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Understanding the relationships between local environmental conditions and plant structure and function is critical for both
fundamental science and for improving the performance of crops in field settings. Wind-induced plant motion is important in
most agricultural systems, yet the complexity of the field environment means that it remained understudied. Despite the ready
availability of image sequences showing plant motion, the cultivation of crop plants in dense field stands makes it difficult to
detect features and characterize their general movement traits. Here, we present a robust method for characterizing motion in
field-grown wheat plants (Triticum aestivum) from time-ordered sequences of red, green, and blue images. A series of crops and
augmentations was applied to a dataset of 290 collected and annotated images of ear tips to increase variation and resolution
when training a convolutional neural network. This approach enables wheat ears to be detected in the field without the need for
camera calibration or a fixed imaging position. Videos of wheat plants moving in the wind were also collected and split into their
component frames. Ear tips were detected using the trained network, then tracked between frames using a probabilistic tracking
algorithm to approximate movement. These data can be used to characterize key movement traits, such as periodicity, and
obtain more detailed static plant properties to assess plant structure and function in the field. Automated data extraction may be
possible for informing lodging models, breeding programs, and linking movement properties to canopy light distributions and
dynamic light fluctuation.

Understanding the relationships between local en-
vironmental conditions and plant structure and func-
tion is critical for both fundamental science and for
improving the performance of crops in field settings.
Wind is a given aspect of most agricultural settings; yet
its effect on crop productivity has often been over-
looked. In particular, we have a poor understanding of
how movement influences yield or determines traits
such as photosynthesis (Caldwell, 1970; Burgess et al.,

2016, 2019; Kaiser et al., 2018). The effect of wind on
plant performance depends upon its speed, duration,
and structural features of the crop canopy. Wind can
affect crop development, disease, and insect inci-
dence; cause structural or mechanical damage; and
alter the light environment inside the canopy, thus
affecting photosynthesis (Caldwell, 1970; Roden and
Pearcy, 1993a, 1993b; Roden, 2003; Smith and Ennos,
2003; de Langre, 2008; Moser et al., 2009; Onoda
and Anten, 2011; Shaw, 2012; Burgess et al., 2016,
2019; Kaiser et al., 2018). Specifically, movement in
low wind speeds should have an impact on canopy
carbon gain by relieving photosynthetic limitations
through increased light penetration to lower canopy
layers (Burgess et al., 2016, 2019). However, as a
stochastic process, wind-induced canopy movement
is difficult to measure, particularly in dense crop
stands, and there is currently no method that permits
quantitative assessment.

Characterizing simple movement patterns could be
used as a means to link local conditions to the altered
light environment and photosynthetic performance.
Furthermore, the characteristics of movement can be
linked to the susceptibility of plants to withstand ad-
verse environmental conditions, or to lodge, resulting
in yield loss (Berry et al., 2003, 2007). The effect of
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movement on light dynamics and lodging susceptibil-
ity has been shown to be dependent on the frequency of
motion, which can be determined from videos (Doaré
et al., 2004; de Langre, 2008; Der Loughian et al., 2014;
Burgess et al., 2016). Image sequences showing plant
motion are readily available, and the ability to isolate
and detect plant features of interest, such as the leaves
and reproductive parts in cereal species, and to char-
acterize simple movement patterns via tracking will be
an essential step toward this goal. This linkage will
support assessment of crop performance and the iden-
tification of traits for crop improvement, which are
linked to mechanical canopy excitation. There are fur-
ther implications for field phenotyping and precision
agriculture, which must cope with moving plants,
when quantifying plant features such as leaves and
wheat ears (Cai et al., 2018).
Plant canopies are complex three-dimensional (3D)

‘scenes’ with movement involving many structures
and organs possessing different physical and dynamic
properties. Visual tracking, and specifically multiple
object tracking (MOT), can be applied to time-ordered
image sequences to count features and characterize
movement within field-grown crop plants. Given an
input video, objects, in this instance the plant features,
must be successfully detected, identities maintained
across multiple frames, and trajectories determined.
Previous applications of MOT include the movement
of people (i.e. pedestrians or sports players), vehicles,
animals, or cells (Betke et al., 2000; Spampinato et al.,
2008, 2012; Meijering et al., 2009; Pellegrini et al., 2009;
Yang et al., 2011; Lu et al., 2013). The success of MOT is
confounded by several key issues including (1) high
levels of occlusion, (2) the movement of objects in and
out of view leading to initialization and termination of
trajectories, (3) similarity in appearance of features, and
(4) interactions between objects. Image and video cap-
ture within the field setting can further complicate
tracking through the production of highly challenging
datasets. This is because of the inability to control illu-
mination, the dynamic and unpredictable nature of
wind, and the complexity of field-grown plants leading
to dense scenes. Moreover, plant features may differ in
appearance according to their developmental stage or the
camera position (i.e. depth or orientation). Alternatively,
distinct organs may look highly similar, making match-
ing across multiple frames particularly challenging.
In MOT, objects must first be detected in each frame

and then linked between frames to attain a trajectory.
The first step, detection, may be achieved through deep
learning, a broad category of machine learning. Ma-
chine learning techniques are expected to take a domi-
nant role in the future of high throughput plant
phenotyping and plant feature detection, with the
ability to yield automated, unbiased, and consistent
measurements over rapid timescales (Mohanty et al.,
2016; Pound et al., 2017; Ubbens and Stavness, 2017;
Kamilaris and Prenafeta-Boldú, 2018). Furthermore, the
application of deep learning for detection in MOT can
help improve tracking performance (Wang et al., 2015;

