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Summary

Metagenomic sequencing is revolutionizing the detection and characterization of microbial 

species, and a wide variety of software tools are available to perform taxonomic classification of 

this data. The fast pace of development of these tools, alongside the complexity of metagenomic 

data, make it important that researchers are able to benchmark their performance. Here, we review 

current approaches for metagenomic analysis and evaluate the performance of 20 metagenomic 

classifiers using simulated and experimental datasets. We describe the key metrics used to assess 

performance, offer a framework for the comparison of additional classifiers, and discuss the future 

of metagenomic data analysis.

Identifying the microbial taxon or taxa present in complex biological and environmental 

samples is one of the oldest and most frequent challenges in microbiology, from determining 

the etiology of an infection from a patient’s blood sample to surveying the bacteria in an 

environmental soil sample (Jones et al., 2017; Pedersen et al., 2016; Somasekar et al., 2017; 

Zhang et al., 2016). Prior to the advent of genomic sequencing technologies, identifying taxa 

required time-consuming sequential testing of candidates (Pavia, 2011; Venkatesan et al., 

2013). The application of metagenomic sequencing is transforming microbiology by directly 

interrogating the community composition in an unbiased manner, enabling more rapid 
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species detection, the discovery of novel species and reducing reliance on culture-dependent 

approaches (Knights et al., 2011; Loman et al., 2013). The potential application of these 

technologies to improve diagnostics and in public health settings has also been widely 

recognized (Chiu and Miller, 2019; Miller et al., 2013), and there is extensive ongoing work 

to overcome the challenges associated with clinical use of these approaches (Blauwkamp et 

al., 2019; Miller et al., 2019).

As metagenomic sequencing produces genomic data from a set of species instead of a pure 

species isolate, one of the primary challenges in the field is the development of 

computational methods for identifying all of the species contained in these samples (Figure 

1). There are two primary drivers of this computational challenge. Firstly, the widespread 

use of high throughput sequencing technologies that generate millions of short sequences 

(generally 50 – 200nt), presents a computational challenge for classifying large numbers of 

reads in a reasonable time. BLAST (basic local alignment and search tool) is one of the most 

well-known and commonly used software programs for DNA search and alignment against a 

database of genomic sequences (Altschul et al., 1990). Although BLAST is one of the most 

sensitive metagenomics alignment methods, it is computationally intensive, making it 

infeasible to run on the millions of reads typically generated by metagenomic sequencing 

studies. Secondly, this challenge is compounded by the exponential growth in recent years in 

the number of sequenced microbial genomes, meaning that the number of comparisons that 

need to be performed for new sequencing reads is huge and ever-increasing.

Many software tools have recently been developed to taxonomically classify metagenomic 

data and estimate taxa abundance profiles. For accurate analysis and interpretation of this 

data it is important to understand both how these different tools, broadly referred to as 

classifiers, work and how to determine the best approach for a given sample type, microbial 

kingdom or application. This includes continually benchmarking the ensemble of tools for 

the best performance characteristics along multiple dimensions: classification accuracy, 

speed, and computational requirements. Several groups have previously benchmarked 

metagenomic tools (Lindgreen et al., 2016; Mavromatis et al., 2007; McIntyre et al., 2017; 

Meyer et al., 2019; Sczyrba et al., 2017), but the continual introduction of newer tools 

requires ongoing evaluation to compare them against established tools. Here we review the 

core principles of metagenomic sequence classification methods, describe how to evaluate 

classifier performance and use these approaches to benchmark 20 commonly used 

taxonomic classifiers. To account for database differences and updates between methods, we 

further compare the performance of these tools on a uniform database, which has not been 

considered in earlier studies. We also provide recommendations for their use and describe 

future directions for the expansion of this field.

Efficient classification of millions of reads

A large number of tools have recently been developed that are focused on classifying large 

amounts of sequencing reads to known taxa with increasing speed. These taxonomic 

classifiers require pre-computed databases of previously sequenced microbial genetic 

sequences against which sequencing data is matched.
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Within taxonomic classifiers a distinction can be made between taxonomic binning and 

taxonomic profiling. Binning approaches provide classification of individual sequence reads 

to reference taxa. Profilers report the relative abundances of taxa within a dataset but do not 

classify individual reads. However, in practice, these methods are often used interchangeably 

in analysing metagenomic sequencing data. Although not generated by default, a taxonomic 

profile can be calculated from binning approaches by summing up the individual read 

classifications. Taxonomic classifiers should not be confused with a distinct class of 

assembly-based tools for analysis of metagenomic sequencing data that cluster contigs de 
novo without the aid of any reference databases, an approach known as reference-free 

binning (Alneberg et al., 2014; Kang et al., 2015; Wu et al., 2016). These tools cannot 

taxonomically classify sequences and thus are not evaluated here, but have recently been 

benchmarked elsewhere (Sczyrba et al., 2017).

To generate assignments, classifiers utilize newer algorithmic approaches to ensure that 

classification speeds are fast enough for even large numbers of sequencing reads. To do so, 

most tools first seek to reduce the number of candidate hits for processing via approaches 

such as searching for stretches of perfect sequence matches with reference sequences (k-

mers, typically around 31 nucleotides in length) or via an FM-index (Ferragina and Manzini, 

2000). As a result, these methods are typically not as sensitive as BLAST, but are designed 

to be much faster. In addition, they frequently favor more memory usage to reduce CPU 

usage, and thus classification time. These tools can be divided into three groups: DNA to 

DNA classification (BLASTn-like), DNA to protein (BLASTx-like) classification, and 

marker-based classification.

