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Abstract

Despite substantial interest in the species diversity of the human microbiome and its role in 

disease, the scale of its genetic diversity, which is fundamental to deciphering human-microbe 

interactions, has not been quantified. Here, we conducted a cross-study meta-analysis of 

metagenomes from two human body niches, the mouth and gut, covering 3,655 samples from 13 

studies. We found staggering genetic heterogeneity in the dataset, identifying a total of 45,666,334 

non-redundant genes (23,961,508 oral, 22,254,436 gut) at the 95% identity level. 50% of all genes 

were “singletons”, or unique to a single metagenomic sample. Singletons were enriched for 

different functions (compared to non-singletons) and arose from sub-population specific microbial 

strains. Overall, these results provide potential bases for the unexplained heterogeneity observed in 
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microbiome-derived human phenotypes. Based on these data we built a resource, which can be 

accessed at https://microbial-genes.bio.

Graphical Abstract

eTOC blurb:

Tierney et al. present a meta-analysis of metagenomes covering 3,655 samples from two body 

sites. They identify 45,666,334 non-redundant genes in the human oral and gut microbiome, with 

half of every person’s microbial gene content being completely unique. These rare genes, denoted 

singletons, predominantly arise from extremely rare microbial strains.

Introduction

Recent studies have made great strides in deepening our understanding of the strain-level 

diversity within the human gut microbiome, with the identification of 150,000 and 92,143 

distinct microbial strains in two large meta-analyses since the beginning of 2019 alone 

(Almeida et al., 2019; Pasolli et al., 2019). Additionally, others have demonstrated the 

importance of minute gene-level variation across strains in human health and disease (Zeevi 

et al., 2019). However, the implications of these discoveries for the overall microbial gene 

content of the human microbiota remains unexplored. The field still does not have a grasp on 

the scope of the microbiome’s genetic content – in the gut and otherwise – a question crucial 

for understanding microbial function in the context of host disease (Sandoval-Motta et al., 

2017).

The total number of distinct genetic elements within all prokaryotes is currently unknown, 

and theoretical estimates start at one billion genes(Wolf et al., 2016); (Lapierre and 

Gogarten, 2009) and range to maxima defined by permutations of nucleotide arrangements 

or thermodynamic stability in the context of protein folding(Lapierre and Gogarten, 2009). 

Specifically, in the human microbiome, most metagenomic analyses and methods that 

consider genes focus on core gene families(Lloyd-Price et al. 2017; Truong et al. 2015), 

where a core gene is defined as being present once, not a paralog, and more similar to its 

orthologs than any other gene in any other species(Young et al. 2006; Tettelin et al. 2005). 

Others have addressed metagenomic gene content by producing “gene catalogs,” the set of 

all genes identified via assembly across a large number of samples. Within the human gut 

microbiome, up to 10 million non-redundant genes have been identified by major 

sequencing consortiums using de novo approaches(Dusko Ehrlich and The MetaHIT 

Consortium, 2011; Forster et al., 2016; Li et al., 2014; Nielsen et al., 2014; Qin et al., 2010). 
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These efforts have been almost exclusively associated with the gut microbiome, are 

relatively limited in terms of sample sizes, and do not focus on the overall rarity of genes 

across a population.

Moreover, there is a need to link our understanding of metagenomics back to that of 

traditional microbial genetics. Microbial genetic elements can be grouped into “pan-

genomes,” which describe the set of all genes found in all strains of a particular species 

(Tettelin et al., 2005). The size of a pan-genome is most influenced by its effective 

population size and ability to migrate to new niches (McInerney et al., 2017). However, 

other intermittently present genes contribute significantly to the size and function of the pan-

genome. In newly sequenced prokaryotic isolate genomes, up to a third of these genes have 

no detectable homologs in other species (Daubin and Ochman, 2004; Yin and Fischer, 

2006). These “ORFans” are distinct from all open reading frames (ORFs) in the genome and 

are hypothesized to be neutral to selection pressure (i.e. ORFans are replaced at the natural 

rate of DNA uptake, recombination and loss) (Wolf et al., 2016). With an increasing 

emphasis in the field on the importance of strain-level variation in the gut microbiome,(Zhao 

et al. 2019), there is a need to identify the contribution of ORFan-like genes to overall 

metagenome gene content. We hypothesized, especially given the recent discoveries of 

massive strain diversity in the gut, that these genes would increase variation in gene content 

of the human microbiome.

Here, we sought to build a multi-body site microbiome gene catalog as a publically available 

resource for the scientific community. We further aimed to use this catalog to identify, and 

taxonomically and functionally document, the metagenomic analogs of ORFan genes. Then, 

with ORFans in mind, we attempted to determine the scale of sequencing that would be 

required to sufficiently sample the total genomic content – the universe of genes – of each 

niche, therefore building a “complete” gene catalog of the human microbiome.

Results

A pan-microbiome genetic database

Like prior gene catalog analyses, we utilized a de novo approach (as, by design, reference-

based approaches only detect genes present in a reference database) to construct non-

redundant microbiome gene-catalogs from publicly available short read data. We aggregated 

2,183 samples from 6 gut microbiome studies. For the oral microbiome dataset, we retrieved 

1,473 oral microbiome metagenomic samples from 7 studies, a cohort ~2x larger than the 

largest consortium effort to study this niche (Lloyd-Price et al., 2017). For a table of 

definitions used in this paper, please see Table 1.

We performed a meta-analysis of this aggregated metagenomic data, de novo assembling 

each metagenome (Fig. 1A–D, Supp Table 1). This analysis uncovered a universe of 

prokaryotic genes massive in scale. Extending existing approaches,(Li et al. 2014; Nielsen et 

al. 2014; Qin et al. 2012) we initially defined a unique gene as being distinct from all other 

ORFs at the 95%-identity level. Overall, we predicted 157,241,550 ORFs from the 

assembled oral data, compared to 136,672,846 from the gut data. Clustering at the 95% 

identity threshold, the initial oral and gut catalogs contained 23,961,508 and 22,254,436 
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consensus genes, respectively. When these oral and gut catalogs were clustered together at 

95% identity, the resultant, non-redundant, catalog had 45,666,334 genes, as at this percent 

identity cutoff 549,610 ORFs overlapped (Fig 2A).

Using this final catalog, which is replete with functional and taxonomic annotations, we 

built a publicly available and searchable PostgresQL database with an associated front-end 

that contains summary data (i.e. gene counts per body site, average gene length, number of 

genes in each consensus gene cluster, etc.) as well as information on our pipelines (Fig 1E). 

Our database has 2,418 different gene EC Numbers(Bairoch, 2000), 222,308 unique gene 

annotations and 15,746 NCBI taxonomies annotated within it. We additionally report 

consensus gene sequences and the number of genes in each 95% identity cluster. Finally, we 

also have made available for download MetaPhlAn2(Truong et al. 2015) output for each 

sample and all of the gene catalogs generated in the latter sections of this study.

