is also given.

5 Application to Macroeconomic Data

We use the proposed Bayesian framework to understand the lead-lag relationships in the 

FRED-MD dataset containing p = 137 key macroeconomic variables for the period January 

1973 to December 2014. VAR modeling for this task was strongly advocated by Sims (1980) 

and since then has become a standard tool for it, although usually the focus is on small 

models involving few macroeconomic indicators (e.g. consumer price index, employment 

index and the federal funds rate). However, recent work has advocated for larger VAR 

models (see Bernanke et al. (2005); Bańbura et al. (2010) and references therein), in order to 

improve forecastability and also avoid the presence of hard to interpret or even contradictory 

to economic theory relationships, due to the fact of not including an adequate number of 

variables for properly modeling the economic phenomenon under consideration. Before 

centering the data and estimating Σε as discussed earlier in Section 3.2, we ensure 

stationarity by processing the variables according to the recommendations in Stock and 

Watson (2005). The specific transformations used for each time series are given in the 

supplementary documents. Analogously to Bańbura et al. (2010), we consider the following 

3 different size VAR models:

• SMALL: This model contains p = 4 key variables - CPI, number of employees 

non-farm (PAYEMS), Federal Funds Rate (FEDFUNDS) and Unemployment 

Rate (UNRATE).

• MEDIUM: In addition to the four variables in the SMALL VAR model, this one 

contains an additional 16 variables (total p = 20) listed next - Reserves Of 

Depository Institutions (NONBORRES), Total Reserves of Depository 

Institutions (TOTRESNS), M2 (M2REAL), Real Personal Income (RPI), Real 

personal consumption expenditures (DPCERA), IP Index (INDPRO), Capacity 

Utilization: Manufacturing (CAPT), Housing Starts: Total New Privately Owned 
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(HOUST), Avg Hourly Earnings : Goods-Producing (CES), M1 (M1), S & P’s 

Common Stock Price Index: Composite (S.P.), 10-Year Treasury Rate (GS10), 

Personal Cons. Expend.: Chain Index (PCEPI), Foreign Exchange Rate (EXS), 

Crude Oil, spliced WTI and Cushing (OIL) and Retail and Food Services Sales 

(RETAILx).

• LARGE: This specification has all p = 134 macroeconomic indicators (3 were 

excluded from further analysis due to the presence of a large number of missing 

values).

Based on initial exploratory work, we choose lag d = 6 according to the Bayesian 

information criterion (BIC) and the following distributions were used for prior specification 

to obtain the estimated parameter matrix Φ: (i) non-hierarchical normal (Non H), (ii) 

hierarchical Wishart (W), (iii) group lasso (GL) and (iv) multivariate t prior (Mult. t). Since 

with an increase in the lag length d the number of parameters increases linearly we suggest 

using BIC over the Akaike information criterion (AIC). For the non-hierarchical prior, we 

use U = BDiag(λ1,⋯,λd), while for the hierarchical Wishart, group-lasso and multivariate t 
priors on Φ, we use V = c1Idp and αi = α for all 1 ≤ i ≤ dp. The values of c1 and λ are 

chosen using the Deviance Information Criterion (DIC) which, as explained previously, is a 

hierarchical Bayesian modeling generalization of BIC. The respective posterior means were 

compared to the least squares (LS) estimate. For each of the estimates Φ, the residual norm 

ratio ‖Y − XΦ‖F /‖Y‖F  which measures the in-sample fit, is reported in Table 7.

Note that since the LS estimator is obtained by minimizing ‖Y − XΦ‖F, it will always result 

in minimum relative residual norm as observed in the above table; i.e. the LS estimator is 

always the best one in terms of in-sample prediction accuracy.

Next, we investigate the 4 different Bayesian estimates based on their out-of-sample 

prediction performance with respect to the benchmark prior, analogously to the evaluation 

strategies discussed in Bańbura et al. (2010) and Stock and Watson (2005). We consider the 

following two benchmark priors:

1. Prior information is imposed exactly by setting U−1 = O matrix (the zero matrix) 

and it corresponds to λ = 0 in the Minnesota prior. Bańbura et al. (2010) uses 

this specification as the benchmark prior, in which case the corresponding 

benchmark model becomes a random walk with drift; i.e. Xt = α + Xt − 1 + εt.