Lee et al., 2016; Yu et al., 2016). In particular, deep
convolutional neural networks (CNNs) offer the ability
to learn to classify images or perform object recognition
within scenes if provided with a carefully annotated
dataset (Krizhevsky et al., 2012). A CNN is a powerful
discriminative method that can take a series of anno-
tated images (a training dataset) and train a network to
identify features in images it has not previously seen
(test images). A well-trained CNN can obtain accura-
cies of 97% and above (Pound et al., 2017)—a rate
comparable with humans if not higher, and are con-
siderably faster, particularly for complicated images, or
so-called ‘dense scenes.’AlthoughmanyCNNs exist for
plant phenotyping, they often work on simple scenes,
for example, counting leaves in Arabidopsis (Arabi-
dopsis thaliana) rosettes (Aich and Stavness, 2018;
Dobrescu et al., 2018) or identifying root or shoot fea-
tures from isolated wheat plants (Pound et al., 2017). A
pipeline that aims to identify features from more com-
plex images, such as the detection of wheat ear tips
from images taken in the field, is much more difficult;
manually annotating these features is time consum-
ing, and the individual annotating the images requires
training or expert knowledge of the plants to annotate
the features consistently to avoid human error. More
powerful network architectures may also be needed.
The ability to detect, and so count, harvestable organs

from images could be used as a means to predict yields
from a given stand of crops. Methods for the counting
of ears within field-grown wheat (Triticum aestivum)
already exist such as segmentation from mobile laser
scanner data, or via image processing techniques

Figure 1. Overview of the pipeline from feature detection to multiple
object tracking.

Table 1. Results of the YOLO v3 network for ear tip detection
depending on whether images were cropped and presence of
augmentations

Full resolution images are 3456 3 2304 pixels, whereas cropped
images were either 576 3 576 or 684 3 684 pixels. A maximum of
three augmentations were applied to the image. mAP and loss are
measures of the accuracy of feature detection where the higher and the
lower the values, respectively, indicate a more accurately trained
network. Detection represents the amount of ear tips detected by the
network compared the amount that were manually annotated.

Cropping Augmentations mAP Loss Detection (%)

No No 0.0159 15.075 29.03
No Yes 0.0553 7.614 45.82
Yes No 0.57 3.735 84.16
Yes Yes 0.58 3.127 89.26
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(Cointault and Gouton, 2007; Velumani et al., 2017;
Fernandez-Gallego et al., 2018). However, natural con-
ditions such as wind produce significant challenges, for
example, the blurring of images or appearance that ears
merge because of image distortion. Moreover, errors in
counting from static images are common such as the
duplicate counting of wheat ears if image sets are over-
lapping, or the inability to count ears when they are oc-
cluded or distorted. The use of deep learning to detect
distorted ears, and multiple object tracking to maintain
ear identity across frames, is able to address these diffi-
culties. Ear counting also provides a real andwell-defined
task against which to assess motion analysis tools.

Here we propose the use of detection-based tracking
to characterize movement patterns of wheat ears in
field-grown plants. Detection will be performed using
a bounding box regression network applied to images
taken in thefield. Bounding box regressors are an end-to-
end deep learning model that predict both the identity
of objects in a scene, as well as the rectangular bounds of
these objects. Several notable works exist in this area, for
example, Faster-RCNN (Regional Convolutional Neu-
ral Network; Girshick, 2015); however, we utilized the
YOLO (You Only Look Once) v3 network (Redmon
and Farhadi, 2018) because of its reported accuracy

and applicability to the problem domain. Here, we use
high resolution images to train the network as they are
easier to manually annotate. Finally, an MOT algorithm
will be applied using characteristics of the detected
bounding boxes to reconstruct the trajectories of indi-
vidual ear tips in videos obtained in the field.

We use wheat ears as an easily identifiable complete
target plant feature that is highly responsive to wind in
terms of movement and provides a means to help de-
velopmore complex tracking procedures for leaves and
other canopy features. Furthermore, the natural fre-
quency and periodicity of ear tips are commonly used
to infer movement characteristics of crops (i.e. for the
assessment of lodging; Berry et al., 2003, 2007). The aim
is to create a broad feature detection method (i.e.
without the need for camera calibration or a fixed
imaging position or strategy) and combined tracking
algorithm to improve feature detection and enable the
determination of movement traits.

RESULTS

Analyzing the movement of crops within the field
setting requires accurate detection of key features and

Figure 2. Example detection (red boxes) of ear tips from field-grownwheat plants using the YOLO v3 network. A–C, Detection on
image segment of 576 3 576 pixels. The bounding box size and orientation is adjusted according to the size of the feature, and
total number of ear tips is given in the top right corner. Interesting examples include images inwhich the ears are bunched together
(A–D); semi-occluded ear tips (A); the correct annotation of bent ear tips (E); the omission of a long-awned phenotype (F); and the
correct detection of ear tips that are lined up in a row and thus overlapping (G) and (H).
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the tracking of these features between frames in a video.
An overview of the suggested pipeline for obtaining
movement patterns is given in Figure 1.

Accuracy of Feature Detection

To quantify the accuracy of feature detection, a
convolutional neural network was trained using test
images of native resolution, and of cropped resolu-
tion, with and without augmentations applied. Each

network was trained for 100 epochs. The results of
each trained network are given in Table 1, wheremean
Average Precision (mAP) is the measure of the accur-
acy of an object detector, where the higher the value
(, 1), the more likely the network will correctly perform
detection. Loss is calculated as the sum-squared error
between the predictions and the ground truth and is
composed of classification loss, the localization loss (er-
rors between the predicted boundary box and the ground
truth), and the confidence loss (the objectness of the box;
Redmon et al., 2015; Redmon and Farhadi, 2016, 2018),
where the lower the value, themore accurate the detector
is considered to be. Finally, detection, is calculated as the
percentage of detected plant features in comparison with
those which were annotated across all test images. The
cropped images achieved a higher accuracy both in terms
of mAP and loss. This is because of the size of features
when passed through the network and production of
white space in training sets of uneven resolution.
The efficacy of detection can be visualized in Fig-

ure 2 where ear tips have been detected in relatively
difficult scenes. This includes images in which the ears
are bunched together (Fig. 2, A–D); semi-occluded ear
tips (Fig. 2A); the correct annotation of bent ear tips
(Fig. 2E); the omission of a long-awned phenotype
(Fig. 2F); and the correct detection of ear tips that are
lined up in a row and thus overlapping (Fig. 2, G and
H). Furthermore, the bounding boxes are accurately
sized and orientated for each of the features present.
Low efficacy of deep learning is often related to the