The oral and gut microbiomes contain vast and individual-specific genetic content

We explored the reasons behind the substantial size of these gene catalogs. We hypothesized 

this effect was driven by the metagenomic equivalent of ORFan genes. As such, we sought 

to determine the frequency of occurrence of each gene on a sample-by-sample basis. Some 

genes assembled in multiple metagenomic samples (non-singletons), while other genes were 

found in exactly one sequencing sample (singletons). The oral gene catalog contained 

11,891,670 (49.6%) singletons and 12,069,838 (50.4%) non-singletons, whereas the gut 

gene catalog contained 12,621,933 (56.7%) singletons and 9,632,503 (43.2%) non-

singletons (Fig 2B). On average, 2.9% of the genes in each sample were singletons (standard 

deviation ∓3.5%).

We carried out substantial analysis on synthetic and real data with different assemblers and 

parameters to determine if singleton genes were artifacts of our analytic pipeline or false 

positive/short/low coverage genes. We found that singletons had modest associations with 

false positive genes, low coverage genes/contigs, short genes/contigs, or particular 

assemblers/assembly parameters relative to non-singletons. (Supp Table 2, Figs 1–3). We 

additionally sought to determine whether prior gene catalog analyses contained singletons, 

and found that the Metahit Integrated Gene Catalog,(Li et al., 2014) contained is 46% 

singletons (out of a total of 9.9 million genes [Supp Fig 3F]). Second, we tested whether 

singleton identification could be explained by low depth of sequencing. If that were 

universally true, singletons could be present in many samples just below the threshold of 

detection by assembly. We were unable to identify a strong correlation (Spearman 

correlation: 0.22, p<.05) between total read count and singleton gene count within a sample 

(Supp Fig 3G–J), implying depth alone is not driving singleton presence. Finally, to confirm 

the parameters for our choice of assembler, MEGAHIT, was supported by the literature, we 

reviewed every study (N = 99, 67 of which we had access to and were not dissertations/

books) currently citing the MEGAHIT publication and determined similar projects used the 

same assembly settings (Supp Table 3).

We next relaxed the gene catalog clustering identity threshold to determine if ORFans/

singletons were artifacts of high percent identities (Fig 2C). To circumvent computational 

limitations of clustering in nucleic acid space, we first translated the nucleic acid catalog to 
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amino acids and lowered the clustering threshold from 100% amino acid identity to the limit 

of reasonable computational feasibility, 50% identity. While the catalog size shrank with the 

lower identity thresholds as expected, the fraction of singleton genes in the catalog remained 

approximately constant, particularly at lower percent identities, reflecting that the high 

proportion of singleton genes was not influenced by clustering thresholds. At 50% identity, 

the oral microbiome gene catalog contained 7,842,539 consensus genes, 3,255,115 (41.5%) 

of which were singletons (compared to 10,465,169 genes, 49.9% singletons, in the gut, Fig 

2D).

Notably, while the oral gene catalog was larger at 95% nucleotide identity and contained 

more singletons, it was smaller than the gut catalog (and contained fewer singletons) at 50% 

identity, implying overall lesser overall sequence variation at low percent identities in the 

former than the latter. For the remainder of this manuscript, singleton and non-singleton 

genes will refer to those generated at the 50% clustering level, unless otherwise specified.

We next sought to determine if subjects (human hosts) with similar reference-based species 

content, which we identified using MetaPhlAn2, also had similar genetic content. We found 

this not to be the case. Using Sorensen-Dice dissimilarity (where 0 is identical and 1 is most 

dissimilar), we found that the human microbiome exhibits more inter-individual similarity of 

overall species content (mean Sorensen-Dice oral=0.43, mean Sorensen-Dice gut=0.60, Fig 

2E) versus that of genes (mean Sorensen-Dice oral=0.85, mean Sorensen-Dice gut=0.95, 

Fig. 2F). Moreover, we found that most samples were equally dissimilar from each other, 

and the presence of singletons could not be explained by a few completely distinct samples 

in our dataset. Last, while genetic content varied between samples, singleton genes were 

evenly distributed throughout the sample population (Supp Fig 3G–H, Supp Table 1).

Singletons are functionally and taxonomically distinct from non-singletons

Further, we collapsed each gene annotated with EC numbers (Bairoch, 2000) from Prokka 

into Minpath (Ye and Doak, 2009) annotations. Overall, 12.8% of singletons in the mouth 

and 12.9% in the gut were functionally annotated by Prokka, compared to 36.7% of oral 

non-singletons and 34.6% of gut non-singletons (Fig 3A–B). While we were limited by 

relatively scant functional annotation information, we sought to test, using Sorensen-Dice 

dissimilarity, whether individual samples had, on average, the same pathways. We found this 

as well not to be the case (mean oral=0.43, mean gut=0.29, Supp Fig 4A).

We sought to taxonomically and functionally characterize the singletons that remained in the 

50% identity amino acid catalog. We compared the enrichment of functional annotations 

across singleton and non-singleton genes (Fig 1F–G, 4, Supp Table 4). We found non-

singletons and singletons to have little overlap in their functional diversity. In the top 50 

most enriched minpath classes for gut and oral non-singletons, 27 overlapped, whereas only 

9 of the top 50 oral and gut singleton enriched pathways did. Overall, non-singletons were 

enriched for primary metabolic processes, such as the Citric Acid Cycle and amino acid 

biosynthesis, whereas singletons were enriched for a wide range of diverse biosynthesis and 

degradation pathways.
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In addition to a subset of singletons arising from genes with divergence greater than 50% 

identity, we hypothesized that singletons may arise from (1) horizontal gene transfer (HGT) 

or (2) extremely rare microbial species/strains, or some combination of the two. To test these 

hypotheses, we mapped genes back to their original contigs and classified contigs that arose 

exclusively from non-singletons (73M) (ie, only containing non-singletons), exclusively 

from singletons (2.5M), and contigs arising from both (1M, Fig 1H). 78.7% of singletons 

and 90.1% of non-singletons could be taxonomically annotated using NCBI’s refseq 

database (Supp Fig 4B–C). We grouped contigs (Fig 1I) using these gene-level annotations 

and searched the resulting groups for evidence of horizontal gene transfer and taxonomic 

variation between singleton and non-singleton contigs (Fig. 1J–K).

To test hypothesis (1) and screen for potential HGT, we searched for contigs consisting of 

both non-singletons and singletons where the non-singletons were annotated as coming from 

one species/genus and singletons were annotated to a different taxa/genus. We found that 

HGT did not contribute substantially to singleton presence. The genes on the contigs that 

were a mixture of singletons and non-singletons tended to emerge from the same species or 

genus. Only 8,557 (0.8%) of all mixture contigs in the oral microbiome contained potential 

cross-genus HGT. In the gut, there were 33,224 of these cross-genus, mixture contigs, a total 

of 1.8%.

Singletons arise from rare, sub-population specific bacterial strains

In testing our second hypothesis (highly uncommon microbial strains as the source of 

singletons), we identified differences in the taxa from which singleton-contigs and non-

singleton-contigs originated. For each taxa, the singleton and non-singleton counts were in 

some cases modest, and we observed some rare taxa had more singleton than non-singleton 

contigs. The Pearson correlation between singleton-contig and non-singleton-contig counts 

for each taxa was 0.27 in the oral microbiome and 0.34 in the gut (Supp Table 5, Supp Fig. 