DNA to DNA and DNA to protein tools classify sequencing reads by comparison to 

comprehensive genomic databases of DNA or protein sequences, respectively. DNA to 

protein tools are more computationally intensive than DNA to DNA tools because they need 

to analyze all six frames of potential DNA to amino acid translation, but they can be more 

sensitive to novel and highly variable sequences due to the lower mutation rates of amino 

acid compared to nucleotide sequences (Altschul et al., 1990). DNA to protein tools, 

however, target only the coding sequence of the genome, and therefore will not be able to 

classify non-coding sequencing reads as a result.

Marker-based methods typically include in their reference database only a subset of gene 

sequences instead of whole genomes, normally specific gene families that have good 

discriminatory power between species. The most widely used single marker gene for 

bacterial metagenomics is the highly conserved 16S rRNA sequence (Edgar, 2018; Yarza et 

al., 2014), though other markers are needed to identify viruses, fungi and other microbes that 

do not have the 16S marker gene. Some marker-based methods, such as MetaPhlAn2, 

address this limitation by indexing a number of different gene families in its database to 

identify taxa from other microbial kingdoms (Truong et al., 2015). The use of a subset of 

genes makes these methods quick, however, the marker sequences used can introduce a bias 

in the results if they are not evenly distributed among the microbial sequences of interest 

(D’Amore et al., 2016).
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Size and growth of reference databases

All metagenomics classifiers require a pre-computed database based on previously 

sequenced microbial genetic sequences, whose sheer size presents a considerable 

computational challenge. The most popular reference databases are RefSeq complete 

genomes for microbial species, as well as the BLAST nt and nr databases for high-quality 

nucleotide and protein sequences from all kingdoms of life with ~50 and ~200 million 

sequences respectively as of 2019. Other databases include SILVA for 16S rRNA (ribosomal 

RNA) with ~2 million sequences and Genbank for a larger quantity of genomes with lower 

quality control standards (Benson et al., 2005; Quast et al., 2013).

The universe of microbial sequences is very diverse and these resulting databases are fairly 

large, typically requiring 10–100s of gigabytes. This vast search space can also result in a 

significant number of false positive classifications because of the large number of possible 

taxa against which the sequences are matched. Additionally, the large universe of presently 

undiscovered microbial species can result in false negative classifications simply because the 

genetic sequences have never been categorized in a database before. Recent efforts to expand 

the number of known microbial genomes have highlighted the improvement in the 

proportion of reads classified compared to older databases (Forster et al., 2019), but must be 

balanced with the challenges of handling larger databases.

All classifier tools are distributed with pre-compiled reference databases, the composition of 

which can vary substantially between classifiers. This can act as a confounder in comparing 

the classification performance across methods. These databases may use entirely different 

sources for sequence data, or, even if they share a common source for sequences (e.g. 

RefSeq), continual updates and addition of new sequences will mean databases created at 

different times will have different content. Most tools also allow a user to build their own 

database based on a desired set of sequences. This is a computationally intensive process, 

especially for comprehensive databases, but affords the user greater control over the analysis 

— especially when investigating rare, recently discovered or highly diverse species. Given 

the complexity of both the test samples and reference databases in metagenomic 

classification, it is further important to perform comparisons using a uniform database to 

eliminate any confounding effects of differences in default database compositions.

Comparing classifier performance

The metrics selected to benchmark classifiers can greatly influence their relative rankings 

and performance and thus must be carefully selected to best reflect the way these tools are 

used in practice. The most important metrics for metagenomic classification are precision 

and recall. Precision is the proportion of true positive species identified in the sample 

divided by the number of total species identified by the method, while recall is defined as the 

proportion of true positive species divided by the number of distinct species actually in the 

sample. These measures, and derived metrics, are commonly used across benchmarking 

studies (McIntyre et al., 2017; Meyer et al., 2019; Sczyrba et al., 2017). The F1 score is the 

harmonic mean of recall and precision, weighting them equally in a single metric. However, 
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as end-users will often filter out taxa below a certain abundance threshold, using a single raw 

precision, recall, or F1 score does not provide a realistic estimate of classifier performance.

To better assess precision and recall scores across all abundance thresholds, it is preferable 

to use a precision-recall curve, where each point represents the precision and recall scores at 

a specific abundance threshold (Figure 2). By ranging the abundance threshold from 0–1.0, 

the area under this precision-recall curve (AUPR) outputs a single metric to aggregate 

precision and recall scores (Davis and Goadrich, 2006; Saito and Rehmsmeier, 2015). It 

should be noted that precision and recall focus only on the positive class of identified taxa. 

Performance metrics that require the calculation of false negatives, such as ROC curves, are 

less informative in this context because false negatives are poorly defined in real-world 

metagenomic samples. A potential drawback of AUPR is that it is biased towards low 

precision, high recall classifiers. Classifiers that don’t recall all of the ground truth taxa are 

penalized with zero AUPR from the highest achieved recall to 100% recall. For classifiers 

that do reach 100% recall, additional false positive taxa calls do not further penalize the 

AUPR score.

In addition to considering the number of correctly identified species, it is also important to 

evaluate how accurately the abundance of each species or genera in the resulting 

classification reflects the abundance of each species in the original biological sample 

(“ground truth”). This is especially critical for applications such as microbiome sequencing 

studies where changes in population composition can confer phenotypic effects (Morgan et 

al., 2012; Ross et al., 2013). Abundance can be considered either as the relative abundance 

of reads from each taxa (“raw”) or by inferring abundance of the number of individuals from 

each taxa by correcting read counts for genome size (“corrected”). Some programs 

incorporate a correction for genome length into abundance estimates, or this calculation can 

also be manually performed by reweighting the read counts after classification. Here we use 

raw abundance profiles unless correction is performed automatically by the software, as in 

the case of PathSeq and Bracken.