size or quality of the available training data. Within this
work, the 290 native images (;30,000 cropped images)
represents a relatively small dataset. To overcome this,
on the fly augmentations were applied to the images
as they pass through the network to increase the range
and variation of training data (Fig. 3). Presence of
augmentations also improved the accuracy of feature
detection because of the increase in the variability of
the dataset. This is because alterations to the images
allow them to mimic moving plants (i.e. video frames),
through the reduction in resolution, quality, and the
representation of motion via blur.
Another measure of the accuracy of the trained net-

work is a comparison of the number of features counted
via the deep learning approach with those manually
counted by the annotators. This was performed on a
subset of images that were not used to train the network
(Detection; Table 1). Similarly to the mAP and loss
values discussed above, the use of cropping and ap-
plication of augmentations to the training data leads to
the highest detection relative to the manual approach.
In most cases the accuracy of deep learning can over-
come that of human, manually detecting, and counting
from an image. The training of CNNs requires high-
quality annotations from which to train the network.
Furthermore, the complex images, combined with
the relatively small dataset size, will have contributed
to the reduced detection reported here compared with
other plant feature detection networks (Pound et al.,
2017; Dobrescu et al., 2018).

Figure 3. Example augmentations applied to training images. As the
training images pass through the YOLO v3 network, augmentations are
randomly applied to increase the size and variation of the available
dataset. A random value is selected between a set range for each filter.
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Although the mAP and loss values for the network
trained on cropped images without augmentations are
very similar to those trained with augmentations, the
accuracy of detection in test images was lower (Fig. 4).
For example, the network incorrectly detected bent ear
tips as two separate detections (Fig. 4, A and B); failed
to detect ear tips that were overlapping (Fig. 4C);
and grouped closely located ear tips within a single
bounding box (Fig. 4D). Low mAP and loss values can
occur in instances where the network is overfitted, that
is, it fits the training data too well and is unable to
generalize the model to fit unknown, or unseen, data;
where the network is overtrained, that is, it has been
run for too long; or a combination of both. This issue
can be overcome by increasing the amount of variation
within the dataset, for example, by the addition of
further augmentations.

We further validated the training of the network by
detecting ear tips from images of wheat obtained from
publicly available web-based sources (Fig. 5; Table 2).
Images were selected that had a resolution between
12803 720 and 19203 1080 as these are common image

resolutions obtainable through most commercial cam-
eras. The images were selected based on the criterion
that theymust be in a natural environment, the features
of the plant must be clearly visible, and the number of
features must be countable so that we are able to eval-
uate the performance. Ear tips were accurately detected
for short-awned wheat lines (Fig. 5, top) including im-
ages of plants at a later stage of development and thus
of different color. The network was unable to detect
long-awned phenotypes or ear tips of different species
(Fig. 5, bottom). The same images were also passed
through the network trained on cropped images with-
out augmentations applied. Although the network was
able to detect most of the ear tips from these images, it
was not able to detect as many as the network trained
with augmentations applied, particularly for the ears
at a later stage of development. This is attributed to
the potential overfitting of the network, with detection
being restricted to images that are very similar to the
training set. Whereas the presence of augmentations
enables these different ear tips to be correctly detected,
even though they do not exist in the original, training,

Figure 4. Examples of incorrect detections (red
boxes) of ear tips from field-grown wheat plants
using the YOLO v3 network on cropped images
with no augmentations applied. For example, two
separate detections made for a bent ear tip (A) and
(B); failure to detect overlapping ear tips (C); and the
grouping of closely located ear tips within a single
bounding box (D).

Figure 5. Example detection (red boxes) of ear tips from from publicly available web-based sources of cereals using the YOLO v3
network. Top: detection of ear tips in short-awned wheat varieties. Bottom: ear tips are correctly not detected in images of
different cereal species (left) or long-awned wheat varieties (right). Images are open source (creative commons license) from
www.pexels.com.

32 Plant Physiol. Vol. 181, 2019

Gibbs et al.

http://www.pexels.com


dataset. This indicates the applicability of deep learning
techniques for application in phenotyping platforms
given sufficient training data.
Because of the higher detection accuracy, the re-

mainder of the article will focus on results obtained
using the network trained on cropped images with
augmentations applied.

Evaluation of Tracking

The output of the multiple object tracking algorithm
is a series of trajectories (given as sequences of coor-
dinates) for each of the identified features and a video
combining the original frames with mapped trajecto-
ries to visualize movement paths of the ears (Fig. 6;
Supplemental Movie S1). To determine the accuracy
of the tracking, a subset (;100) of randomly selected
frames were visually inspected to determine whether
the identification number of each feature was correctly
maintained. Videos were manually evaluated for ac-
curacy comparing the number of correctly tracked
features to those incorrectly tracked or unidentified.
The tracking algorithm correctly identified and main-
tained the identification of 88.61% of features; 0.83%
were incorrectly identified, 4.44% were occluded, and
6.11% were not detected by the CNN.
Here it is important to note that the accuracy of the

tracker is dependent upon the accuracy of detection
by the CNN. Therefore, increasing detection accuracy,
for example, by increasing the size and variation of
the dataset, would also increase the accuracy of the
tracker. Equally, a poor training dataset would reduce
the quality of tracking. To further test the accuracy of
the tracker, single ear tips that move in and out of view
can be assessed to see if identity is maintained. An ex-
ample can be seen in Figure 7, where a single ear tip
(ID:1) maintains identification over time, despite being
occluded by an overlapping leaf. This is important as
it provides a means to more accurately count features
from videos by preventing duplicate counts of features
that move in and out of view.

