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ABSTRACT: Resistance to small molecule drugs often emerges in cancer cells,
viruses, and bacteria as a result of the evolutionary pressure exerted by the therapy.
Protein mutations that directly impair drug binding are frequently involved in
resistance, and the ability to anticipate these mutations would be beneficial in drug
development and clinical practice. Here, we evaluate the ability of three distinct
computational methods to predict ligand binding affinity changes upon protein
mutation for the cancer target Abl kinase. These structure-based approaches rely on
first-principle statistical mechanics, mixed physics- and knowledge-based potentials,
and machine learning, and were able to estimate binding affinity changes and identify
resistant mutations with remarkable accuracy. We expect that these complementary
approaches will enable the routine prediction of resistance-causing mutations in a
variety of other target proteins.

■ INTRODUCTION

Drug resistance is one of the chief challenges to be overcome
in the development of robust anticancer and antimicrobial
therapies. While resistance can emerge via multiple mecha-
nisms, such as increased drug efflux or activation of alternative
signaling pathways, it is often caused by protein mutations
directly impacting drug binding.1,2 Anticipating these resist-
ance-causing mutations is of interest for personalized medicine,
as it would inform treatment decisions based on the patient’s
genotype3,4 and aid the development of combination therapies.
It would also benefit drug development by allowing the parallel
exploration of inhibitors with different resistance profiles.
While large-scale experimentation is feasible,5 it is neither
cheap nor convenient, and accurate computer predictions
mitigate the need for systematic experimentation.
Protein kinases are among the most exploited drug targets,

with 48 inhibitors approved to date in the United States.6 The
majority of these inhibitors target tyrosine kinases,6 which play
a critical role in the modulation of growth factor signaling.7,8

Hence, tyrosine kinase inhibitors (TKIs) are employed against
a number of malignancies, like chronic myelogenous leukemia
(CML) and nonsmall-cell lung cancer.7,8 In particular, TKIs
targeting the human kinase Abl are the first-line therapy for the
treatment of CML.9 However, susceptibility to resistance
requires continued development of new-generation inhibitors.8

For instance, in nonsmall-cell lung cancer, acquired resistance
inevitably occurs within 1−2 years of starting the therapy.10 In
CML, more than 25% of patients switch TKI due to
intolerance or resistance,11 the latter being most often caused
by mutations in Abl.8 Because kinases display a long tail of rare
and uncharacterized mutations,12 the sensitivity of many
clinically identified kinase mutants to TKI treatment is often

unknown. Thus, rapid and accurate computational approaches
could impact clinical decision-making by providing oncologists
with a first indication of whether the observed mutation is
likely to cause resistance to certain inhibitors.
Here, we show how both physics-based and data-driven

computational approaches can be used to accurately estimate
the change in affinity of TKIs for the human kinase Abl caused
by single-point mutations. To test the different methodologies,
we used a data set of 144 Abl:TKI affinity changes (ΔΔG)
across 8 TKIs caused by 31 Abl mutations (Figure 1), which
was compiled by Hauser et al.12 using publicly available cell
viability IC50 data. The computational approaches tested were
based on (i) molecular dynamics (MD) simulations13 with a
nonequilibrium free energy calculation protocol;14−16 (ii)
Rosetta, a modeling program that uses mixed physics- and
knowledge-based potentials;17,18 and (iii) machine learning
(ML).19 For completeness, we discuss our results also in light
of those obtained by Hauser et al.12 with the OPLS3 force
field20 and a MD-based approach similar to ours (Table 1).

■ RESULTS AND DISCUSSION
The performance of all calculations was assessed by the root-
mean-square error (RMSE) between calculated and exper-
imentally measured ΔΔG values, the Pearson correlation
coefficient (r), and the area under the precision recall curve
(AUPRC).21 The latter measures the ability to classify
mutations as resistant or susceptible. In particular, precision
measures which fraction of mutations classified as resistant are
actually resistant, whereas recall measures which fraction of
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resistant mutations are correctly classified as resistant.
Consistent with previous work,12 resistant mutations were
defined as those causing more than a 10-fold drop in affinity
(ΔΔGexp > 1.36 kcal/mol). On this data set, given the fraction
of resistant mutations (Figure 1c), a random classifier would
return an AUPRC of 0.13.
First, we estimated changes in TKI affinity with an approach

based on the first-principles of statistical mechanics. MD
simulations were used to sample the isothermal−isobaric
ensemble while a specific residue was “alchemically” mutated14