2. A uniform prior on Φ by setting U = O which corresponds to λ = ∞ in the 

Minnesota prior. The posterior mean coincides with the least squared estimate 

(LS).

Let Xt + h be the h-step ahead predicted value for Xt+h based on our posited Bayesian model 

and using the data upto time t. The corresponding forecast under the benchmark prior is 

XO
t + h. The mean squared forecast error relative to the benchmark (RMSFE) is defined to 
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∑t = T0

T1 ‖Xt + h − Xt + h‖2

∑t = T0

T1 ‖Xt + h − XO
t + h‖2

. Table 8 gives the RMFSE results for three different choices of 

forecasting horizons, h = 1,6,12, for the two benchmark priors considered, over the period 

T0 = January 1978 to T1 = December 2006. An RMSFE value smaller than 1 implies the 

VAR model with the corresponding prior outperforms that with the naive/benchmark prior.

It can easily be seen that all four Bayesian methods not only outperform the LS estimate 

(uniform prior on Φ), but also exhibit substantially smaller relative error compared to the 

random walk with drift process (point-mass prior on Φ). Further, increasing the number of 

predictor variables improves forecasting performance, a point argued forcefully in favor of 

large VAR models by Sims Sims (1980). On the other hand, forecasting performance 

deteriorates for larger values of h, an expected result. Nevertheless, even for h = 12 (one year 

ahead) the results are still very satisfactory. Further, for the SMALL and MEDIUM VAR 

models, the non-hierarchical normal and hierarchical Wishart priors result in better 

prediction, whereas for the LARGE VAR model the group lasso prior outperforms other 

forecasts.

Next, we examine closely the out-of-sample prediction performance of the following three 

macroeconomic variables - CPI, PAYEMS and FEDFUND under the hierarchical Wishart 

prior.

Note that Bańbura et al. (2010) only consider a random walk process as the naive prior. 

From the above table it can be seen that although for CPI and PAYEMS the LS estimate 

performs better than the Bayesian estimates in SMALL and MEDIUM VARs, overall the 

Wishart prior has better forecasting accuracy than both of the benchmark priors. As 

previously observed, adding information (i.e. including more variables) improves the 

accuracy of forecasts for all three variables. The fourth column (LARGE BGR) provides the 

numbers reported in Table III in Bańbura et al. (2010), where a Bayesian VAR model on the 

same 134 variables, with d = 13 lags was estimated using a normal-inverted Wishart 

distribution that leads to a ridge type posterior mean estimate for the parameters in Φ and 

based on data covering the period 1971–2003. Although the results are not directly 

comparable to those obtained by our methodology, they nevertheless provide a certain 

degree of calibration. It can be seen that our model is more parsimonious using only d = 6 

lags and provides better forecasting performance for all three variables at all forecasting 

horizons.

Next, we examine in more detail the estimated transition matrix A1 for the SMALL VAR 

model (p = 4) and the non-hierarchical normal and group lasso priors. Estimated posterior 

densities of the bold marked entries are shown next. It is worth noting that the non-

hierarchical prior centers around a different value and exhibits a less smooth behavior, than 

the hierarchical one. This smoothness should be expected given the specification of the 

latter.
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A1
NonH =

CPI
PAYEMS
FEDFund
UnRate

CPI PAYEMS FEDFund UnRate
– 0.133 – 0.001 0.001 0.001
– 0.016 0.311 0.001 – 0.002
– 1.000 10.200 0.498 – 0.185
1.217 – 23.300 – 0.035 – 0.105

A1
GL =

CPI
PAYEMS
FEDFund
UnRate

CPI PAYEMS FEDFund UnRate
– 0.167 – 0.005 0.001 0.001
– 0.021 0.560 0.001 – 0.001
– 1.614 18.6079 0.486 – 0.134
1.609 – 41.818 – 0.015 – 0.107

Further, we present the 95% posterior credible intervals (PCI) of A1 under the above two 

priors

Non hierarchical: =

( − 0.19, − 0.07) ( − 0.08, 0.07) ( + 0, + 0) ( − 0, + 0)
( − 0.05, 0.01) (0.27, 0.35) ( + 0, + 0) ( − 0, − 0)

( − 7, 5.25) (1.86, 19) (0.44, 0.55) ( − 0.3, − 0.06)
( − 1.98, 4.45) ( − 27.8, − 18.7) ( − 0.06, − 0.01) ( − 0.07, 0.06)