4D–L). We sought to identify if the bias towards particular taxonomies was being driven by 

singletons arising from shorter contigs or contigs with fewer ORF’s. We found this not to be 

the case (Supp Fig 5, Supp Table 6). In total, we found that contigs with greater than one 

gene mapped to 2,071 and 2,476 species-level taxonomic annotations in the oral and gut 

microbiomes, respectively. Of these, 1,155 (55%) species in the mouth and 1,648 (67%) in 

the gut had more singleton than non-singleton contigs. We refer to these contigs as arising 

from “rare strains,” and from their presence concluded that hypothesis (2) was more likely 

than (1).

Having found that singletons were enriched in different taxa than non-singletons, we sought 

to test if singleton-only contigs came from subpopulation-specific strains. The alternative 

would be that species that contained singleton contigs were evenly distributed across the 

population. To test this, we compared the number of samples in which singleton and non-

singleton contigs with given taxonomic annotations appeared. On average, in both the oral 

and gut microbiomes (Fig 5A), we found singletons-contig-derived taxonomic annotations 

in fewer samples (oral_mean=6.7, gut_mean=8.3, Wilcoxon test p<.05) than non-singletons 

(oral_mean=22.0, gut_mean=25.0, Wilcoxon test p<.05), demonstrating that singleton-

enriched taxa are uncommon with respect to the entire population. We further tested to see if 
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even when singleton and non-singleton contigs mapped to the same taxonomies, singleton-

rich strains still arose from specific individuals or subpopulations (Fig 5B). We found this to 

be the case; for example, 28 singleton and 42 non-singleton contigs map to Eubacterium 
rectale, however the singleton contigs come from 1 individual, whereas the non-singleton 

contigs are from 39 different individuals (Fig 5C).

Estimating the burden of sequencing the human microbiome

Given the size and heterogeneity of our gene catalog, we sought to identify the amount of 

sequencing that would be required to capture the entire “universe of genes” in the oral and 

gut microbiomes. We used 10 rarefaction methods to estimate the rate of accumulation of 

unique genes at the 50% identity level (Fig 6, Supp Fig 6). We found imprecise estimates of 

the total gene content of the human microbiome. We claim this catalog is sampling between 

8%-72% and 4%-50% of the total potential genetic richness of the gut and oral 

microbiomes, respectively. Assuming a constant rate of singleton accumulation with 

sampling, we estimate that to achieve a point where only 1% of genes per sample sequenced 

had not been seen before, we would need to sequence on the order of 5,698 samples in the 

oral microbiome and 23,530 samples in the gut. However, given the high variation 

associated with our extrapolations (which ranged from on the order of 40 million to 200 

million) in Supplemental Figure 17, we emphasize that these estimates could be off by up to 

an order of magnitude. Furthermore, they are dependent on parameters that are challenging 

to optimize, such as gene sequence percent identity threshold. Therefore, we can only 

conclude that gene variation within the human microbiome is vast and deeply uncertain in 

scope despite the relatively large sample sizes of our meta-analysis.

Discussion

We have built a large, microbiome-gene database that incorporates multiple human body 

sites clustered at a range of percent identities. We built this resource with a focus on the 

variation of genomic content across the human microbiome, identifying an order of 

magnitude more genes in both the oral and gut microbiomes than ever before. We also 

identified singletons, which we propose are the metagenomic equivalent of ORFan genes. 

On analysis of our catalog, we find that the genetic richness in the human microbiome has 

been underestimated and undersampled, though estimating the degree and uncertainty of 

undersampling was nontrivial, despite this large collection of data.

In line with other recently published work (Almeida et al., 2019; Pasolli et al., 2019), our 

results indicate substantial strain-level diversity. For context, consider the following: suppose 

the average prokaryote has 5,000 genes(Land et al. 2015) and that 90% of genetic content is 

shared between genomes of a single species(Zhu et al. 2015). To explain the size of the 95% 

identity oral gene catalog (24 million genes), each of the 2,000 species we identified would 

require on the order of 20 sub-species/strains. If we were to only consider the 788 species 

identified by reference-based methods, each species would require on the order of 50 strains. 

Finally, outside of only showing diversity in strains, we were additionally able to show that 

strains rich in singletons can act as microbial fingerprints, tending to be unique to sub-

populations within this dataset, and in some cases even individuals.
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Questions remain regarding best analytic practices for de novo metagenomic studies, and, in 

the future, meta-analyses of metagenomic studies. Reference-genome-based approaches are 

superior to gene catalog analyses in terms of computational feasibility and interpretability; 

however, given the lack of observed correlation between taxonomy and genetic content, 

databases derived from primarily cultured isolates may lack many functionally important 

genes. As such, the successful biological interpretation of metagenomic findings is 

contingent upon building resources and databases with microbial genetic diversity in mind, 

considering both ORFans and otherwise.

We found that singleton genes are enriched in functionality for a variety of unrelated 

metabolic functions compared to non-singletons, which were enriched in more conserved 

bacterial processes. However, functions encoded by singletons are not irrelevant. We 

identified a number of pathways (e.g., antibiotic resistance, cell wall biosynthesis), that may 

impact both the structure of the microbiome and host health. The limited overlap in top 

enriched singleton functions between the oral and gut, compared to non-singletons, implies 

that singletons encode more niche-specific functions than non-singletons. As such, given the 

functional variety encoded within singleton genes, we propose that singletons form an 

evolutionary organ within the microbiome, one that can be leveraged by microbes to adapt 

readily to environmental conditions. It is possible that, analogously to recent work done in 

the field of human genetics (Wainschtein et al., 2019), ORFan genes may explain a large 

portion of the currently unexplained variation in microbiome-associated human disease 

states.(Sandoval-Motta et al., 2017) Recent work has demonstrated that this may be the case. 

For example, sub-population specific and intransient strains are associated with human 

disease and colonization (Zeevi et al., 2019).

The definition of a singleton gene states that it was only observed in a single sample 

Therefore, a gene could feasibly still be present in other samples in such low abundance that 

it cannot be identified via assembly. While computing relative abundance is fraught with the 

challenge of spurious alignments, especially in the case of low abundance genes, it could 

partially address this issue and is a reasonable future direction for this work. However, given 

the low correlation identified between sample depth and singleton presence (Supp Fig 3), we 

posit that forces other than undersampling are, at least in part, driving singleton presence in 

our data.

Overall, we have built a resource intended for studying gene-level variation across multiple 

human body sites and samples. We also showed that the gene landscape of the human 

microbiome is immense and that its heterogeneity across people is staggering. Moreover, we 

have quantified the need to increase sequencing efforts to fully explore both the oral and gut 

niches, as well as other body sites. Our findings imply that an order of magnitude more 

sequencing data (than currently exists) is necessary to sufficiently sample (with only 1% of 

genes being novel per metagenome) human microbiome sequence diversity and function at 

even the 50% identity level. That being said, clearly this estimation is immensely 

challenging due to both the variation in available modeling methods as well as the difficulty 

of sequence-identity-based microbial gene definitions (i.e. 95% vs 50% would yield vastly 

different results). It is also worth noting that despite large samples sizes, our cohorts are 

geographically constrained, with most of our data coming from European and American 
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subjects. As such, future estimates human microbiome gene content will likely be further 

improved by capturing even greater geographic heterogeneity.