into another one. From the nonequilibrium work required to
transform the residue, it is possible to recover the equilibrium
free energy difference22,23 and, using a suitable thermodynamic
cycle (Figure S1), a rigorous estimate of ΔΔG. We tested
multiple force fields, and, on this data set, Amber force fields
performed better than Charmm (Figure S2, Table S1); halogen

bond modeling did not improve the Charmm results (Figure
S3). For simplicity, we discuss only the results obtained with
the best-performing Amber (A99)24−27 and Charmm
(C22)28−31 force fields (Table 1). The performance of A99
was comparable to that of OP3 (Figure 2),12 which was
obtained by Hauser et al.12 with the FEP+ program by
Schrödinger Inc. and the recently optimized proprietary
OPLS3 force field.20 C22 performed significantly worse than
A99 and OP3 in terms of correlation and classification ability.
Surprisingly, combining force fields in a consensus approach
(considering half of the simulations for each parent force field)
did not generally improve the results (Figure S4). It is
conceivable that, on this data set, the benefits of the additional
sampling obtained with one force field outweighs those
expected by combining multiple force fields.16 We also did
not observe a dependence of the accuracy of the calculation on

Figure 1. Data set of Abl kinase mutations and associated TKI affinity changes (ΔΔG) studied. (a) Structure of human Abl kinase (PDB-ID 1OPJ)
with imatinib (light orange) bound. Mutated wild-type residues are shown as violet sticks. (b) Name and chemical structure of the 8 TKIs studied.
(c) Distribution of the 144 experimental ΔΔG values. The line at ΔΔG = 1.36 kcal/mol separates mutations defined as resistant from susceptible.
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the net charge change of the system upon mutation (Figure
S5).
While our free energy protocol used a total of 216 ns of MD

per ΔΔG estimate,16 OP3 used 720 ns for charge-changing
mutations, and 360 ns for charge-conserving ones.12 We thus
also tested a more expensive protocol A( 99 ), which matched
exactly the simulation time invested by OP3. A99 improved
upon the uncertainty (Figure S6), but not upon the accuracy
(Figure 2), of the A99 estimates. Lower uncertainty is expected
when more calculation repeats are used as in this case. On the
other hand, accuracy is not necessarily proportional to the
length of the simulations, as longer simulations allow for better
sampling but also larger deviation from the experimentally
determined structure in a potentially artificial fashion. Overall,
this rigorous physics-based approach returned accurate ΔΔG
estimates (e.g., for A99, RMSE = 0.91 kcal/mol, r = 0.44, and
AUPRC = 0.56) and was able to discriminate between resistant
and susceptible mutants well. However, a strong dependence
of the results on the force field was observed. In addition,
compared to the approaches discussed later, the MD based
calculations required considerable computational resources
(∼2.5 days on 10 CPU cores and one GPU per ΔΔG
estimate).
As an approach that is neither rigorously physics-based nor

purely statistical, we tested a recently proposed Rosetta
protocol18 that was found to perform well also on protein−
ligand binding.16 This method samples multiple conformations
of wild-type and mutant proteins with a Monte Carlo
algorithm and estimates ΔΔG with the all-atom Rosetta
energy function,17 a mixed knowledge- and physics-based
potential, by averaging over the generated wild-type and
mutant ensembles. We found this approach (R15) to be highly
accurate on this data set (Figure 2)with low absolute errors
(RMSE = 0.72 kcal/mol), strong correlation (r = 0.67), and
good classification performance (AUPRC = 0.53)while
requiring only moderate computational resources (∼32 h on
a single CPU core per ΔΔG estimate). In addition to the
standard REF15 scoring function, we tested the βNOV16
function (R16), which returned slightly worse results than R15
for this system (Figure 2). As had been noticed before,16 here
too, complementing Rosetta with the MD results via simple
averaging generally resulted in enhanced performance (Figure

S7). For instance, combining A99 and R15, we obtained a
particularly strong consensus estimate (Figure S8) with RMSE
= 0.62 kcal/mol, r = 0.71, and AUPRC = 0.61. This can be
attributed to the complementary performance of the two
approaches: while the MD based calculations showed better
precision performance and a lower number of false positives,
Rosetta displayed better recall and a lower number of false
negatives (Table S2, Figure 2).
As a purely data-driven approach, we employed extremely

randomized regression trees,19 a ML technique that uses
ensembles of decision trees similarly to random forest. As input
features, we used terms derived from the crystallographic
protein−ligand structures (e.g., hydrogen bonds, nonpolar
contacts, residue-ligand distance), ligand and residue phys-
icochemical properties, and fast empirical scoring func-
tions.32−34 However, the way information from these sources
is transformed to produce a ΔΔG estimate does not rely on
any specific physical model. The technical details of the ML
model construction are provided in the SI Methods. An
advantage of this statistical approach is speed: once the
necessary input features have been computed, a ΔΔG estimate
can be obtained in seconds.
The ML model was trained and validated on a subset of the