Two-Dimensional Motion Determination: Calculation
of Periodicity

Characterization of movement can be achieved
through the analysis of periodicity of features. Key
biomechanical characteristics of plants include stem
strength, stiffness, and weight and together these de-
termine periodicity of movement. Hence tracking
methods can in principle be used to screen plants and
their component organs for new properties that relate
tomovement. Herewe demonstrate proof of concept by
tracking the motion of wheat ears. Within wheat, dif-
ferent ears will have different periodicity depending on
growth stage and structural characteristics of the plant,
which in turn can be related to functional properties of
the canopy structure such as the ability to intercept
radiation, or the susceptibility to lodge. The movement
path of each individual feature can be used as a means
to infer periodicity and can be presented as the distance
traveled in a given amount of time or, alternatively,
as the time taken for a feature to travel between two
extreme values (i.e. in this instance, from a leftmost
position to a rightmost position). An example of the
movement paths of five different ears over the same
time period (433 ms) is given in Figure 8. This indi-
cates wide variation in movement characteristics, de-
spite being obtained from the same wheat variety and
same growth stage.
Moreover, locally recorded wind speed values can be

directly linked to ear movement distances as shown
in Figure 9. This was performed in a controlled envi-
ronment using a hot bulb anenometer (Testo) to record
wind speed and a domestic fan as wind speed, and
direction was not available during the field trial. The
controlled environment consisted of multiple cameras
such that real world measurements can be obtained,
for example, millimeters, which is often difficult us-
ing a single camera as depth is unknown. The same
method described here for detecting and tracking was
used, using a dataset obtained within the glasshouse.
Because controlled environments contain less variation,
the network was able to obtain 100% of the ear tips in
the video despite the video being out of sample data.
This allows the correlation between wind speed and
actual distance traveled (Fig. 9), which would not be
possible without camera calibration.

DISCUSSION

Movement of plants has been well studied with re-
spect to traits such as lodging, which are associated with
high wind speeds. In these scenarios biomechanical
models exist to predict failure events. However, there is
little knowledge concerning the types ofmovement that
occur at lower wind speeds where in fact movement
may provide beneficial canopy properties including
better gas and light distribution (Burgess et al., 2016,
2019). Furthering this understanding is essential for
improvement of fundamental knowledge but also

Table 2. Results of the YOLO v3 network for ear tip detection on
images of wheat plants sourced from internet databases (Fig. 9)

Left, left middle, right middle, and right correspond to the position of
the image on the top row of Figure 9. The images from the bottom row
of Figure 9 are not included because no ears were found, which is the
expected result of the network as ears with awns are classified as in-
correct. The All images row includes all images that were used.
“Detected” refers to the number of found ears, whereas “undetected”
are the total number of ears missed. “Accuracy” is the percent of
detected ears.

Image Detected Undetected Actual Ears Accuracy (%)

Left 4 3 7 57
Left-middle 11 2 13 85
Right-middle 16 4 20 80
Right 8 2 10 80
All images 229 47 276 83
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application to crop improvement. However, the meth-
odology barely exists to (1) quantify movement, (2)
screen plants for contrasting movement types, and (3)
simulate accurate movement in mechanical models
from plant 3D reconstructions. Here we make a sub-
stantial step to address this and show a method for the
application of deep learning to identify and track plant
organs (wheat ears). Moreover, we show the potential
for quantification of movement types.

Deep learning offers unparalleled discriminative
performance in terms of locating features of interest from
images. Here, deep learning was applied to images of
field-grown wheat plants, where the characteristics of
each of the images (i.e. the camera angle, position, light-
ing, number, and location of features of interest in each
scene) were highly inconsistent. The ability to locate and
then track these features between frames provides the
first step in assessing real life patterns of movement in
the field environment. The success demonstrated here

reflects the success seen when applying deep learning
to related image analysis tasks such as the detection and
counting of other plant features from controlled growth
facilities or leaf segmentation (Romera-Paredes and
Torr, 2016; Pound et al., 2017)

The work presented here is not constrained by illu-
mination affects, provided a sufficient training dataset
is provided; this is further improved by the imple-
mentation of augmentations. The layout of the crop
field or the camera setup has little impact on the ability
to accurately detect features in scenes because of the
variation in data. Moreover, the images do not need to
be taken at specific angles or distances and can vary in
terms of complexity, that is, the density of the scene.
Finally, the number of tips in an image can be accu-
rately counted at a much higher speed in comparison
with counting by humans.

The application of a bounding box regressor and
multiple object tracking has several advantages over

Figure 6. Feature tracking of wheat ear tips in video frames (full video available in Supplemental Movie S1). A, Detection of ear
tips using the YOLOv3 network in the first video frame (t5 0). B, Trajectory of ear tips across all frames (t5 n) where darker shades
of the same color indicate the most recent position of an identified ear tip. C, Reduced section of image with detected ear tips in
the first video frame. D, Position of ear tips and trajectory after 8 frames (t 5 8). E, Trajectory of ear tips across all frames.
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previous methods. First, using characteristics of the
bounding box can offer more information than tracking
based on a single point. The detection of features via a
CNNmeans that feature size (i.e. bounding box area) is
likely to be highly similar in corresponding frames, or at
least within a given range, even if changes in feature
orientation and distance from the camera (i.e. move-
ment forward or backward) occurs. Furthermore, the
bounding box offers the ability to use further descrip-
tions of the feature such as histogram correlation, which
would not be possible if the feature boundary was not
known. Feature tracking can also be applied as a means
to improve the counting of features within complex
scenes. The ability to maintain identity of a given fea-
ture across multiple frames, even if it moves in and out
of view, prevents the duplicate counting of the same
feature. This is particularly relevant to counting wheat
ear tips within the field where wind-induced move-
ment is a regular occurrence.