Group lasso: =

( − 0.22, − 0.11) ( − 0.10, 0.1) ( + 0, + 0) ( − 0, + 0)
( − 0.05, 0.01) (0.51, 0.61) ( + 0, + 0) ( − 0, − 0)
( − 8.58, 5.7) (6.5, 31.01) (0.44, 0.55) ( − 0.26, − 0)
( − 1.75, 4.86) ( − 47.72, − 36.37) ( − 0.04, 0.01) ( − 0.07, 0.06)

Next, in Figure 2 we depict the estimated networks for the MEDIUM VAR based on the first 

lag transition matrix produced by: (a) least squares and (b) a non-hierarchical normal prior, 

where for ease of representation the nodes of the network are abbreviated; the full list of the 

variable names is given in Table A1 of Appendix A in the supplementary material.

As expected, for most variables their previous lag value influences the current value. Further, 

for the LS based network, there is a high degree of connectivity, whereas the non-

hierarchical based one exhibits a sparser structure. For the latter, of interest is that the 

employment index (PAYEMS), the personal consumer expenditures (GS10) and CPI are 

influenced by many other variables. On the other hand, the Federal Funds Rate influences 

the broad stock market (SP500) as expected based on finance theory and GS10. In general 

the sparser result provided by the non-hierarchical prior, in addition to better forecasting also 

aids in interpretation, vis-a-vis the LS estimate.

6 Discussion

In this paper, we investigate posterior consistency in Bayesian VAR(d) models with both 

nonhierarchical and hierarchical matrix normal prior distributions on the transition matrices 

under a Gaussian assumption for the temporal evolution of the time series under 

consideration and in the presence of a general covariance matrix that captures additional 

contemporary dependence between them. We establish posterior consistency for both of 

these priors under high-dimensional scaling. To obtain the desired results, some novel 

Ghosh et al. Page 20

J Am Stat Assoc. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



concentration inequalities are provided that are of independent interest. The methodology is 

illustrated on synthetic and real macroeconomic data. The proposed priors provide better 

forecasts than the LS estimates for periods up to one year ahead, while leading to sparser 

and potentially easier to interpret relationships, especially for large scale models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Posterior densities of entries (11), (24), (32) and (42) in A1 under 4 different priors
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Figure 2: 
Network representation of the transition matrix (A1)
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Table 1:

Relative error in VAR (d = 1,2) with Σε= σ2Ip where % denotes percentage of non-zero entries in Φ0.

Lag d = 1 Lag d = 2

n1 n2 n3 n1 n2 n3

% LS PM LS PM LS PM LS PM LS PM LS PM

Small VAR

10 0.93 0.83 0.82 0.70 0.70 0.55 1.26 1.09 1.11 0.96 1.00 0.76

(0.21) (0.12) (0.12) (0.08) (0.07) (0.05) (0.24) (0.17) (0.17) (0.07) (0.10) (0.08)

20 1.06 1.00 1.00 0.87 0.83 0.71 1.39 1.22 1.28 1.07 1.14 0.94

(0.34) (0.24) (0.26) (0.16) (0.16) (0.11) (0.35) (0.30) (0.27) (0.21) (0.18) (0.15)

30 1.23 1.15 1.12 0.97 0.99 0.81 1.57 1.40 1.45 1.28 1.30 1.15

(0.45) (0.37) (0.37) (0.27) (0.27) (0.19) (0.47) (0.40) (0.37) (0.32) (0.34) (0.22)

Medium VAR

10 1.81 1.64 1.69 1.53 1.56 1.40 2.45 2.12 2.31 2.01 2.24 1.85

(0.40) (0.21) (0.31) (0.12) (0.23) (0.07) (0.46) (0.32) (0.37) (0.24) (0.31) (0.14)

20 1.95 1.81 1.85 1.70 1.74 1.56 2.60 2.26 2.50 2.15 2.43 2.01

(0.50) (0.32) (0.42) (0.25) (0.35) (0.17) (0.57) (0.42) (0.51) (0.33) (0.40) (0.29)

30 2.10 1.94 1.98 1.84 1.87 1.74 2.74 2.46 2.62 2.31 2.52 2.20

(0.64) (0.43) (0.52) (0.38) (0.45) (0.27) (0.69) (0.54) (0.60) (0.46) (0.56) (0.39)