To evaluate the accuracy of abundance profiles we can calculate the pairwise distances 

between ground truth abundances and normalized abundance counts for each identified taxa 

at a given taxonomic level (e.g. species or genus). For this we calculate the L2 distance for a 

given dataset’s classified output as the straight-line distance between the observed and true 

abundance vectors (Figure 2). We can also use this measure to compare abundance profiles 

between classifiers by instead computing L2 distances between classified abundances for 

pairs of classifiers. Abundance profile distance is more sensitive to accurate quantification of 

the highly abundant taxa present in the sample (Aitchison, 1982; Quinn et al., 2018). High 

numbers of very low abundance false positives will not dramatically affect the measure as 

they comprise only a small portion of the total abundance. For this reason, using such a 

measure alongside AUPR, which is highly sensitive to classifiers’ performance in correctly 

identifying low-abundance taxa, allows for a comprehensive evaluation of classifier 

performance.

The L2 distance should be considered as a representation of the abundance profiles. Since 

metagenomic abundance profiles are proportional data and not absolute data, it is important 
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to remember that many common distance metrics (including L2 distance) are not true 

mathematical metrics in proportional space (Badri et al., 2018; Quinn et al., 2018). 

Generally in proportional data analysis, a common method is to normalize proportions by 

using the centered log-ratio transform to calculate distances. However, the output of these 

metagenomic classifiers include many low-abundance false positives leading to sparse zero 

counts for many taxa across the different reports. The log-transform of these zero counts is 

undefined unless arbitrary pseudocounts are added to each taxa, which can negatively bias 

accurate classifiers because false positive taxa will have added counts. Another commonly 

used metric to compare abundance profiles is the UniFrac distance, which considers both the 

abundance proportion of component taxa, as well as the evolutionary distance for incorrectly 

called taxa (Lozupone and Knight, 2005). However, using this metric is complicated by the 

difficulty in assessing evolutionary distance between microbial species’ whole genomes.

Metrics should also be tested across many datasets as classifiers may perform better or 

worse on certain species or sample types. Lastly, other features — such as classification 

speed, memory usage and output format — may also influence the choice of classifier and 

should also be considered in any thorough evaluation.

Evaluating the precision-recall of 20 classifiers

Here we benchmarked 20 metagenomic classifiers to compare performance in classification 

precision, recall, F1, speed, and other metrics using a uniform database to eliminate any 

confounding effects of differences in default databases. DNA to DNA classifiers evaluated 

here were Kraken (and its add-on for more accurate abundance quantification Bracken), 

Kraken2, KrakenUniq, k-SLAM, MegaBLAST, metaOthello, CLARK, CLARK-S, 
GOTTCHA, taxMaps, prophyle, PathSeq, Centrifuge, and Karp. DNA to Protein classifiers 

evaluated were DIAMOND, Kaiju, and MMseqs2. We also evaluate the marker-based 

methods MetaPhlAn2 and mOTUs2. A more detailed description of each classifier’s 

qualitative characteristics is provided in Table 1 and Supplementary Table 1. To evaluate 

classifier performance controlling for database differences, a uniform database was created 

when possible based on RefSeq complete microbial genomes (RefSeqCG) and benchmarked 

for each method alongside the default database. We considered the precision and recall 

across a range of abundance thresholds as well as overall abundance profiles as our primary 

benchmarking metrics.

To first evaluate the precision and recall of each method we ran all 20 classifiers using a set 

of 10 benchmarking datasets composed of computationally simulated reads from between 12 

and 525 bacterial species (see Supplemental Information) and generated a report of 

identified taxa and their corresponding abundance proportions within the sample. Each 

classifier was run using default parameters with the exception of adding mild filtering for 

MegaBLAST and Kraken (see Supplemental Information). Output reports were then 

reformatted to allow for comparison between classifiers at different taxonomic levels, and 

for each classifier report we calculated precision and recall (Figure S1), generated the 

precision-recall curve and computed the AUPR (Figure S2). Median AUPR was then 

calculated from the AUPR values of all datasets for a given classifier (as described in Figure 

2).
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Most methods performed well in terms of AUPR, with scores above 0.8 at the species level 

(Figure 3A) using their default databases. For most methods there is a gradual tradeoff 

between precision and recall as expected (Figure S2). Most of the performance falloff for 

AUPR came from a decline in precision at high recall. This is likely due to false positive 

taxa being classified at low abundance ahead of the lowest abundance true positive taxa. 

Genus-level performance tended to be slightly better than species-level classifications 

(Figure S3). In this study we do not consider classifications below species level. Sequence 

similarity between strains and other challenges mean it is generally preferred to use 

specialized approaches for accurate strain typing (Luo et al., 2015; Scholz et al., 2016; 

Truong et al., 2017).

Two samples had notably low AUPR scores across multiple classifiers when using default 

databases. The buccal (oral microbiome) simulated dataset was a consistent low-scoring 

outlier among the DNA classifiers. This dataset is relatively small and only contains 12 

different species, of which one species, Neisseria subflava, was a contig-quality assembly. 

This lower quality assembly is not included in most DNA databases but is in the nr database. 

The simulated ATCC Staggered dataset was a consistently poor performing sample for the 

protein-based classifiers because it contains taxa at very low abundances, making false 

positive classifications more likely especially when using the expansive nr database.