These results make a comprehensive genetic understanding of the human microbiome, or 

even a compilation of its non-redundant gene catalog, seem very challenging. However, with 

greater focus on de novo assembled genes, we can avoid oversimplified analytical 

approaches, such as those based exclusively on taxonomy. Additionally, using extrapolated 

data, we see a clear need to increase sample sizes in metagenomic studies to the orders of 

tens of thousands if we are to adequately sequence the “genome” of the human microbiome. 

Incorporation of these large-scale gene level analyses into currently existing technologies 

can add a genetic context to the meaning of microbial species, allowing for more meaningful 

studies rooted in microbial genetics. We hope the scientific community will be able to use 

the set of resources provided here to deepen the field’s understanding of the relationship 

between taxonomy and microbial genetic variation.

Star Methods

Contact for resource and reagent sharing

Further information and requests for resources, software, and data sharing should be directed 

to and will be fulfilled by the Lead Contact, Aleksandar Kostic 

(Aleksandar.Kostic@joslin.harvard.edu).

Method details

Overview of the approach—We aggregated 3,655 publically available oral and gut 

microbiome metagenomes used de novo assembly, Open-Reading-Frame (ORF) calling, and 

sequence-based clustering via CD-HIT(Li and Godzik, 2006) to identify a set of 45,666,334 

non-redundant genes within them. We found 23,961,508 and 22,254,436 non-redundant 

genes in the oral and gut cavities, respectively. To enable access to our data by the broader 

research community, we built a public-facing interface, queryable PostgresQL database, and 

data repository hosted on Figshare.

To validate our gene-calling pipeline, we performed extensive analysis on synthetic and real 

data. Synthetic read data were generated with Art(Huang et al, 2012) from complete oral 

microbe isolate genomes downloaded from the Human Oral Microbiome Database. We 

assembled our synthetic metagenomes with metaSPAdes(Forouzan et al., 2018) and 

MEGAHIT running a variety of settings.(Li et al., 2015) We called ORF’s and checked the 

false discovery rate of each assembler as well as the correlation with genes of different 

prevalence (i.e. incidence in multiple samples or just one) with coverage and length of 

genes/contigs.

We quantified the distribution of genes across samples within our dataset, undertaking an in-

depth analysis as to the number, frequency, taxonomic, and functional classifications of 

these genes. We quantified taxonomy by alignment to NCBI’s NR database with Diamond 

that had been indexed with NCBI’s taxon mapping files (available at ftp://

ftp.ncbi.nlm.nih.gov/pub/taxonomy/). Functional classifications were carried out as part of 

our ORF calling process, which leverages information from UniProt, Pfam, TIGRFAMs, and 
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NCBI’s RefSeq to classify genes ab initio. We were able to identify 2,418 discrete pathway 

ECiDs (out of 222,308 unique gene annotations) as well as confidently map to 15,746 

microbial NCBI ID’s. We have additionally made these results available as part of our 

resource, which can be searched by gene name, gene annotation, or taxonomy, if need be.

Further, we clustered our gene catalog at a variety of percent identities (down to 50% amino 

acid identity) to study the rate of clustering of different genes. We have made these available 

as downloadable links in our dataset as well.

We provide example scripts for each phase in our pipeline at https://github.com/kosticlab/

universe_of_genes_scripts.

Synthetic data benchmarking of gene catalog pipeline—An outline of our 

methodological pipeline can be viewed in Supplementary Figure 1.

We attempted to address if singletons are likely to be false positive genes. Due to the gene-

level focus in our data we do not analyze misassemblies, as contigs are an intermediate stage 

in our analysis. We felt it more prudent to search for predictors of success in our primary 

endpoints: genes. Our confidence in this analytic decision was further increased by our 

literature-review-based analysis yielding that MEGAHIT and metaSPAdes have been shown 

in other publications to yield equivalent numbers of misassemblies when compared head-to-

head (see “Literature search for comparisons between MegaHit and other assemblers, 
including metaSPAdes” in the Star Methods).

This in mind, we carried out an extensive analysis of the performance of different 

assemblers at different levels of coverage on synthetic metagenomic data in order to answer 

four questions:

1. Is there a best assembler in terms of false discovery rate and singleton discovery 

at varying coverages?

2. Are low coverage contigs/genes usually false positives?

3. Are short contigs/genes usually false positives?

4. Can we identify optimal quality filtering parameters such that we minimize false 

positive genes and maximize true positive genes– a minimum contig length/

coverage or gene length/coverage?

Aggregation of complete microbial genomes—We downloaded all 467 complete, 

circularized genomes, as well as their corresponding Open-Reading-Frame predictions, from 

the Human Oral Microbiome Database (www.homd.org).

Relevant code: synthetic_data_benchmarking/download_homd_data.py

Construction of synthetic read data—We ran Art(Huang et al., 2012) to create 

synthetic read data at 1X coverage for each genome (parameters: art_illumina -ss HS25 -sam 

-i input_genome -p -l 150 -f 1 -m 200 -s 10 -o paired_dat, where input_genome is a fasta file 
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containing the complete genome assembly). These are the recommended parameters in Art’s 

README for generating synthetic Illumina sequencing data.

Relevant code, for example parameters: synthetic_data_benchmarking/

art_parameters_example.sh

Construction of synthetic metagenomes—We found from our MetaPhlAn2 output, 

on average, there were 95 species per sample in our oral microbiome data. As such, we 

randomly picked 95 of the 467 genomes to be combined into a synthetic metagenome at 

varying levels of coverage. We randomly selected a value X (where X > 0) between a 

specific coverage range for each of the 95 metagenomes. If the value were greater than 1, we 

combined X copies of the 1X coverage synthetic read file for that genome into the 

metagenome. If it were less than 1, we subsampled that fraction of reads from each of the 

fastq files using seqtk (parameters: -s X)

Relevant code: synthetic_data_benchmarking/run_synthetic_data_modeling.py.

Assembly and gene calling parameters—We assembled with the following 

parameters:

1. MEGAHIT (parameter descriptions taken from http://www.metagenomics.wiki/

tools/assembly/megahit):

meta ‘--min-count 2 --k-list 21,41,61,81,99’ (generic metagenomes, default)

meta-sensitive ‘--min-count 2 --k-list 21,31,41,51,61,71,81,91,99’ (more 

sensitive but slower)

meta-large ‘--min-count 2 --k-list 27,37,47,57,67,77,87’ (large & complex 

metagenomes, like soil)

2. metaSPAdes (used default parameters):

metaSPAdes.py -1 synthetic_metagenome_1.fq.gz -2 

synthetic_metagenome_2.fq.gz --only-assembler -o output

3. Prokka

prokka --outdir prokka_output --addgenes --metagenome --cpus 0 --

mincontiglen 1 assembly_output

Relevant code: synthetic_data_benchmarking/run_synthetic_data_modeling.py.

Coverage ranges—We ran our pipeline at three coverage ranges. Each of the 95 

organisms in each metagenome was added to said metagenome at a level of coverage within 

a specific range. In the recent Pasolli et al. used a minimum coverage cutoff of 10X for 

genome extraction from metagenomic data, they – S s such, we chose to test coverage ranges 

centered around this value. We performed 10 iterations (i.e. generated 10 synthetic 

metagenomes) for each range. The ranges we chose were low coverage (0-1X), low-medium 

coverage (0-10X) and medium-high coverage (10-20X).
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Identification of false positive genes—We identified false positive predicted genes by 

aligning our predicted genes back to the Open-Reading-Frames found in the 95 complete 

genomes we initially put into the synthetic metagenome. We aligned with 

Diamond(Buchfink et al., 2015) (additional parameters: --max-target-seqs 1 --id .95). Genes 

in the predicted gene set that did not align to the “ground truth” genes were marked as false 

positives.