Large VAR

10 2.70 2.47 2.55 2.34 2.46 2.22 3.66 3.18 3.50 3.04 3.38 2.92

(0.58) (0.30) (0.50) (0.23) (0.40) (0.16) (0.67) (0.45) (0.57) (0.35) (0.49) (0.28)

20 2.84 2.62 2.75 2.52 2.60 2.35 3.81 3.33 3.69 3.23 3.54 3.05

(0.70) (0.42) (0.60) (0.34) (0.54) (0.25) (0.78) (0.56) (0.70) (0.50) (0.61) (0.40)

30 3.03 2.78 2.90 2.65 2.71 2.49 3.96 3.49 3.89 3.32 3.78 3.25

(0.82) (0.54) (0.70) (0.44) (0.63) (0.35) (0.88) (0.69) (0.84) (0.63) (0.76) (0.51)
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Table 2:

Relative error in VAR (d = 1,2) with Σε =Toeplitz (ρ = 0.80) where % denotes percentage of non-zero entries 

in Φ0.

Lag d = 1 Lag d = 2

n1 n2 n3 n1 n2 n3

% LS PM LS PM LS PM LS PM LS PM LS PM

Small VAR

10 1.03 0.95 0.95 0.82 0.82 0.64 1.45 1.24 1.31 1.08 1.19 0.98

(0.27) (0.18) (0.20) (0.09) (0.10) (0.05) (0.37) (0.27) (0.30) (0.19) (0.18) (0.09)

20 1.20 1.10 1.06 0.94 0.98 0.83 1.60 1.41 1.49 1.30 1.35 1.17

(0.40) (0.30) (0.29) (0.21) (0.25) (0.17) (0.48) (0.37) (0.40) (0.29) (0.31 (0.19)

30 1.36 1.27 1.22 1.11 1.12 0.99 1.76 1.61 1.66 1.45 1.50 1.26

(0.50) (0.41) (0.44) (0.32) (0.32) (0.25) (0.60) (0.51) (0.50) (0.40) (0.46) (0.30)

Medium VAR

10 2.02 1.87 1.94 1.72 1.75 1.61 2.80 2.46 2.70 2.35 2.53 2.21

(0.52) (0.34) (0.41) (0.27) (0.37) (0.16) (0.69) (0.50) (0.62) (0.43) (0.54) (0.33)

20 2.20 2.01 2.10 1.87 1.92 1.80 2.95 2.62 2.86 2.52 2.74 2.34

(0.63) (0.45) (0.55) (0.38) (0.45) (0.33) (0.81) (0.62) (0.71) (0.52) (0.65) (0.42)

30 2.36 2.20 2.19 2.06 2.06 1.91 3.12 2.78 2.99 2.67 2.91 2.50

(0.73) (0.56) (0.67) (0.48) (0.56) (0.41) (0.94) (0.72) (0.83) (0.67) (0.77) (0.57)

Large VAR

10 3.03 2.80 2.88 2.63 2.83 2.55 4.19 3.67 4.09 3.55 3.93 3.44

(0.75) (0.49) (0.67) (0.41) (0.60) (0.33) (1.03) (0.73) (0.97) (0.62) (0.87) (0.58)

20 3.17 2.94 3.07 2.79 2.89 2.69 4.34 3.85 4.25 3.70 4.11 3.594

(0.86) (0.60) (0.79) (0.51) (0.69) (0.45) (1.14) (0.84) (1.06) (0.76) (1.00) (0.66)

30 3.33 3.10 3.27 3.00 3.08 2.80 4.53 4.00 4.37 3.89 4.26 3.70

(0.98) (0.73) (0.90) (0.63) (0.82) (0.56) (1.26) (0.95) (1.17) (0.87) (1.11) (0.79)
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Table 3:

Percentage of true positive non-zero entries recovered in Φ.