Database limitations negatively affect a few classifiers: MetaPhlAn2 and mOTUs2, with 

limited marker-based databases, naturally had lower performance. Centrifuge’s default 

database is significantly lossily compressed (throwing away database sequences to save 

space), which also results in poor recall. Karp’s recommended database of microbial rRNA 

sequences is too limited to perform well, and it would be unfair to draw further conclusions 

from its much smaller database. We additionally excluded GOTTCHA as it has known L2 

abundance estimation biases (McIntyre et al., 2017). Additional benchmarking results for 

GOTTCHA and Karp are available in Supplemental Figures S1–S6, but otherwise they were 

excluded from further analysis.

To evaluate the importance of the reference database in taxonomic classifications, we 

constructed databases for each method from a normalized set of microbial RefSeq complete 

genomes from the archaea, bacteria, and viral kingdoms. To create the corresponding 

protein-based databases, we used the protein sequences of these complete genomes. This 

custom standardized database is referred to as RefSeq CG. We did not include fungal, 

protozoan, or other eukaryotic microbial genomes in RefSeq CG as these domains have 

relatively few complete genomes. Not all methods supported custom database construction 

(Table 1) so those classifiers could not be assessed. Overall, classifiers’ AUPR scores on the 

RefSeq CG databases were slightly worse than on their own default databases (Figure 3B), 

with the difference being most pronounced for the protein-based methods. The protein 

coding subset of RefSeq CG is both smaller than the default nr protein databases, and 

smaller than theset of whole genomes indexed by DNA classifiers. For many of the DNA 

classifiers, the performance between classifiers was much more similar using the RefSeq CG 

database than with their own databases, indicating that these methods behave fairly similarly. 

Inherent database differences contributed more variation to the performance differences 
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between DNA classifiers. Centrifuge’s score improved because the Refseq CG database was 

not lossily compressed, in contrast to the default compressed database.

To more thoroughly test the impact of poorly characterized, divergent, and novel sequences 

on classification, we additionally evaluated performance on the Critical Assessment of 

Metagenome Interpretation (CAMI) datasets (Sczyrba et al., 2017) (see Supplemental 

Information). While these datasets are also simulated based on short DNA sequencing reads, 

they are comprised of dramatically different taxa profiles. For these datasets, only ~30–40% 

of reads are simulated from known taxa, whereas the rest of the reads are from novel taxa, 

plasmids or simulated evolved strains. The AUPR of the CAMI samples was very low at the 

species rank, while performance improved significantly at the genus classification rank 

(Figure S4). This is due to the small numbers of taxa for which there is a ground truth 

specified at the species rank, as well as the confounding effects of large quantities of 

sequences from unknown taxa, which is also confirmed by the low classified abundances 

(Figure S5). Performance was also broadly similar between classifiers of each class, and 

became even more similar when using the normalized RefSeq CG databases.

Comparing abundance profile distances for 20 classifiers

We next evaluated the accuracy of the estimated abundance profiles across classifiers 

compared to the ground truth. For those methods that did not directly output an abundance 

profile (Table 1), this was calculated as described in the Supplemental Information. We then 

calculated the L2 distance between classified and true abundances of all species (see Figure 

4), and considered the average L2 distance across all datasets for a classifier as 

representative of the accuracy of that classifier.

DNA based classifiers that used long k-mers (> 30 nt), such as Kraken and taxMaps, were 

among the best scoring methods with typical average L2 distances from the truth below 0.1 

(Figure 4A). The marker-based and, to a lesser extent, protein classifiers had higher L2 

distances, demonstrating that they performed less well (Figure 4A). Genus abundance 

distances were generally lower than species abundance distances (Figure S6). Additionally, 

using the standardized database of Refseq CG did not change abundance distances much 

compared to default databases (Figure 4B), with the notable exception of Centrifuge which 

again improved dramatically when used with a database that is not lossily compressed. 

Notably, Bracken - a post-processing step intended to improve abundance estimates by 

Kraken - does provide more accurate abundances at the species level (Figure 4A & Figure 

S6). This step is a simple and worthwhile addition to Kraken for better abundance estimates.

To assess the similarities of the classifiers between each other, we performed a hierarchical 

clustering using the median L2 distances calculated between pairs of classifiers across all 

datasets. The k-mer based methods cluster very closely together with MegaBLAST and 

prophyle falling slightly outside of the tight main cluster (Figure 4C). The protein classifiers 

cluster together although their profiles are quite different from each other. As expected, 

marker-based methods MetaPhlAn2 and mOTUs2 have abundances estimates that are very 

different to both DNA and protein classifiers. PathSeq is very divergent from other DNA 

methods. This may be because reads matching multiple taxa cannot be disambiguated and 
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thus may be counted multiple times. It also internally corrects the taxa abundance by 

genome lengths, whereas we evaluate based on raw read abundance.

The AUPR and abundance profile distances only consider the classified proportion of each 

sample. These metrics do not assess the proportion of reads left unclassified, or those 

classified to a very broad taxonomy node, such as “All Bacteria”, which are less informative 

in describing the sample composition. Classifiers vary greatly in the proportion of reads they 

classified at the species rank (Figure 5). Classified proportions further varied greatly 

between sample datasets with the same classifier. Protein classifiers had many more 

unclassified reads, as is expected, due to the databases only containing coding regions of the 

genome. It should be noted that Bracken, although measured as having the highest 

proportion of reads classified, does not actually classify the reads directly. Instead, it 

reassigns the unclassified proportion based on probabilistic estimates of the true abundance 

profile from the original classified Kraken report.