Biological Context and Future Applications

The ability to link crop structure and function to the
local environmental conditions is the first step in opti-
mizing cropping systems and improving crop perfor-
mance. The presence of wind has numerous effects on
the biotic and abiotic environment (see Introduction);
thus analyzing simple movement patterns from videos
taken in the field will enable the assessment of crop
performance across a range of different environments.
This could be used as a means to match crop ideotypes
to local environmental conditions or study the effect of
altered or extreme weather events (in this case changes
in wind speed and duration) on crop performance.
An obvious and immediate example for the appli-

cation of these tracking-based methods for assessing
crop movement is the analysis of lodging susceptibility
in cereal crops. Lodging is dependent upon morpho-
logical traits as well as local environmental conditions.
One key determinant of lodging susceptibility is the
height at the center of gravity, and corresponding nat-
ural frequency of movement. This can be inferred from
trajectories of individual plant ears within videos, and
thus provide a screening method to inform lodging
models (Berry et al., 2003, 2007). The ability to track
movement automatically and quantify frequency would
enable the screening of plants in the field with no need to
resort tomanual time-consumingmethodologies such as
the manual measurements obtained for lodging analysis
(Berry et al., 2003, 2007). It is possible to envisage the
installation of field cameras that are able to track and
record movement of key plant features. We have used
ears, but leaves and stems may be possible using the
same approach.
Linking movement trajectories with local wind con-

ditions will enable key plant properties to be inferred.
Previous studies indicate that local movement depends
upon the combined influence of several structural traits
including plant height, stem and stem wall thickness,

Figure 7. Frames of a video indicating the occlusion of an ear tip behind a leaf and its reappearance, where the identification
number of each feature is given above. The tracking algorithm enables the identity of the ear tip to be maintained, despite its
disappearance and reappearance, based on properties of the bounding box. This can be used to improve counting accuracy by
preventing duplicate counts of features.

Figure 8. Example movement paths of five randomly selected wheat
ears during the same period of time, where each point on the path in-
dicates the position of the ear tip in a single frame, located by deep
learning. The amount of time taken for each feature to move from its
leftmost position to the rightmost position is given.
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material strength, and organ weight. The stem can be
viewed as a rod with the center of gravity part way
up (Doaré et al., 2004). The center of gravity will be
dependent upon the weight of the ear (including indi-
vidual kernels) and any attached leaves, and the dis-
tribution of weight about the stem. When the stem is
displaced, it will be subject to both gravity and stem
elasticity, which, in combination with wind speed and
direction, will determine the overall trajectory of the
stem and thus the ear tip. In general, the center of
gravity is positively correlated with plant height, which
in turn is negatively correlated with natural frequency
(Piñera-Chavez et al., 2016). Improved lodging resis-
tance has been achieved through the use of dwarfing
genes to reduce height, thus increasing the natural
frequency of movement. The characteristics required to
increase lodging resistance are a short stature (0.7 m),
large root spread, and a specific diameter/material
strength combination to provide sufficient strength

with the minimal investment of biomass so as not to
limit yield potential (Berry et al., 2007).

The addition of 3D movement capture combined
with camera calibration enables quantitative plant traits
to be obtained including organ dimensions, angles, and
physical displacement of visible plant material. This
will enable rapid screening assessment of biomechani-
cal traits within the field setting and could be used to
inform prebreeding trials to select the optimal combina-
tion of biomechanical traits across a range of varieties
without the need for cumbersomemanualmeasurements.

A second important example concerns the improve-
ment of canopy microclimate, which has been dis-
cussed at length in recent reviews, for example, Burgess
et al. (2019). Wind-induced movement is critical in
determining the dynamics of light reaching photosyn-
thetic organs (Roden and Pearcy, 1993a, 1993b; Roden,
2003; Burgess et al., 2016). The spatial arrangement
of plant material within the canopy leads to a complex

Figure 9. Movement paths of four ear tips with associated wind speed. The movement paths of four ear tips during one second of
wind-induced displacement were captured using a calibrated camera set up and deep learning approaches. Simultaneous wind
speedmeasurementswere calculated (middle) and linked tomovement at two selectedwind speeds: 0.3m/s (left) and 0.6m/s (right).

Figure 10. Example images used to train YOLO v3 to detect ear tips from field-grown wheat.
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pattern of light components (direct, diffused, and
scattered light of different wavelengths). Typically,
light levels become progressively lower further down
in the canopy; however, these periods of low light are
interspersed with periods of high light, called sun
flecks, the duration of which will depend upon both
solar angle and the displacement of the canopy brought
about by wind. Recently models have shown that plant
movement probably enhances canopy photosynthesis
by increasing the probability of photon penetration into
the canopy (Burgess et al., 2016). Moreover, the spatio-
temporal variation in light in a moving canopy, which
is likely to provide rapid switching between low and
high light, may be suited to maintaining high photo-
synthetic induction states, typically limited by factors

such as Rubisco activation state, stomatal conductance,
and photoprotection. It was pointed out that biome-
chanical properties of crop plants might be used to
generate an idealized phenotype that distributed light
more effectively, relieving photosynthetic limitations
(Burgess et al., 2019). However, any theorized optimal
property would need to be tested, and there would be a
strong need to develop models and screen germplasm
for the right properties.
Another application arises from organ identification

in a complex environment. The ability to count har-
vestable organs from images of crowded (and mov-
ing) scenes, in this case the number of ears of wheat,
could be used as a means to predict yields from a
given stand of crops. Although this is easily feasible
with use of the method demonstrated here, there are
several considerations that may limit the accuracy of
predictions. First, to allow predictions of yield based
on area, care must be taken to image a select and
consistent area of land every time. However, the use
of a fixed camera setup, for example, a fixed camera
stand that enables the same area to be captured in
every image, would get around this issue. Second, the
structure of the crop plants of interest may preclude
accurate predictions of yield. Occlusion caused by
overlapping leaves, or the placement of harvestable
organs lower down on the plant, and thus not visible
to the camera view, could limit accuracy. However,
given sufficiently large image datasets are available,
this error is likely to be consistent across a wide range
of different crop plants. Future work will involve the
estimation of crop yield using a combination of deep
learning and feature tracking and the improvement
of network accuracy by increases in the size of the
training dataset.
The substantial increase in throughput offered bydeep

learning approaches will be critical in underpinning and

Figure 11. Example annotation (red boxes) of wheat ears used for
network training. Ears were manually annotated using bounding boxes
from full resolution images (Fig. 1).