Relevant code: synthetic_data_benchmarking/run_synthetic_data_modeling.py.

Computing coverage for each gene/contig—We computed coverage of each gene/

contig by aligning raw reads back to the predicted gene/contig output files, respectively, 

using BBMap (parameters: bbmap/bbwrap.sh ref=$reference in=$f1 in2=$f2 out=output 

kfilter=22 subfilter=15 maxindel=80). We based these parameters based on those 

recommended in the MEGAHIT wiki for computing contig coverage (https://github.com/

voutcn/megahit/wiki/An-example-of-real-assembly). We computed average coverage per 

contig/gene, as well as average percent of contig/gene covered.

Relevant code: synthetic_data_benchmarking/run_synthetic_data_modeling.py, 

synthetic_data_benchmarking/compute_gene_contig_coverage.sh.

Summary-level analysis—We carried out linear regression and correlational analyses on 

summary-level data, which consisted of averaged statistics across all the genes/contigs . We 

computed average false discovery rate for a given iteration/coverage level, average contig/

gene coverage (total percent covered as well as fold coverage), and average contig/gene 

length. Using base-R’s glm function, we ran the regression

False discovery rate ~ Assembler type, where Assembler Type is a categorical variable 

consisting of the four different assembly parameters we used. Further, we used the 

stat_comp function from the ggpubr package to compute correlations false discovery rate 

and gene/contig fold coverage/length.

Relevant code: statistical_analysis_and_figures/summary_data_analysis.R

Gene-by-gene false positive analysis—We used base-R’s glm function to run the 

following two logistic regressions, using contig-level and gene-level summary statistics, 

respectively:

1. False positive gene-Gene length (per 1sd) + Gene avg fold coverage (per 1sd) + 

Assembler type + Genome coverage range

2. False positive gene ~ Contig length (per 1sd) + Contig avg fold coverage (per 
1sd) + Assembler type + Genome coverage range

We computed two different regressions to avoid including highly correlated variables (gene 

length/coverage and contig length/coverage) in the same model.

a. false_positive = a given gene is a false positive (1) or a true positive (0)
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b. fold_coverage_contig = the fold coverage for the contig a particular gene arose 

from

c. fold_coverage_gene = the fold of coverage for a gen

d. length_contig = the length of a contig a particular gene arose from

e. length_gene = the length of a gene

f. assembler_type = which of the 4 assembly parameters were used (megahit large, 

megahit sensitive, megahit default, metaSPAdes)

g. coverage_range = which coverage range a given gene came from (0 to 1, 0 to 10, 

10 to 20)

We plotted the distributions of gene/contig length/coverage by false positive/singleton status 

in Supplementary Figure 2. Judging from the relationships displayed in these distributions, 

we hypothesized that shorter genes would have a higher probability of being a false positive.

Total number of false positive genes assembled by MEGAHIT default was 514,446 (15.3%). 

Gene length ranged from 61 to 2,448 bases with a mean of 267.2 and a median of 243.0. 

Contig length ranged from 64 to 5,905 bases with a mean of 480.4 and a median of 430.4. 

Gene average fold coverage ranged from 0 to 3722.385 reads with a mean of 23.458 and a 

median of 19.609. Contig average fold coverage ranged from 0 to 3646.935 reads with a 

mean of 23.185 and a median of 20.397. In order to aid in interpretability of our analysis, we 

normalized each of these variables by their standard deviations for each regression they were 

used in (gene length SD: 123.22 bases, contig length SD: 202.70 bases, gene average fold 

coverage SD: 21.16 reads, contig average fold coverage SD: 19.03 reads). By doing this, our 

odds ratios could be interpreted as change in odds for a gene being a false positive given a 1 

standard deviation change in length/coverage.

Relevant code: statistical_analysis_and_figures/gene_by_gene_synthetic_analysis.R

Clustering and identification of singleton genes—We additionally clustered all the 

metagenomes within each assembler parameter/type group (so across all coverage ranges) 

into four separate non-redundant gene catalogs, so we could identify how singleton status of 

a given gene associated with coverage statistics and assembly method. To do so, we grouped 

all 10 iterations within a given coverage range and used CD-HIT to cluster the genes therein 

(parameters: cdhit/cd-hit -n 3 -i all_genes_for_cdhit -T 0 -M 0 -s .9 -aS .9 -c .5 -o 

cdhit_output_50perc) at the 50% identity level. We chose 50% identity to mimic the analysis 

that we had done in much of the paper.

Relevant code: synthetic_data_benchmarking/run_synthetic_cdhit_analysis.py

Gene-by-gene singleton analysis—We used base-R’s glm function to run the 

following two logistic regressions, using contig-level and gene-level summary statistics, 

respectively:

1. Singleton gene ~ False positive gene + Gene length (per 1sd) + Gene avg fold 
coverage (per 1sd) + Assembler type + Genome coverage range
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2. Singleton gene ~ False positive gene + Contig length (per 1sd) + Contig avg fold 
coverage (per 1sd) + Assembler type + Genome coverage range

The parameter definitions are the same as above with the addition of singleton_status, which 

refers to if, after clustering, a gene was a singleton (1) or a non-singleton (0). We computed 

area under the curve (AUC) estimates using using the roc function in the pROC package.

(Robin et al. 2011)

Relevant code:statistical_analysis_and_figures/

gene_by_gene_synthetic_singleton_analysis.R

Benchmarking of gene catalog pipeline on real data

Modeling singleton gene status and oral microbiome contig coverage/length, gene 
length, and read counts: We used the following regressions to find associations between 

contig coverage/gene length/contig length/depth of sequencing and singleton status in our 

oral microbiome data. We computed AUC estimates using using the roc function in the 

pROC package.(Robin et al. 2011)

a. Singleton gene ~ Gene length (per 1sd) + Total reads (per 1sd)

b. Singleton gene ~ Contig length (per 1sd) + Contig avg fold coverage (per 1sd) + 

Total reads (per 1sd)

One drawback of the synthetic data analysis is that due to small sample size compared to our 

actual study, the singleton gene fraction was higher than we would have expected (i.e. some 

non-singletons may have been classified as singletons). As such, we modeled our real data 

as well. In this case, we lack information on true/false positive genes, but we have larger 

sample sizes and a lower overall fraction of singleton genes.

We used bbMap once again to compute contig-by-contig coverage for each predicted 

element that was identified by PROKKA. For this analysis, we opted initially not to compute 

gene-by-gene coverage (or contig-by-contig coverage for the gut microbiome) due to the 1) 

additional time and monetary cost that would be required and 2) the similarity between the 

gene/contig results in the synthetic data analysis.