Lag d = 1 Lag d = 2

Σε= σ2Ip Σε= Toep Σε= σ2Ip Σε= Toep

% n1 n2 n3 n1 n2 n3 n1 n2 n3 n1 n2 n3

Small VAR

10 85.0 85.0 82.0 85.0 85.0 84.0 84.7 84.5 81.6 84.6 84.6 83.6

20 80.0 80.0 81.0 80.0 78.0 80.0 79.7 79.6 80.5 79.5 77.6 79.8

30 77.0 75.0 77.0 77.0 73.0 73.0 76.6 74.6 76.5 76.7 72.6 72.6

Medium VAR

10 89.3 90.0 89.3 89.3 89.8 88.3 88.8 89.5 89.0 88.9 89.4 87.9

20 85.3 85.5 85.5 85.3 84.5 85.0 84.9 85.3 85.3 84.8 84.1 84.8

30 81.0 80.8 81.3 81.0 79.8 78.8 80.8 80.5 81.0 80.6 79.3 78.3

Large VAR

10 92.0 92.1 92.2 92.0 92.1 91.8 91.8 91.6 91.8 91.7 91.7 91.4

20 88.1 88.1 88.1 88.1 87.9 87.9 87.7 87.8 87.7 87.7 87.5 87.5

30 83.1 83.3 83.4 83.1 82.8 82.9 82.7 82.8 82.9 82.7 82.4 82.6
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Table 4:

Relative error in VAR (d = 1,2) with Σε = σ2Ip, where % denotes percentage of non-zero entries in Φ0.

Wishart Group lasso Multivariate t

Lag d = 1 % n1 n2 n3 n1 n2 n3 n1 n2 n3

Small VAR

10 0.84 0.75 0.65 0.84 0.75 0.64 0.85 0.74 0.58

20 0.99 0.91 0.73 1.00 0.89 0.79 1.00 0.90 0.76

30 1.14 1.09 0.92 1.16 1.02 0.94 1.15 1.04 0.93

Medium VAR

10 1.63 1.53 1.42 1.62 1.54 1.43 1.63 1.53 1.39

20 1.78 1.71 1.53 1.76 1.69 1.56 1.79 1.66 1.55

30 1.93 1.83 1.70 1.95 1.86 1.72 1.95 1.82 1.69

Large VAR

10 2.39 2.26 2.16 2.41 2.31 2.22 2.42 2.34 2.22

20 2.59 2.42 2.31 2.58 2.47 2.39 2.59 2.46 2.32

30 2.77 2.61 2.52 2.70 2.60 2.53 2.74 2.63 2.54

Lag d = 2

Small VAR

10 0.88 0.74 0.60 0.87 0.80 0.71 0.89 0.78 0.63

20 1.05 0.91 0.83 1.04 0.94 0.85 1.08 0.94 0.86

30 1.25 1.13 0.97 1.23 1.10 0.99 1.27 1.13 1.03

Medium VAR

10 1.71 1.58 1.46 1.71 1.58 1.53 1.70 1.60 1.50

20 1.85 1.72 1.60 1.85 1.76 1.71 1.89 1.82 1.66

30 2.05 1.96 1.77 2.01 1.95 1.82 2.04 1.97 1.83

Large VAR

10 2.52 2.37 2.26 2.51 2.41 2.29 2.53 2.44 2.25

20 2.69 2.58 2.47 2.67 2.59 2.47 2.69 2.59 2.51

30 2.88 2.75 2.60 2.86 2.75 2.62 2.87 2.74 2.64
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Table 5:

Relative error in VAR (d = 1,2) with Σε = Toeplitz (ρ = 0.80), where % denotes percentage of non-zero entries 

in Φ0.