Figure 12. A simplified overview of the YOLO v3 network architecture used to detect ear tips from images of field-grown wheat
plants. The network is split into several layers. The size of the feature maps increases deeper in the network, and detection is
performed at three different points to improve classification accuracy.
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revolutionizing plant phenotyping methods. This ap-
proach can be applied not only to feature location and
counting tasks but also to the characterization of further
traits. It enables links to be made between growth,
development, and the local environmental conditions,
as demonstrated here with the analysis of movement
patterns. Deep learning can also be applied to other
data tasks, for example, identifying quantitative trait
loci for linked traits (Pound et al., 2017). However,
the benefits and high accuracy of deep learning
approaches can be achieved only given a sufficiently
large training dataset. The quality of the training data
(e.g. the range available data) and the process of
training the network (including the accuracy of their
annotation) are also likely to alter the final results.

In the case of feature detecting in the field setting, the
future predictive ability and success of deep learning
will revolve around increasing the range of avail-
able images and training datasets, including the crop
plants of interest, their developmental stage, and the
location/conditions of the field setting (e.g. to ach-
ieve a range of images with different lighting condi-
tions). Here, ; 300 images constitute a relatively
small dataset; yet detection is still possible on internet
obtained images of plants with a similar phenotype
(Fig. 9). For more specific phenotyping tasks, datasets

will be required that are tailored toward a specific
feature detection, for example, the length of awns
or the curvature of leaves. This will be aided by
the creation and use of databases for annotated im-
ages such as the Annotated Crop Image Database
(ACID, 2018). Increasing interest in deep learning
approaches to image analysis or other data pro-
cessing tasks is likely to lead to the creation of
online systems for processing data. This will negate
the need for a high-powered computer, which is a
current requirement for deep learning tasks, and
thus will make deep learning approaches more ac-
cessible, both in terms of cost and expertise, for a
wider range of users.

CONCLUSION

Here, a method for detection-based tracking was
presented to characterize movement patterns of
wheat ears via their accurate detection within movie
frames. This provides the first stage toward linking
plant growth and function to the local environmental
conditions will be critical in determining perfor-
mance of crop plants. Although training image sets
taken at different growth stages and under different
environmental conditions may be time-consuming,
there are clear data gains to be made by using deep
learning approaches to plant phenotyping in the field
setting. Any future increases in computing power
and databases will increase the predictive ability of
this approach further.

MATERIALS AND METHODS

Imaging and Annotation of the Training Dataset

The accuracy of deep learning is highly dependent on the accuracy of an-
notation of the training set, along with the quality and variation of images in-
cluded. For a network to be efficiently and effectively trained, the data must be
wholly and accurately annotated. Moreover, images captured from different
angles, duringdifferentweather conditions, or at different developmental stages
(i.e. capturing color change during senescence) can provide a more robust
network capable of detecting features under varying conditions. If insufficient
imagesareprovided, thenetworkwill fail to learnanaccuratemodelof the taskat
hand, resulting in poor performance on new images.

The acquisition of large annotated datasets may be facilitated by obtaining
freely available datasets released by other researchers and projects. However,
this has been uncommon in practice on plant phenotyping tasks because of their
specificity, and the lack of suitable datasets for field-based phenotyping. Al-
though tracking requires the plant features to be detected from video frames,
high resolution photographs constitute the training image set within this work.
This is because the individual frames of a standard video recording often suffer
significantly from motion blur, whereas higher resolution of photographs are
easier to manually annotate. Augmentations can then be applied to photo-
graphs to decrease their resolution and make them applicable to different de-
tection scenarios. An undistorted image can be distorted, although in most
instances it is not possible to reverse this process.

A key practical contribution of this work is a new dataset containing 290
images of wheat (Triticum aestivum) plants, variety Willow, with accurately
labeled ear tips. Images were taken from an ongoing field trial at the Uni-
versity of Nottingham farm (Sutton Bonington Campus; (52.834 N, 1.243
W) on a sandy loam soil type (Dunnington Heath Series) in July 2018. The
wheat was grown in plots of 6.00 3 1.65 m, with 0.13 m between rows and
at a seed rate of 300 seeds m22. The training images were taken postan-
thesis, equivalent to GS70 (Zadoks et al., 1974), and were captured using a

Figure 13. Example image cropping from native resolution (3456 3
2304 pixels) to network input (5763576 pixels). Test imagesweremadeby
cropping full images to either 576 3 576 or 684 3 684 pixels (Crop 1). If
images are randomly cropped to be uneven width:height (Crop 2; i.e. 1029
3 769), white space is inserted into the test image input (bottom right). For
this reason, uneven width:height crops are not used in this work.
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650D consumer grade 12MP camera, with a pixel resolution of 3456 3 2304
(Canon). The camera was held by hand, and care was taken to capture
images from varying positions and under different lighting conditions to
increase variability. These included top-down and side views of varying
distances. Example images are shown in Figure 10. The variation in light,
distance, and angle all add variety to the dataset.

Each of the images contains 10–100 ear tips that have been manually and
accurately annotated using bounding boxes by two experts at their native
resolution using the annotation software LabelImg (LabelImg, 2018). Care was
taken to consistently place the bounding box so that it covered the awns and top
one or two spikelets, depending on visibility, to ensure consistency across im-
ages and allow the center of the bounding box to represent the center part of the
ear tip. Figure 11 shows some examples of the annotated ear tips. Semi-
occluded tips were included given sufficient features for recognition (i.e. the
awns and part of a spikelet) were considered to be present.

Network Architecture and Training

A CNN framework typically consists of an input and an output, as well as
multiple hidden layers, comprising convolutional layers, pooling layers, and fully
connected layers. Convolution layers are used to extract useful features such as
edges, corners, and boundaries, which are output as several feature maps. The
numberof featuremaps increasesdeeper in thenetwork to improve theaccuracyof
classification. Pooling layers, or convolution layers with a stride greater than 1,
function inbetween the convolution layers todownsample the sizeof featuremaps
and thus improve overall efficiency of the network, whereas the fully connected
(neural network) layers perform classification of the images. CNNs have con-
sistently been shown to outperform traditional machine learning methods, for
example, in image classification (He et al., 2016) and instance detection and
segmentation (Girshick, 2015), and work directly on raw red, green, and blue
images without the need for any complex preprocessing.