Determining the rate and source of false positive classifications

False positive classifications present a major challenge for the interpretation of metagenomic 

sequencing data, especially when considering human clinical samples (White et al., 2009). 

This can originate from several sources and could be influenced by experimental and 

analytical factors. At the classification stage, the absence of a species from the reference 

database can result in misclassification of reads from that species. The clearest example of 

this is host genomic content, especially as most default reference databases do not explicitly 

include the human genome. Using simulated genomic reads from the human hg38 reference 

genome we found that 1–5% of human reads were incorrectly classified for most DNA 

classifiers (Figure S7). Notably, classifiers that index the human genome in their default 

database, such as KrakenUniq and Centrifuge, had negligible rates of misclassification 

(Figure S7). The protein-based classifiers had higher misclassification rates, ranging from 5–

15% misclassified abundance, partially due to the larger number of sequences in the default 

nr databases. Including known or suspected host genomes in a reference database is thus a 

first important step to reducing false positive classifications.

To distinguish incorrect classifications from contamination introduced during sample 

processing and sequencing, classifier outputs from simulated data were compared against 

sequencing data from real in vitro samples. We prepared and sequenced genomic DNA and 

total RNA from the ATCC Even, a metagenome standard containing 20 bacterial species 

each at 5% abundance, and compared it to the simulated DNA from the same standard (see 

Supplemental Information). For the simulated DNA, after the 20 ground truth species were 

recalled, additional false-positive species started appearing below 0.5% abundance for a few 

methods, while most classifiers called false-positives below the 0.01 % abundance (Figure 6 

& Figure S8). The number of false positives ranged from tens (Bracken, MetaPhlAn2) to 

thousands (Centrifuge, CLARK, Kaiju, MMseqs2, PathSeq) of distinct species depending on 

the methods, although some methods levelled off at a certain abundance threshold, notably 

the marker-based methods, while others continued to call more and more false positives at 

lower abundances. These characteristics can be used to make an informed decision about the 

appropriate abundance level cut-off for post-filtering of classifications.
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The problem of low abundance false positives is not captured well by the AUPR and 

abundance distance metrics. The AUPR curve concludes after the lowest abundance true 

positive is found, so further false positives do not decrease the AUPR score, while the total 

abundance sum of these false positives is small and doesn’t have much impact on L2 

distance. Compared to the simulated DNA, the sequenced DNA exhibited a similar number 

and growth of false positives at lower abundances (Figure 6). This implies that false positive 

calls are mostly the result of computational false positives, instead of the sample degradation 

or contamination from working with wet-lab reagents and samples. In contrast, sequenced 

RNA tended to have faster false positive growth at higher abundances compared to the DNA 

datasets, making it more difficult to distinguish ground truth from incorrect species. This is 

probably due to the heavy bias of RNA content towards the highly conserved bacterial 

ribosomal RNA (rRNA) sequences, which by mass is typically much more abundant than 

mRNA in whole cells and are very similar between different bacterial species. However, the 

total number of false positives was typically lower than in DNA datasets, which is probably 

due to a shallower sequencing depth for the RNA samples making extremely low abundance 

species (~1 per million reads) stochastically disappear.

Abundance estimates were more inaccurate for the sequenced DNA and RNA datasets 

compared to simulated DNA (Figure 6 & S8). The microbiome standards initially contained 

an even 5% abundance for all 20 species, but the experimental protocols used to go from 

whole cell material to final sequencing reads likely biased the original abundances in a 

reproducible way. Steps such as PCR amplification tend to bias towards certain DNA library 

sequences, altering the original abundance compositions (Aird et al., 2011). Though the 

impact of PCR can be mitigated to some extent by removal of duplicate sequences this is not 

standard practice in most metagenomic classifiers. Additionally, a non-template control 

(NTC) was prepared and sequenced from ultrapure nucleic acid-free water. The NTC 

classifier reports also contained high numbers of false positives, unlike what would be 

expected for a completely clean sample containing no genetic material (Figure 6). It is 

important to note the NTC sample contained a significant amount of human DNA sequences 

that are likely the result of contamination (~70%), as measured by Kraken, but aside from 

human, most classifiers falsely classified less than 20% of the NTC abundance.

Compared to the simulated samples, the real life sequenced samples exhibited worse AUPR 

performance with a more significant decline for the total RNA samples (Figure S9). The 

protein and marker-based classifiers overall had more significant performance decreases 

compared to the DNA classifiers. Counterintuitively, the protein-based classifiers did 

markedly worse on the RNA samples. However, much of the RNA content from the total 

RNA is not mRNA coding for proteins but rather contains rRNA sequences which are not 

translated.

Another source of inaccuracy in most experimental protocols is PCR duplication, and 

removal of these duplicates is a challenge across classifiers. The NTC sample contained 

75% duplicate reads, as compared to 15% for RNA and 0.01% for DNA as measured by cd-
hit-dup. The high level of sequence duplication is expected for the NTC because it required 

a higher number of PCR amplification cycles to achieve the same DNA library 

concentrations as the real samples, however this is an issue for all amplified metagenomic 
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samples. Most metagenomic classifiers do not remove these PCR duplicates as part of their 

classification, but this is an important step to generate more accurate abundance profiles, 

especially in cases where many cycles of amplification were performed as part of sample 

preparation.