Wishart Group lasso Multivariate t

Lag d = 1 % n1 n2 n3 n1 n2 n3 n1 n2 n3

Small VAR

10 0.90 0.76 0.65 0.90 0.83 0.69 0.89 0.79 0.70

20 1.06 0.94 0.77 1.03 0.92 0.82 1.07 0.96 0.81

30 1.23 1.13 0.99 1.21 1.09 0.99 1.23 1.14 0.97

Medium VAR

10 1.75 1.61 1.50 1.73 1.63 1.53 1.74 1.61 1.56

20 1.92 1.80 1.67 1.92 1.78 1.73 1.91 1.79 1.72

30 2.08 1.98 1.82 2.02 1.98 1.88 2.07 1.94 1.84

Large VAR

10 2.58 2.49 2.33 2.60 2.50 2.38 2.60 2.49 2.33

20 2.76 2.65 2.51 2.75 2.65 2.54 2.77 2.62 2.57

30 2.93 2.81 2.71 2.90 2.81 2.74 2.93 2.82 2.74

Lag d = 2

Small VAR

10 1.16 1.02 0.96 1.15 1.06 0.98 1.18 1.06 0.89

20 1.31 1.24 1.12 1.31 1.22 1.11 1.34 1.24 1.10

30 1.49 1.41 1.23 1.49 1.41 1.27 1.49 1.40 1.26

Medium VAR

10 2.25 2.13 2.04 2.25 2.17 2.05 2.27 2.16 2.01

20 2.43 2.30 2.16 2.41 2.32 2.24 2.45 2.32 2.26

30 2.59 2.47 2.33 2.59 2.49 2.38 2.59 2.48 2.36

Large VAR

10 3.37 3.24 3.10 3.36 3.25 3.18 3.36 3.24 3.11

20 3.53 3.40 3.29 3.51 3.43 3.31 3.54 3.46 3.36

30 3.72 3.62 3.41 3.65 3.57 3.49 3.74 3.59 3.48
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Table 6:

Relative error

Estimator Σε = σ2Ιρ Σε = Toeplitz

LS 0.604 1.384

Non H 0.583 0.614

W 0.462 0.544

Mult. t 0.430 0.414

GL 0.321 0.362
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Table 7:

In-sample prediction error

SMALL (p = 4) MEDIUM (p = 20) LARGE (p = 134)

LS 0.847 0.863 0.673

Non-H 0.852 0.864 0.674

W 0.845 0.863 0.675

Mult. t 0.877 0.885 0.685

GL 0.847 0.873 0.674

J Am Stat Assoc. Author manuscript; available in PMC 2020 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ghosh et al. Page 32

Table 8:

Out of sample relative prediction error

Uniform prior Random Walk

SMALL MEDIUM LARGE SMALL MEDIUM LARGE

p = 4 p = 20 p = 134 p = 4 p = 20 p = 134

Non Hierarchical

h = 1 0.88 0.72 0.62 0.49 0.40 0.33

h = 6 0.90 0.78 0.62 0.43 0.42 0.37

h = 12 0.95 0.84 0.74 0.43 0.41 0.37

Wishart

h = 1 0.88 0.81 0.68 0.49 0.45 0.32

h = 6 0.86 0.86 0.68 0.42 0.40 0.36

h = 12 0.93 0.92 0.71 0.43 0.41 0.38

Group Lasso

h = 1 0.90 0.86 0.60 0.51 0.45 0.30

h = 6 0.88 0.88 0.63 0.46 0.42 0.34

h = 12 0.93 0.92 0.67 0.47 0.45 0.37

Mult. t

h = 1 0.91 0.89 0.71 0.50 0.46 0.31

h = 6 0.87 0.93 0.77 0.49 0.44 0.34

h = 12 0.92 0.94 0.81 0.45 0.41 0.38
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Table 9:

Out-of-sample relative prediction error for CPI, PAYEMS and Fed- Fund for the three VAR model 

specifications considered. The column LARGE BVAR corresponds to the entries of Table III in Bafibura et al. 

(2010) for a Bayesian VAR model with a normal-inverted Wishart prior distribution and d =13 lags, based on 

the same set of variables, but covering the period 1971–2003.)

SMALL MEDIUM LARGE LARGE BVAR

Uniform prior p = 4 p = 20 p = 134 p = 134

h = 1

CPI 1.05 0.91 0.44 -

PAYEMS 1.21 1.04 0.91 -

FFUND 0.78 0.75 0.68 -

h = 6

CPI 1.03 0.97 0.38 -

PAYEMS 1.08 1.06 0.48 -

FFUND 0.92 0.82 0.68 -

h = 12

CPI 0.98 0.96 0.42 -

PAYEMS 0.93 0.91 0.73 -

FFUND 0.92 0.88 0.72 -

Random Walk

h = 1

CPI 0.43 0.41 0.34 0.50

PAYEMS 0.45 0.43 0.39 0.46

FFUND 0.50 0.45 0.36 0.75

h = 6

CPI 0.38 0.34 0.28 0.40

PAYEMS 0.53 0.48 0.39 0.50

FFUND 0.41 0.37 0.36 1.29

h = 12

CPI 0.51 0.45 0.42 0.44

PAYEMS 0.51 0.88 0.73 0.78

FFUND 0.33 0.31 0.28 1.93
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