The YOLO v3 network (Redmon and Farhadi, 2018) was trained using the
annotated dataset discussed in the previous section. An overview of the net-
work is given in Figure 12. Tiling, the cropping of images, was used to prevent
the downsampling of whole images, ensuring that small objects such as wheat
ears are sufficiently resolved. Each image was cropped into ; 80 images of
576 3 576 and 684 3 684 pixels (hereby known as training set), before training

(Fig. 13; crop 1) using a sliding window approach. Images are fed into the
network at 576 3 576 pixels (the network resolution), because of memory
limitations and as a compromise between computational efficiency and an
adequate receptive field (field of view). Typically, in object detection, the
cropping of images is not performed because of object size resulting in larger
bounding boxes, and instead full resolution images are resized to the network
resolution. However, within this case at full image resolution (34563 2304), the
ear tips and associated annotations are too small for accurate detection and
become pixelated when resized to the network resolution. For example, at na-
tive resolution, some annotated ear tips comprise a 30 3 30 pixel bounding
box, which when condensed into the network will become 5 3 5 pixels.
Moreover, the height andwidth of the image cropswere kept identical to ensure
that the aspect ratio matched that expected by the network architecture (Fig. 13;
crop 2).

The original dataset consists of 290 full resolution images and annotations,
indicating the bounding box of the ear tips, presented asXMLfiles. The image set
used for training consists of 29,993 cropped images generated from the full
resolution images, resulting in ; 211,000 annotated ear tips containing dupli-
cates (caused by tiling) in which the original number of ears was ; 40,000.
Within this network, duplicates do not pose issues because of the application of
augmentations (see below), which modifies each image so that the training set
no longer contains duplicates.

The YOLO v3 network is composed of 16 residual blocks, each of which
contain convolution layers, batch normalization, anactivation function—a leaky
rectified linear unit (ReLU)—plus optional skip layers (Fig. 12; Table 3). Con-
volutions apply a convolution, an image processing operation, to the input to
extract a specific type of image feature such as edges or corners. YOLO uses a
convolution of stride 1 or of 2 to downsample, as opposed to a pooling layer,
thus reducing dimensionality. Skip layers (skip connections) are used to pass
feature information to deeper layers by skipping layers in between, preventing
learning issues associated with vanishing gradients. Skip layers have been
shown to reduce training time and improve performance, by ensuring that
earlier layers of the network train more quickly. Batch normalization normalizes
the input, and an activation function defines the output given some input,
mapping the results of the input to a value between 0 and 1. Three YOLO layers
(fully connected detection layers) are present and two upsampling layers; this
enables detection of features of multiple sizes (Fig. 12). The YOLO v3 frame-
work has a total of 106 layers [see (Redmon and Farhadi, 2018) formore details].

Table 3. Structure of the YOLO v3 Network

Blank cells indicate no data.

Layer(s) Filter Kernel Stride

0–4 [32, 64, 32, 64, Skip] [3, 3, 1, 3] [1, 2, 1, 1]
5–8 [128, 64, 128, Skip] [3, 1, 3] [2, 1, 1]
9–11 [64, 128, Skip] [1, 3] [1, 1]
12–15 [256, 128, 256, Skip] [3, 1, 3] [2, 1, 1]
16–35 [128, 256, Skip] [1, 3] [1, 1]
36 Skip Layer
37–40 [512, 256, 512, Skip] [3, 1, 3] [2, 1, 1]
41–60 [256, 512, Skip, ..] [1, 3, ..] [1, 1, ..]
61 Skip Layer
62–65 [1024, 512, 1024, Skip] [3, 1, 3] [2, 1, 1]
66–74 [512, 1024, Skip, ..] [1, 3, ..] [1, 1, ..]
75–79 [512, 1024, 512, 1024, 512] [1, 3, 1, 3, 1] [1, 1, 1, 1, 1]
80–81 [1024, (3*(51nb_class))] [3, 1] [1, 1]
82–83 Detection Layer - 1
84 [256] [1] [1]
85 Upsampling Layer - 1
86 Concatenation
87–91 [256, 512, 256, 512, 256] [1, 3, 1, 3, 1] [1, 1, 1, 1, 1]
92–93 [512, (3*(51nb_class))] [3, 1] [1, 1]
94–95 Detection Layer - 2
96 [128] [1] [1]
97 Upsampling Layer - 2
98 Concatenation
99–105 [128, 256, 128, 256, 128, 256, 3*(51nb_class)] [1, 3, 1, 3, 1, 3, 1] [1, 1, 1, 1, 1, 1, 1]
106 Detection Layer - 3
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In total, the network contains 61,576,342 parameters constituting 61,523,734
trainable parameters and 52,608 nontrainable parameters.

At each epoch, the training set was passed through the network twice. Each
time, on the fly augmentations were applied randomly, whereby each image in
the training set had a 95% chance of being selected for augmentations. Here,
several commondata augmentationswere applied such as rotating and flipping
images.However, to furthermaximize the variabilitywhen training the network
further augmentations were included in the form of several image processing
techniques, a series of filters (i.e. gaussian blur, unsharpening, and auto-
contrast), color alterations (i.e. red, green, and blue channel reduction, swap
channels, sepia and sliding window convolutions), distortions (i.e. random
erase, pixelate, and salt and pepper), and alterations to lighting (i.e. saturation,
brightness, contrast, and sharpness). Examples of these augmentations are
shown in Figure 3. For each distortion a random value is selected between a set
minimum and maximum, for example, a random size and frequency for ran-
dom erase, thus further increasing variabilitywithin the dataset. Amaximumof
3 augmentations can be applied to a single image. The YOLO v3 network and
on the fly augmentation is available at Github (Gibbs, 2018).