Platinum database,35 and then tested on the TKI data set. The
training/validation set contained 484 point-mutations with
associated ΔΔG values across 84 proteins and 143 ligands. We
computed a total of 128 features, and then used a greedy
algorithm to select any number of features, up to 40, which
minimized the mean-squared error of 10-fold cross-validation.
The folds were built such that each of them would contain a
unique set of proteins not present in the other folds. This
procedure identified an optimal set of 29 features (Data S3).
After training, the model was tested on the TKI data set (ML1
in Figure 2). Given no tyrosine kinase was present in the
training set, we effectively assessed whether the model could
extrapolate to this protein target. ML1 performed well in terms
of RMSE (0.87 kcal/mol) but was not significantly better than
random in terms of correlation and classification ability (r =
0.12‑0.04

0.29 , AUPRC = 0.200.10
0.39), and was overall comparable to

the MD results obtained with the Charmm force fields (Figure
2, Table S1). These results are similar to those obtained with

Table 1. Summary of the Approaches Used, Their Performance, and Computational Costa

Approximate cost per ΔΔG estimate Performance

Abbreviation Method Force field or scoring function Hardware
Compute
hours

RMSE
(kcal/mol) Pearson AUPRC

OP3 Molecular
Dynamics

OPLS3b 1 GPUc 72g 1.070.89
1.25 0.490.19

0.69 0.560.32
0.76

C22 Molecular
Dynamics

Charmm22* and CGenFF v 3.0.1 10 CPUd cores and 1 GPUe 59 1.030.85
1.21 0.240.01

0.44 0.250.12
0.48

A99 Molecular
Dynamics

Amber99sb*-ILDN and GAFF v
2.1

10 CPUd cores and 1 GPUe 59 0.910.77
1.05 0.440.24

0.59 0.560.32
0.77

A99 Molecular
Dynamics

Amber99sb*-ILDN and GAFF v
2.1

10 CPUd cores and 1 GPUe 98g 0.910.74
1.09 0.420.20

0.59 0.510.27
0.75

R15 Rosetta REF15 1 CPUf core 32 0.720.60
0.83 0.670.45

0.81 0.530.29
0.74

R16 Rosetta βNOV16 1 CPUf core 32 0.830.70
0.96 0.590.35

0.74 0.390.18
0.60

ML1 Machine Learning n/a 1 CPUf core 0.02 0.870.68
1.06 0.12‑0.04

0.29 0.200.10
0.39

ML2 Machine Learning n/a 1 CPUf core 0.02 0.680.55
0.80 0.570.34

0.72 0.470.25
0.68

aFor the performance measures, the point estimates from the original samples and their 95% bootstrapped confidence intervals are shown (xlower
upper).

RMSE: root-mean-square error; AUPRC: area under the precision-recall curve. bData for the MD calculations with the OPLS3 force field refer to
and were taken from Hauser et al.12 cNvidia (Pascal architecture). dIntel Xeon E5-2630 v 4. eNvidia GeForce GTX 1080 Titan. fIntel Xeon
(Broadwell architecture). gTime for charge-conserving mutations. For charge-changing mutations the simulation time is double.
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Figure 2. Accuracy of the ΔΔG estimates. (a) Scatter plots of experimental versus calculated ΔΔG values. The identity is shown as a dashed gray
line. The four quadrants indicate the location of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) according
to the definition of resistant and susceptible mutations used (resistant if ΔΔGexp > 1.36 kcal/mol, susceptible otherwise)12 and an equivalent cutoff
(1.36 kcal/mol) for the calculated ΔΔG values. Each ΔΔG estimate is color-coded according to its absolute error with respect to the experimental
ΔΔG value; at 300 K, an error of 1.4 kcal/mol corresponds to a ∼10-fold error in Kd change, and an error of 2.8 kcal/mol to a ∼100-fold error in
Kd change. (b) Summary of the performance of the ΔΔG estimates across approaches in terms of RMSE, Pearson correlation, and AUPRC; point
estimates from the original samples and 95% bootstrapped confidence intervals are shown (SI Methods). Differences at three levels of significance
are reported using labels within the chart: e.g., a “C22**” label above the RMSE mark of OP3 indicates that the RMSE of OP3 is significantly lower
(i.e., better agreement with experiment) than that of C22 at α = 0.05.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.9b00590
ACS Cent. Sci. 2019, 5, 1468−1474