Given the similar distribution of singleton/non-singleton genes in association with our 

independent variables of interest (SuppSupp. Fig. 3), we hypothesized our regressions would 

yield small effect sizes and minimal changes in the probability of a gene being a singleton 

compared to baseline. We found modest in effect size but statistically significant 

associations between singleton genes and coverage of the contig from which a gene came, 

gene length, and contig length (SuppSupp. Table 2). The total number of singletons was 

3,183,181 (2.0%). Contig length ranged from 200 to 1,041,740 base pairs with a mean of 

1,343 and a median of 2,390. Contig coverage, in terms of average number of reads aligning 

to each base of a contig, ranged from 0 to 98,048.39 reads with a mean of 16.58 and a 

median of 5,910. Gene length ranged from 66 to 31,656 with a mean of 671 and a median of 

513. As with our synthetic data analysis, in our regressions we normalized each continuous 

variable by its standard deviation (Gene length SD: 547.15 bases, Contig length SD: 
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40,924.06 bases, Contig average fold coverage SD: 59.10 reads, Total reads SD: 83,030,393 

reads).

Relevant code: statistical_analysis_and_figures/

gene_by_gene_singleton_analysis_real_data_oral.R

Comparison between MEGAHIT and metaSPAdes in identification of singleton 
genes: We ran our assembly, gene calling, and gene catalog construction pipeline on a subset 

of 10 randomly selected samples, computing gene-by-gene and contig-by-contig coverage 

(as above) and identifying singletons. We computed AUC estimates using using the roc 

function in the pROC package.(Robin et al. 2011)We ran the following regressions for our 

analysis:

a. Singleton gene ~ Assembler type

Relevant code: statistical_analysis_and_figures/gene_by_gene_metaspades_megahit_real.R

Meta-analytic data collection: We identified 13 publications (Supplementary Table 1) with 

shotgun sequencing metagenomic data taken from any human oral and gut microbiomes. We 

used 2,182 gut samples and 1,473 oral samples. We downloaded relevant study data from 

either the National Center for Biotechnology Information (NCBI), the European 

Bioinformatics Institute (EBI), the metagenomics RAST server (MG-RAST), or the Human 

Oral Microbiome Database (HOMD).

Raw read filtering and quality control—If reads had not been trimmed or had human 

sequences filtered out in their respective studies, we used KneadData(https://bitbucket.org/

biobakery/humann2/wiki/Home) to do so prior to assembly. This pipeline involves two 

primary steps. 1) Aligning raw reads back to the human genome reference (GRCh37/hg19) 

to filter out human contaminants (settings: --very-sensitive). 2) Using Trimmomatic to 

remove adapter contamination (settings: SLIDINGWINDOW 4:20, MINLEN 50).

Open-reading-frame prediction and initial functional annotation—We ran 

Prokka(Seemann, 2014) (version: 1.12, settings: --metagenome --addgenes --mincontiglen 

1) on the raw contigs from our de novo assembly to predict genes.

Assembly, gene calling, and construction of non-redundant gene catalogue—
We assembled raw reads into contiguous sequences (or, contigs) using MEGAHIT(Li et al., 

2016) V1.1.2 (parameters: --default --mem-flag 2). We removed contigs under 200 base 

pairs in length. We used Prokka(Seemann, 2014) V1.12 to annotate genes from the 

MEGAHIT output (settings: --cpus 0 --addgenes -metagenome --mincontiglen 1). We used 

the default databases installed with Prokka (UniProt, Pfam, TIGRFAMs, and NCBI’s 

RefSeq) for functional annotation. We then ran CD-HIT-EST(Li and Godzik, 2006) V4.6.8 

with a 95% identity cutoff (--n 10 --c .95 -aS .9 -S .9 -M 0 -T 0). We removed genes under 

100 bases in length that did not align to any sequence NR reference database at 95% 

identity. For any other gene catalogs we made we either used CD-HIT or CD-HIT-EST with 

varying percent identity and word length (according to the instructions in the CD-HIT user’s 

manual https://github.com/weizhongli/cdhit/blob/master/doc/cdhit-user-guide.pdf)
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Iterative gene catalogue construction—We translated our nucleic acid gene catalog 

into amino acids with Python’s Biopython(Cock et al., 2009) package. We ran CD-HIT 

V4.6.8 with the same parameters as above on the translated gene catalog with progressively 

lower percent identities, starting at 100% and decreasing in increments of 5 down to 50%. 

For example, we fed the output of CD-HIT run at 100% identity into another CD-HIT run 

with the -c flag changed to .95, the output of which was run through CD-HIT again at -c .9, 

and so on.

Relevant code: gene_catalog_construction/iterative_cdhit.sh, gene_catalog_construction/

parse_iterative_cdhit.py

Reference-based species identification—We ran MetaPhlAn2(Truong et al., 2015) 

V2.1.0 with the default settings to identify the species content in each sample. To create 

incidence data from the MetaPhlAn output, which we used to in our cross-sample 

dissimilarity calculations, we collapsed the raw output into a relative abundance matrix, 

where the columns were samples and the rows were species. We then created an incidence 

matrix by recoding non-zero cells as having values of 1.

Calculation of cross-sample dissimilarity—Similarity metrics were calculated using 

Sorenson-Dice(Sørensen, 1948) similarity, which is simply Bray-Curtis Dissimilarity 

applied to prevalence rather than abundance data. To speed up data processing, we used a 

custom, parallelized, c++ implementation.

Relevant code: gene_catalog_construction/sorensen.cpp

MinPath annotation—We ran MinPath(Ye and Doak, 2009) V1.4 (command: python ../

MinPath1.2.py -any ecid_mapping -map ec2path -report ec.report -details ec.details) on the 

set of all EcID’s captured in each gene catalog to identify a mapping between gene, EcID, 

and parsimonious pathway annotation.

Functional enrichment analysis—We identified pathways enriched in singletons or 

non-singletons for the gut and oral microbiomes using a Fisher’s Exact test, where we 

compared the ratio of counts of singletons and non-singletons of any given pathway to the 

overall ratio of singletons to non-singletons across all populations. We adjusted for False-

Discovery Rate using Benjamini-Yekutieli(Benjamini and Yekutieli, 2001) correction. For 

the plots in Figure 4, we reported the top 50 most enriched pathways in the gut microbiome 

and oral microbiome for singletons and non-singletons. For the plot in Supplementary 

Figures 13-14, we show the top 25 most enriched species/genera using the same methods.

Relevant code: statistical_analysis_and_figures/orfleton_figures_both.Rmd

Gene-level taxonomic annotation—We used Diamond’s(Buchfink et al., 2015) 

taxonomic annotation configuration (which uses NCBI’s taxon nodes and taxonmap files in 

conjunction with the Lowest Common Ancestor algorithm) to align against NCBI’s RefSeq 

non-redundant protein database, which we downloaded from ftp://ftp.ncbi.nlm.nih.gov/

blast/db/FASTA/nr.gz. After combining the separate files, we configured the diamond 
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database with the command “diamond makedb --in nr.gz --db nr --taxonnodes nodes.dmp --

taxonmap prot.accession2taxid.gz ” We used Diamond’s default cutoff, a minimum e-value 

of 0.0001, to identify confident hits.