Computational Requirements

The computational resources and time required for running a metagenomic classifier are 

varied and can be very high (Figure 7A & B). Apart from the marker-based methods, all of 

the classifiers used a significant amount of memory, which ranged from tens to hundreds of 

gigabytes. The marker-based methods also had the fastest initial classification time, using 

just a few minutes per million reads (Figure 7A). Among DNA-to-DNA classifiers, the FM-

index and alignment methods typically used much less memory than those relying on large 

databases of long k-mers, however they had a higher runtime after database caching due to 

the pairwise alignments they perform. Interestingly, CLARK-S has a much higher runtime 

than CLARK even after database caching. without significantly improving accuracy. Among 

the DNA-to-protein classifiers, MMseqs2 required extremely high amounts of memory and 

computational time, while Kaiju was fairly quick due to the use of an FM-index. One reason 

for slow runtimes is that DNA-to-protein methods require querying six frame translations of 

the query DNA sequence, resulting in a significant increase in runtime compared to DNA 

methods, which becomes even more pronounced with increasing numbers of input 

sequences. These methods also typically use the more comprehensive BLAST nr database as 

their database, which includes proteins from non-microbial sources, whereas DNA-based 

classifiers tended to only incorporate microbial sequences.

A significant portion of the classification time may reflect the time required to load the 

reference database into memory. This is especially true of DIAMOND and MMseqs2, which 

do not index the database during creation but while the classification is actually performed, 

resulting in fast database creation but higher classification times. All other methods index 

the database during creation, which steeply increases the time required to create a database 

to several hours (Figure 7C) but reduces loading time each time a classification is 

performed.

Storage of the database in memory can reduce overall runtime when processing multiple 

samples. Some methods, such as Kraken and metaOthello, processed the second sample 

faster after loading the database into memory for the first sample (Figure 7A). Even though 

only CLARK(-S) explicitly supports batch-processing of multiple samples, consecutive 

back-to-back program executions mean that much of the database is still implicitly cached 

by the operating system and hasn’t been evicted from memory yet. However, not all methods 

improved during the second run, indicating that their databases were not cache friendly 

(Figure 7A). The disparity in runtime between a cached and uncached database can be up to 

100x, so careful use of caching and batch processing can result in major performance 

improvements.
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Discussion

Advancements in the field of metagenomic sequencing analysis have produced a suite of 

taxonomic classifiers that perform well across a range of datasets, meaning that other 

preferences or constraints should also guide method selection. The classifiers investigated 

here had similar performances, especially between classifiers of the same type, on the same 

dataset. Broadly, DNA classifiers provide better precision-recall and abundance estimates 

than protein-based classifiers when using a uniform database for these whole-genome 

datasets. This lower specificity of protein classifiers on the normalized RefSeq CG database 

can be largely attributed to the absence of non-coding sequence from their databases. 

Indeed, differences in default database compositions accounted for greater performance 

differences between classifiers than the methods themselves. This similarity in performance 

means that other factors such as the computational resources available, as well as the ease-

of-use and other particulars of each classifier should be considered when deciding on the 

most appropriate tool.

The computational resource requirements of some programs may be prohibitive for some 

applications, so using classifiers that require lower memory incurs a tradeoff between 

computational cost and accuracy. Among DNA classifiers, when a server with high amounts 

of memory (>100 Gb) is available, Kraken and its derivative tools Bracken/KrakenUniq/
Kraken2 provide good performance metrics, are very fast on large numbers of samples as 

long as the database loading time is amortized, and allow the creation and usage of custom 

databases. CLARK is a good alternative, however Kraken+Bracken tends to have slightly 

more accurate abundance profiles. If high amounts of memory are not available, 

MetaPhlAn2 is recommended for having very low computational requirements (<2Gb of 

memory), as well as fast classification speed but does not allow custom databases. If custom 

databases are desired, Centrifuge may be useful; it requires 10s of Gbs of memory and 

demonstrates good performance metrics, despite the shortcomings of the compressed default 

database. Among the protein-based classifiers, Kaiju is generally recommended for having 

much faster classification speed and lower memory requirements, compared to the other 

classifiers DIAMOND and MMseqs2, without compromising performance. All three of 

these methods allow custom databases.

Although most of the classifiers included in this study performed well across the benchmark 

datasets containing known taxa, there are several areas in which more development is 

needed to improve these tools. This includes both simple technical changes to existing 

methods as well as conceptual innovations in how these methods are used that could 

improve the quality of the results generated by these classifiers.

Classifiers perform very well when taxa in a sample are genetically distinct from each other 

and genetically similar to sequences in the reference database. Though not evaluated here, 

previous studies have shown that classification below the species level is challenging with 

current taxonomic classifiers (McIntyre et al., 2017; Sczyrba et al., 2017). The dramatically 

poorer performance of all classifiers on the CAMI datasets compared to the IMMSA 

datasets, further underlines the influence of evolutionary distance and poorly described taxa 

on classification performance. Relative classifier performance was largely consistent, 
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indicating that these problems are common across existing tools. Expanding reference 

databases can improve classification (Forster et al., 2019), however, for datasets as divergent 

or complex as CAMI, where only a small proportion of abundance is able to be classified at 

the species or genus level (Figure S6), the taxa present are likely not known or very different 

to taxa in the reference database. De novo assembly of metagenomes may be a more 

appropriate strategy for analysis of such highly complex and novel metagenomic samples. 