1471

http://dx.doi.org/10.1021/acscentsci.9b00590


another ML model36 based on Gaussian process regression
(Figure S9).
Given that ML is expected to perform best when trained on

the most relevant data,37 we asked whether the model
performance would improve when trained on tyrosine kinase
mutations only. In this case, we effectively assessed the
interpolative ability of the model, as it was trained and tested
on the TKI data set (ML2). To do this, we used 8-fold nested
cross-validation. At each iteration, the model selected a subset
of the 128 features via 7-fold cross validation with 7 inhibitors
and was then tested on the eighth. This was done 8 times to
obtain predictions for all TKIs and thus all entries in the data
set. ML2 accurately estimated ΔΔG values and could
discriminate well between resistant and susceptible mutations
(RMSE = 0.68 kcal/mol, r = 0.57, AUPRC = 0.47).
If the objective is only to identify resistant mutations38

rather than assessing their impact on ligand binding
quantitatively, then AUPRC is the most relevant performance
measure to examine. In this regard, MD based calculations
with the OPLS3 or Amber99 force fields (OP3, A99, A99 ),
and Rosetta with the REF15 scoring function (R15) provided
the best performance (Figure 3, Figure S10). Furthermore, in

this scenario, one is likely willing to accept a larger fraction of
false positives if this means recovering more resistant
mutations. Thus, a suitable consensus strategy is to select the
most positive ΔΔG estimate among those available to
maximize the recall (at the expense of precision) at a given
threshold (Figure S11). Using this approach with A99 and R15

returns an AUPRC of 0.62 and, at the conventional threshold
of ΔΔGcalc > 1.36 kcal/mol, a recall of 0.79 and a precision of
0.48 (Figure 3; Table S2). This means that about half of the
mutations classified as resistant are in fact resistant, and 79% of
the resistant mutations in the data set have been identified.
From the results presented, it emerges that the latest

computational approaches, from physics-based to data-driven
ones, are able to predict TKI affinity changes upon Abl
mutation and identify resistance-causing mutations. However,
the different methods have different strengths and weaknesses.
The MD-based calculations achieved a remarkable perform-
ance considering that force field parameters are based on
fundamental physical properties of organic molecules (e.g.,
quantum mechanical energies and electrostatic potentials,
liquid densities, and enthalpies of vaporization), rather than
binding affinities directly. This, together with the rigorous
statistical mechanical treatment, might lie at the basis of the
demonstrated generalizability16,39 of the approach across
protein−ligand systems. The downside is the comparably
higher computational cost required to obtain precise ΔΔG
estimates. On the other hand, ML predictions proved accurate
only when the binding affinities for Abl:TKI were used directly
for training. With this information, however, a ΔΔG estimate
could be generated in a matter of seconds to minutes on a
single CPU core, with most of the time spent collecting the
necessary structure-based features. Thus, the optimal approach
choice in a prospective scenario will depend on the amount of
prior information available for the system of interest, the
nature of the study (a large-scale scan versus an in-depth study
of a few mutations), as well as the computational resources at
hand. That being said, we found that Rosetta struck a good
balance between accuracy, generalizability, and computational
cost. Similar to MD, this approach considers an ensemble of
protein−ligand conformations,18 and its scoring function is
based on simple physical and structural properties of organic
molecules and biomolecules,17 so that it does not require
binding affinities to the system of interest for training. In
addition, approximations such as the use of implicit solvation
and a more limited conformational sampling result in a
moderate computational cost.

■ CONCLUSION
In summary, we have shown how fundamentally different
structure-based approaches are able to predict TKI resistance
to similar or better accuracy than reported thus far. Taking
advantage of multiple techniques in a consensus fashion
resulted in remarkable accuracy and tuning of the classification
performance. These results suggest that a diverse set of
computational approaches, each with its own strengths and
weaknesses, is now available for the reliable estimate of
resistance-causing protein mutations. It is our hope that the
availability of multiple complementary approaches will enable
the routine prediction of resistance-causing mutations across
many other protein targets.
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Figure 3. Precision recall curves for selected approaches. A99 and
R15 have been combined to give two consensus results: in
“avg(A99,R15)”, the results of A99 and R15 have been averaged; in
“max(A99,R15)”, for each mutation, the most positive ΔΔG estimate
among A99 and R15 was selected. The curve for a random estimator
is shown as a dashed black line (baseline with AUPRC of 0.13). The
precision and recall corresponding to the conventional threshold of
ΔΔGcalc > 1.36 kcal/mol is reported and marked by a circle on the
curves.
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