Relevant code: gene_catalog_construction/

full_contig_parsing_and_singleton_hunting_pipeline.py

Gene-based taxon contig binning—We mapped genes onto the contigs from which 

they originated, and we binned contigs into a particular taxonomic group if at least 75% of 

the genes on a given contig had the same taxonomic annotation. To increase our confidence 

in our annotations, we filtered out contigs with fewer than two genes on them, as well as 

those that were binned at a taxonomic level above genus (kingdom, phylum, class, order, 

family levels).

Relevant code: contig_analysis/build_contig_database.py, contig_analysis/

bin_contigs_species.py

Identification of horizontal gene transfer—We tested of horizontal gene transfer was 

noticeably giving rise to singletons by examining in mixture-contigs, those consisting of 

both non-singletons and singletons. We searched for where the discordant species or genus 

taxonomic annotations of singletons(s) and non-singleton(s), excluding those annotations 

that were unable to be ascribed to any specific microbe. Out of concern of being biased by 

low resolution annotations, we only classified HGT as possibly having occurred when the 

taxonomic bins of the singleton(s) and the non-singleton(s) were of different genera.

Relevant code: contig_analysis/bin_contigs_species.py

Preparing data for functional and taxonomic enrichment scatterplots—In order 

to display enrichment within singletons and non-singletons (Supplementary Figure 10B,F) 

while accounting for sample size, prior to plotting we normalized the counts of number of 

genes/contigs in particular pathway/taxa by dividing by the total number of singletons or 

non-singletons for a given niche. For example, if 10 singletons and 10 non-singletons 

aligned to a pathway and a total of 100 singletons and 10000 non-singletons were found to 

align to any pathway at all, we divided 10/100 and 10/10000 to get normalized values of .1 

and .001, respectively, for said pathway.

Construction of disaggregated sample-based rarefaction curves—We create an 

R-by-S disaggregated sample-based rarefaction matrix D (where drs is the expected number 

of r-tons when s samples are drawn from a set of S samples), starting from a binary G-by-S 
incidence matrix W (where wgs = 1 if the gene g was found in sample s). The rarefaction 

curve can be solved analytically using hypergeometric distributions, and depends only on the 

frequency in which each gene is found(Ugland et al., 2003).

First, we calculate the frequency yg that gene g appears in all the samples, as the row sum of 

the incidence matrix W(1), then calculate the incidence frequency count qk(2) where qk is 

the number of times that genes appear k times in the sample S, and l() = 1 if its argument is 

true.

Tierney et al. Page 17

Cell Host Microbe. Author manuscript; available in PMC 2020 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



yg = ∑S = 1
S Wgs 1)

yg = ∑S = 1
S Wgs 2)

Second, let R denote the maximum value of k where qk ≠ 0. Then, the expected number of r-
tons accumulated after s random samples collected without replacement dr,s is calculated as 

follows:

dr, s = ∑K = 1
R qkh(s, S, r, k) 3)

where the hypergeometric function (4), h(s, S, r, k) returns the probability of drawing exactly 

r out of k possible units when sampling s times without replacement out of a set S. For 

example, suppose we have a collection of 20 samples. The probability of finding exactly 3 

incidences in a 10-ton set if we choose at random 12 of the 20 samples, is h(12, 20, 3, 10) 
and is calculated using binomial coefficients as follows:

h s, S, r, k =
k
r

S − k
s − r
S
s

4)

Finally, the r-ton sample-based rarefaction curves are plotted from the rth line of D using the 

Python matplotlib(Hunter, 2007) package. The aggregated sample-based rarefaction curve is 

the expected number of unique genes dS
a, gg when s samples are collected without 

replacement:

dS
a, gg = ∑r = 1

R drs 5)

Creation of the gene discovery curve from the rarefaction curve—The gene 

discovery curve Q is the derivative of the rarefaction curve, where qs is the number of new 

genes discovered on sample s:

qs = dr, s
agg − d

aggr − 1, s 6)

Determining a fitness function for the gene discovery curve—The gene discovery 

curve qs from (6) is used to extrapolate gene richness in the microbiome pangenome by 

polynomially fitting qs.
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We used the function curve_fit from the Python package scipy.optimize to fit the discovery 

curve to a function. Because the discovery curve is derived from a rarefaction curve, the 

chosen function must, on the positive x-axis, be continuous, non-increasing, and convex. 

Further, as there are combinatorial limits on genes, the function must asymptotically reach 0. 

Finally, it must fit qs with high-fidelity, especially at the right tail, in order to get the best 

estimator. As none of the usual eligible candidate functions (e.g. negative exponential, 

negative power curves) adequately fit the discovery curve at the right tail, it was necessary to 

select our own.

As the qs appeared curved in logarithmic space, we applied a 2nd degree polynomial 

regression on logarithm-transformed data (i.e. fitting a curve after remapping the axes to and 

x =log log s :

f x, a, b, c = ax2 + bx + c 7)

where a, b, and c are the regression parameters. Note that if a = 0, the fitting function 

becomes a power curve.

Determining the marginal sample s that yields a maximum number or percentage of 
new genes: We determined the marginal sample s required to contain less than a fraction of 

new genes zfrac. As f(s, a, b, c) is not trivial to invert in logarithmic space, we use the root 

function from scipy.optimize in Python to solve for s:

0 = e f loglog s, a, b, c /q1 − Z f rac 8)

Similarly, the same root finding algorithm is used to find the marginal sample s that yields 

less than znum new genes, by solving:

0 = e f loglog (s), a, b, c − Znum 9)

Relevant code: extrapolation/RollingSpeciesEstimator.r, extrapolation/species_estimator.py

Gene richness estimation of oral/gut microbiome pangenomes—As the area 

under the gene discovery curve function is finite for a< 0 and s > 0, we integrate 

0
S

e f loglog (s) a b c  to extrapolate the rarefaction curve for an arbitrary value of s, by using 

the scipy.integrate function from Python. The richness of oral and gut genes asymptotically 

reaches 91,439,476 and 238,585,237 genes, respectively, when s = infinity.

Relevant code: extrapolation/RollingSpeciesEstimator.r, extrapolation/species_estimator.py

Estimating the number of singletons in the extrapolated rarefaction curve—A 

function that extrapolates the number of singletons as a function of samples collected must 
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meet certain properties: the function must be continuous for s > 0, represent a non-increasing 

fraction of the rarefaction curve, ideally be the same value as the rarefaction curve at s = 1, 

asymptotically reach zero, and fit d1,s with high-fidelity, especially at the right tail, in order 

to get the best estimator. As none of the functions that we attempted fit the above criteria, we 

decided to regress the fraction of singletons in logarithmic space to the fitting function (7) 

while setting a = 0, then multiply it with the extrapolated rarefaction curve.

Relevant code: extrapolation/RollingSpeciesEstimator.r, extrapolation/species_estimator.py

Gene richness estimation of oral microbiome pangenome via the Chao2 and 
Chao-Bunge estimator—From the disaggregated rarefaction curve D, we estimate the 

gene richness of the oral microbiome by using estimators available in the SPECIES R 

package. Rolling estimates using Chao2, Chao-Bunge, Jackknife, and Chao-Lee were 

produced as samples were collected.

Relevant code: extrapolation/RollingSpeciesEstimator.r, extrapolation/species_estimator.py

Cloud Computing—All analyses were carried out entirely in the cloud on a combination 

of Amazon Web Services (AWS) and Microsoft Azure resources. We ran our initial 

assemblies on AWS spot instances using Aether(Luber and Tierney et al., 2017) and stored 

the resulting data on Azure’s cloud storage. We used Azure, Linux-based virtual machines 

running Ubuntu 16.04 for the remainder of our analyses.