These tools have recently identified thousands of novel metagenome assembled genomes in 

the human microbiome (Almeida et al., 2019; Nayfach et al., 2019; Pasolli et al., 2019)

One of the biggest performance challenges for many classifiers is that they often report large 

numbers of low abundance false positives, lowering the precision of these estimates. Most 

practitioners filter these reports using a given abundance threshold. Integration of this within 

software packages would improve classifier precision and standardisation and simplify 

downstream analyses. Another possibility for improving performance would be performing 

per-read filtering based on alignment score or e-value. Some classifiers have options that 

allow for this, but do not have default recommendations for using them. These values would 

depend on classifier support and would vary between classifiers and even experimental 

designs, which could make them difficult to use. In addition, practices such as including the 

mammalian / host genomes and potential contaminants in reference databases can help 

reduce misclassification due to missing reference sequences. The human genome is included 

in the default databases of several classifiers (Centrifuge, DIAMOND, Kaiju, KrakenUniq, 
MegaBLAST, MMseqs2) and can be included in a custom-built database with software that 

permit this. When the host is known, pre-filtering of host-derived sequences can also be used 

(Blauwkamp et al., 2019; Miller et al., 2019).

More generally, making full use of information available about sequenced reads - including 

incorporating sequence quality scores and PCR duplicate removal - common practices in 

other areas of sequence analysis, could further improve classification. Apart from Karp, 

most metagenomic methods don’t consider sequencer quality scores for classification. Using 

quality scores in a probabilistic context would increase the computational cost of 

classification, but could be a fruitful avenue for future research. Similarly, most classifiers 

generate profiles simply based on proportions of classified reads. Of the methods evaluated 

here, only Bracken takes a probabilistic approach to generate the final abundance profiles. 

Another common issue in low-input metagenomic sequencing is high PCR duplication rates 

of sequencing reads resulting from high numbers of PCR cycles. This can distort abundance 

estimates since certain taxa become dominant via high duplicate numbers. Some effort has 

been made by methods like KrakenUniq to estimate the unique nucleotide content of each 

taxa, to better determine duplication level and recover true abundances.

In addition to PCR duplication, there are a number of other features of the experimental 

preparation of samples for metagenomic sequencing that can confound classification 

performance. Cross-talk between multiplexed samples on Illumina flow-cells (especially 

notable on more recent sequencers that use patterned flow cells) can generate biological 

false positives at low abundances (Sinha et al., 2017). Library molecules can bleed through 

multiple runs on the sample sequencers. Samples can also pick up biological contamination 

from microbial sequences in the laboratory environment or genetic material present in 
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extraction and library preparation reagents. These contaminants may confound 

benchmarking attempts using real sequenced datasets, however, this is part of a larger 

challenge of metagenomic classification that needs to be addressed. Specifically, while these 

are “true positives” from the perspective of the classifier as they were present in the final 

sequenced sample, they confound conclusions and inferences drawn from metagenomic 

classifiers. Clean laboratory practices as well as recent innovations to experimentally remove 

routine contaminants (Gu et al., 2016) or use artificial sequences to quantify contamination 

(Zinter et al., 2019) can reduce but are unlikely to be able to completely remove this 

problem.

The use of well-matched negative controls in any metagenomics study is essential to be able 

to identify and control for contamination. Though use of negative controls has recently 

improved in metagenomics studies, there is currently no accepted approach for correcting 

for contamination using these controls (Davis et al., 2018; McLaren et al., 2019). One 

interesting avenue for exploration is the use of negative control samples to create blacklists 

of known contaminants.

Thinking more broadly, one proposed strategy to address the individual shortcomings of 

different classifiers is to use an ensemble of classifiers, or a pipeline of different classifiers 

(McIntyre et al., 2017; Piro et al., 2017). For pipelines, typically a faster method is run first, 

while a slower but more sensitive method is run on the leftover unclassified or poorly 

classified reads (Bazinet et al., 2018; Jiang et al., 2017). This is sometimes performed in a 

more ad hoc fashion using protein classifiers as a second-pass analysis option for DNA 

classifiers because it offers higher sensitivity to mutations and more distantly related 

proteins, but trades lower specificity in response (Yang et al., 2014). The downside of 

ensemble classifiers is higher computational runtime and a more challenging interpretation 

of the results.

Runtime is a recurring challenge for many of these methods and though some methods use 

approaches that either reduce runtime or memory use, many classifiers have runtimes that 

are dictated by the disk speed of reading their databases into memory. After loading the 

database, classifying each incremental sample is extremely fast for methods such as Kraken 
and CLARK. Not all methods support classifying multiple samples in a single execution to 

explicitly take advantage of database caching, yet their database pages might by implicitly 

cached by the operating system for faster single-sample executions. Some methods such as 

DIAMOND and MMseqs2 perform large in-memory sorts that spill out temporary files on 

disk. These methods are faster with larger amounts of memory and fast temporary disks.

The rapid growth of reference databases will present a fundamental challenge to the field in 

coming years as this pace exceeds that of computer memories. This will likely create a 

number of secondary challenges that current software will need to adjust to. The growth of 

reference databases such as RefSeq can result in methods changing performance 

characteristics over time, as exemplified by the decrease in accuracy of k-mer based methods 

(Nasko et al., 2018). Many of these newly sequenced genomes are re-sequenced microbial 

strains that are very similar to existing species, resulting in oversampling of some genera and 

species groups. NCBI’s taxonomy database is frequently changing, with taxon nodes being 
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constantly renamed, deleted, merged into other nodes, promoted and/or demoted from 

taxonomic ranks. There are some ways that software programs can mitigate taxonomy 

changes, such as including the full versioned taxonomy database tree for hosted pre-built 

metagenomic databases. However, these changes do not address the underlying challenge 

presented by the size and growth of these databases. Managing this data explosion is likely 

to be one of the biggest challenges in metagenomic sequence classification in the coming 

years and will require more wide-reaching changes in our approach.