The image dataset was split, where 80% of the images constitute the
training data, used to train the network, and the remaining 20% constitute
the validation and test images (50:50),which are used to test the accuracy of the
network. For training, a total of 100 epochs, with small batches of 4, because of
memory limitations, were performed. The network was trained for;3 d on a
personal computer with the following specification: Intel Core i7 6820HK,
32GB DDR4, 8GB GTX 1070. The resolution of the network was set to 576 3
576 pixels, unlike traditional object detection that may shrink images after x
amount of epochs. We maintain the size because of the size of the bounding
boxes and the fact that ears can significantly differ in appearance; thus a
dataset of varying sizes is already in use. A learning rate of 1e24 is used with
three warmup epochs, which allow the network time to get used to the data,
and the Adam optimizer (Kingma and Ba, 2015) ) is applied, which performs
gradient descent. The output and accuracy of the network is discussed further
in the next section.

Two-Dimensional Motion Determination: Tracking

An algorithm for detecting the motion of ear tips in a field environment is
proposed. Videos of wheat crops were obtained during the field imaging stage
and recordedusing theCanon 650Dat a pixel resolution of 19203 1088 andwith
a frame rate of 30 frames per second (FPS). Each video is split into its constituent
frames. As for the YOLO training dataset, frames were cropped to maintain
appropriate feature size. It is important to note that these frames act as test
images and have not been annotated for ear tips; thus they have not been used
to train the network. Individual frames from videos often consist of blurred
plant features and other distortions, making annotation unreliable.

For each frame f1; f2.; fN , where fi∈F, and F is a full set of frames from
some video, each set of features f 1i ; f

2
i ;.; f Ki is detected. For any given frame,

K is the total number of features detected by the CNN. Each feature f ji , cor-
responding to the jth feature in the ith frame, is referred to as a detected feature,
and is assigned an identification number, a bounding box, Bx, a position (the
centroid of the bounding box), px

!, a histogram representation, Hx, a label, lx,
and a size.

For each feature in the first frame where i50, a series of tracked features, Tj
0,

is initialized. For the remaining frames, i51.N, the probability that some
new feature, f ki , is the same feature as one that is already being tracked is
calculated, and the feature is assigned to the trajectory if the probability is
greater than some defined threshold, here set to 0:8. Across each frame feature
identification is maintained and tracked and is mapped into a series of
movements or trajectories as online tracking, where only information from
past frames up to the current frame is used (Luo et al., 2014). The identifi-
cation of each tracked feature is maintained and kept in memory for all
frames,N, such that if the feature moves out of view- (i.e. it becomes occluded
or it leaves the frame), the trajectory can be terminated and restarted once it is

back in view. The probability of f ki being the same feature as Tj
i2 1 is calculated

based on the following information:

Euclidean distance

Euclidean distance measures distance between centroids in corresponding
frames and is expected to be smaller for the same feature. Distances greater than
100 pixels apart in corresponding frames are automatically omitted from

analysis to reduce computing time. Distance has aweight of 0.3 and is calculated
according to Equation 1:

distance
�
p1
! ; p2

!�
5 |ðp2 2 p1Þ|2 ð1Þ

where px is a two-dimensional position vector.

Histogram correlation

Histogram correlation is used to compare two histograms. Histograms are
commonly used to represent color appearance. A feature is more likely to have
the same histogram in corresponding frames than any other feature. In this
instance the histogram has 32 bins, which was found to produce more accurate
probabilities than higher or lower values. Histogram correlation has a weight of
0.2 and is calculated according to Equation 2:

histogramðH1 ; H2Þ5 ∑IðH1ðIÞ2 H1ÞðH2ðIÞ2H2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑IðH1ðIÞ2H1Þ2∑IðH2ðIÞ2H2Þ2

q ð2aÞ

where Hx is the histogram of x and N is the number of bins and where

Hk5
1
N
∑jHk ð2bÞ

Bounding box area

Because the trained network is used for feature detection, each feature is
expected to be consistently labeled with a high degree of accuracy, that is, the
bounding box of some feature is more likely to be of similar size in adjacent
frames. However, this may not hold for instances where a feature becomes
occluded. Consequently, A has a weight of 0.1 and is calculated according to
Equation 3:

areaðB1 ; B2Þ5 MinðBx
1 : By

1 ; Bx
2 : By

2Þ
MaxðBx

1 : By
1 ; Bx

2 : By
2Þ

ð3Þ

where Bi is the bounding box of x.

Movement direction

The direction of movement of a feature, k, is likely to be consistent across
frames; however, stochastic changes in wind speed and direction, combined
with the anchoring of a plant structure to the ground, mean that the direction of
movement of the ear tip can change. The direction ofmovement for the previous
frames is stored and used as a basis. Direction has a weight of 0.1 and can be
calculated according to Equation 4:

direction
�
dx1
�!

; dx2
�!�

5 dx1
�!

: dx2
�! ð4aÞ

where

dx
!
5

p1
!

2 p2
!

|p1
!

2 p2
!
|

ð4bÞ

Label

Anobjectwillmaintain thesame identificationacross frames, that is, anear tip
cannot become a leaf tip. If only one feature is present (i.e. ear tips), probability5
1; if more than one feature is present the probability is either 0.5 or 1 depending
on whether the labels are equal. Label has a weighting of 0.3 and can be cal-
culated by Equation 5:

labelðl1; l2Þ5
�

0:5 if l15 l2
1 otherwise

ð5Þ

where lx is the feature label.
The probability, Pi, that fi1 1 is the same feature as TFl

i is then calculated
according to Equation 6:

P5½distance$a1 histogram$b1 area$g1direction$ d �$label ð6Þ

If the probability is lower than the threshold of 0.8, it is considered that the
detected feature is not assigned to an existing trajectory; a new identification is
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assigned to the feature and tracked from this point onward.Once all frames have
been processed, themean number of frames per tracked feature is determined. If
the tracked feature comprises fewer frames than themean, the tracked feature is
re-evaluated starting at t5N to merge trajectories. This is computed by com-
paring all identified features that are less than the mean probability to higher
probability features to determine whether they can be merged, that is, to see if
they are the same feature.

The output is a series of trajectories (given as sequences of coordinates) for
each of the identified features and a video combining the original frames with
mapped trajectories to visualize movement paths of the ears (Fig. 6;
Supplemental Movie S1).

SUPPLEMENTAL DATA

The following supplemental material is available:

Supplemental Movie S1. Feature tracking of wheat ear tips in a video.
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