The field of metagenomics is approaching a critical milestone in its trajectory. Investment in 

recent years has led to the development of a range of programs with good overall 

performance, giving users a choice of ways to analyse their data in accordance with their 

particular question, computational environment, target taxa and other preferences. This is 

making the analysis of metagenomic sequencing more accessible than ever before. However, 

many taxonomic classifiers are still burdened by high numbers of false positive calls at low 

abundance that need to be addressed. Looking beyond this, bigger breakthroughs will be 

needed in many areas, including in controlling experimental sources of contamination and 

error, and in handling the exponential growth of reference databases, in order to create 

transformational changes in metagenomic classification towards microbial detection and 

characterization.
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Figure 1. 
Processing steps to go from a complex metagenomic sample to an abundance profile of 

sample content
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Figure 2. 
Metrics used for evaluating classifier performance. AUPR and L2 distance are two 

complementary metrics that provide insight into the accuracy of a classifiers precision/recall 

and abundance estimates, respectively. Considered together they provide a readily 

interpretable picture of classifier performance and can be used to compare between 

classifiers.
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Figure 3. 
Benchmark AUPR Scores. A. Area under precision-recall curve (AUPR) scores for each 

classifier at the species level (higher value is better). Each plot point represents the score for 

a (classifier, dataset combination). Classifiers are grouped and colored by their target class. 

B. AUPR for the uniform RefSeq CG database instead of default databases. Missing entries 

on the RefSeq CG plot are classifiers that cannot create custom databases. For additional 

information see Figures S1–S4.
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Figure 4. 
Benchmark L2 Distances A. Distance between the species abundance profile for each 

classifier compared to the true composition (lower value is better). Each plot point 

represents the L2 distance for a (classifier, dataset) combination. Classifiers are grouped and 

colored by their target class. B. Abundance distance using the uniform RefSeq CG database. 

Missing entries are those classifiers that cannot create custom databases C. Median pairwise 

L2 abundance norms between classifiers across simulated datasets, hierarchically clustered. 

Non-black cluster link colors are groups at a 0.09 similarity threshold. Colored boxes 

correspond to the method type: DNA, Protein, and Marker classifiers. The ‘k’ annotation 

indicates k-mer based methods. For additional information see Figure S6.
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Figure 5. 
Proportion of abundance classified at the Species rank A. Proportion of sample abundance 

classified at the species rank with default databases. B. Using uniform RefSeq CG databases. 

Only programs allowing custom databases are shown in panel B. For additional information 

see Figure S5.
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Figure 6. 
Number of species classified versus minimum abundance threshold detected in ATCC Even 

sample datasets. The truth abundance of 20 species at 0.05 abundance each is depicted as the 

black dotted line. For additional information see Figures S7–S9.
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Figure 7. 
Benchmark of computational resources A. Time required to process a sample containing 5.7 

million reads, versus a second run immediately after the first. This second run is faster for 

many classifiers because sample reads and database files are cached in memory. Bracken is 

not plotted as it requires negligible time/memory. B. The maximum memory utilized by each 

classifier during execution, the on-disk database size, and average number of cpus utilized 

out of 32 available. C. Time taken and memory used to create the RefSeq CG database using 

various methods. Classifiers are sorted by increasing time taken. MMseqs2 and DIAMOND 
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don’t index the genomes during database construction, but rather index on-the-fly during 

sample classification.

Ye et al. Page 27

Cell. Author manuscript; available in PMC 2020 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ye et al. Page 28

Table 1.

A list of benchmarked classifiers and their various characteristics. Custom databases refers to the ability for 

the end user to create a custom database. The time and memory requirements are for a 5.7 million read dataset 

with the database and input already cached in memory. Some methods (marked as “varies”) have the ability to 

flexibly decrease their memory usage (at the cost of massive increase in runtime).

Type Classifier
Custom 
Databases

Generates 
Abundance 
Profile Memory Required Time Required Reference

DNA

Bracken Yes Yes < 1 Gb < 1 min (Lu et al., 2017)

Centrifuge Yes Yes 20 Gb 7 min (Kim et al., 2016)

CLARK Yes Yes 80 Gb 2 min (Ounit et al., 2015)

CLARK-S Yes Yes 170 Gb 40 min (Ounit and Lonardi, 2016)

Kraken Yes Yes 190 Gb 1 min (Wood and Salzberg, 2014)

Kraken2 Yes Yes 36 Gb 1 min (Wood and Salzberg, 2014)

KrakenUniq Yes Yes 200 Gb 1 min (Breitwieser et al., 2018)

k-SLAM Yes Yes 130 Gb 2 hr (Ainsworth et al., 2017)

MegaBLAST Yes No 61 Gb 4 hr (Morgulis et al., 2008)

metaOthello No No 30 Gb 1 min (Liu et al., 2018)

PathSeq Yes* No 140 Gb 5 min (Walker et al., 2018)

prophyle Yes No 40 Gb 40 min (Břinda et al., 2017)

taxMaps Yes Yes 65 Gb 25 min (Corvelo et al., 2018)

Protein

DIAMOND Yes No 110 Gb (varies) 10 min (Buchfink et al., 2015)

Kaiju Yes Yes 25 Gb 1 min (Menzel et al., 2016)

MMseqs2 Yes No 85 Gb (varies) 9 hr (Steinegger and Söding, 2017)

Markers
MetaPhlAn2 No Yes 2 Gb 1 min (Truong et al., 2015)

mOTUs2 No Yes 2 Gb 1 min (Milanese et al., 2019)

*
The latest version of PathSeq now allows the user to create and specify a custom database but this option was not available when benchmarking 

studies were performed thus it was excluded from those analyses.
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