Figure generation—All plotting, except for that done for the rarefaction curves, was done 

in R using the packages “ggplot2” and “cowplot” (https://cran.r-project.org/web/packages/

cowplot/index.html). Rarefaction analysis and extrapolation was done using Python’s 

“Matplotlib”(Hunter, 2007) package. Figures were assembled in Adobe Illustrator (https://

www.adobe.com/products/illustrator.html).

Quantification and statistical analysis

We used Fisher’s exact tests, linear, and logistic regression to quantify associations between 

various covariates across the manuscript. We controlled for multiple hypothesis testing with 

Benjamini-Yekutieli p-value adjustment.

Data and software availability

Example scripts for each step of this analytical pipeline are publicly accessible at https://

github.com/kosticlab/universe_of_genes_scripts of genes scripts. When relevant, each 

section of the methods section below refers to script in this repository used for that particular 

analysis. The post-assembly pipeline, which includes non-redundant gene catalog 

construction, gene catalog quality control, gene-level taxonomy mapping, iterative gene 

catalog construction, binary gene incidence matrix generation, and Sorenson-Dice 

dissimilarity calculation, is run by “gene_catalog_construction/
full_contig_parsing_and_singleton_hunting_pipeline.py”. We built our public facing 

database using Microsoft Azure’s Database for PostgreSQL service. We built our website 

with a Flask API..
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Additional resources

We additionally present a database of our results at https://microbial-genes.bio.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• Cross-study meta-analysis of metagenomes covering 3,655 samples from two 

body sites

• Meta-analysis uncovers staggering microbial gene diversity

• 50% of all genes in a metagenomic sample are individual-specific or 

‘singletons’

• Individual’s microbiomes’ can be fingerprinted via rare microbial strains

Tierney et al. Page 28

Cell Host Microbe. Author manuscript; available in PMC 2020 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: Meta-analysis of the oral and gut microbiomes.
A-B) We aggregated publically available oral and gut short read data and assembled it into 

contigs (in this example, each contig comes from a single sample). C) Gene open-reading-

frames (ORFs) are identified on assembled contigs D) ORFs are clustered at 95% identity to 

identify a non-redundant gene catalog E) Database content, description of backend, 

description of UI F-K) Downstream singleton analytical pipeline. F) We identify singletons 

and non-singletons in our dataset and G) compare their functional annotations. H) We then 

map genes to contigs, which we group into 3 categories: singleton-contigs (those consisting 

of only singletons), non-singleton contigs (those consisting of only non-singletons) and 

mixture contigs (those consisting of both singletons and non-singletons). i) We filter short 

contigs and bin the remainder according to the taxonomic classification of their gene 

content. We then attempt to identify the source of singletons as either J) horizontal gene 

transfer (HGT) and/or K) rare, singleton-rich microbial strains.
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Figure 2: The genetic diversity of the oral and gut microbiomes.
A) The overlap in genetic content (95% identity level) between the oral and gut 

microbiomes. B) Distribution of ORF cluster sizes at 95% identity in our oral (blue) and gut 

(red) gene catalogs. C) Iterative clustering of our amino acid gene catalogs. D) Distribution 

of gene cluster sizes for amino acid gene catalogs generated at the 50% identity level. E) 

Sorensen-Dice index measuring dissimilarity in gene content between all pairs of 

individuals. F) Sorensen-Dice dissimilarity of individuals in terms of MetaPhlAn2-derived 

species content.
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Figure 3: The known and unknown functional diversity of the oral and gut microbiomes.
A-B) Fractions of genes functionally annotated in the oral and gut microbiomes. Genes 

labeled with pathway annotations were used in the Minpath analyses. C) Sorensen-dice 

dissimilarity of individuals in terms of overall pathway content.
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Figure 4: Enrichment of functions in gut/oral niches for singletons/non-singletons.
Here we display the top 50 most enriched pathways for oral singletons (A), oral non-

singletons (B), gut singletons (C), and gut non-singletons (D). Blue bars are pathways 

enriched in both oral and gut non-singletons, red bars are pathways enriched in both oral and 

gut singletons, and the green bar is a pathway enriched in both oral singletons and gut non-

singletons.
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Figure 5: Singleton taxa as sub-population specific, rare strains.
A) Counts of taxonomic annotations for singleton and non-singleton contigs in the oral and 

gut microbiomes. B) Number of metagenomes singleton contigs and non-singleton contigs 

are present in for different taxonomies. Each point represents a different taxonomic 

annotation. C) Examples of strain-specific “fingerprints.” Each pair of rows corresponds to 

singleton and non-singleton contigs containing at least two genes that were binned into the 

same taxonomic annotation. Columns are different metagenomic samples (each 

corresponding to a different individual). Green boxes correspond to singleton contigs. Red 

boxes correspond to non-singleton contigs.
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Figure 6: Extrapolating the gene content of the human microbiome.
A-B) Extrapolation of the universe of genes using curves fit to our oral microbiome data (A) 

and gut microbiome data (B). Yellow dashed lines demarcate sampling required to observe 

certain percentages of new singletons per sample. Purpose dashed line marks size of this 

study. Green dashed line is the asymptotic number of genes in the oral microbiome. C-D) 

Alternative, more conservative extrapolation methods for estimating total gene content in the 

oral/gut niches.
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Table 1:

Table of definitions used in the paper.

Term Definition

metagenome total genomic potential of a microbial community (in this work, we use this term interchangeably with “sample” and 
“metagenomic sample”)

singleton gene a gene detected in only one metagenomic sample across a defined collection of samples

non-singleton gene a gene detected in more than one metagenomic sample across a defined collection of samples

ORFan gene genes that have no detectable homologs in other species and are distinct from all open reading frames (ORFs) in the 
genome

universe of genes the set of all non-redundant genetic elements across all communities of organisms in a given niche

gene rarefaction curve a curve tracking the accumulation of new genes as samples are incrementally added

gene discovery curve the derivative of the rarefaction curve (It estimates the rate at which new genes are added to the catalog when 
samples are added incrementally, and it can be used to estimate the size and burden of sampling of the universe of 
genes.)

singleton fraction curve a curve estimating the fraction of a gene catalog that consists of singletons vs. non-singletons as samples are added 
incrementally (It is used to estimate the total number of samples that would be required for all singletons to be seen 
twice and thus no longer be singletons.)

mixture contig A contig from de novo assembly consisting of both singletons and non-singletons

singleton contig A contig from de novo assembly consisting of only singletons

non-singleton contig A contig from de novo assembly consisting of only non-singletons
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Key Resources Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

MEGAHIT (v1.1.2) (Li et al. 2015) https://github.com/voutcn/megahit

metaSPAdes (v3.13.0) (Nurk et al. 2017) https://github.com/ablab/spades

Prokka (v1.12) (Seemann 2014) https://github.com/tseemann/prokka

CD-HIT (v4.6.8) (Li and Godzik 2006) https://github.com/weizhongli/cdhit

Diamond (v0.9.24) (Buchfink et al. 2015) https://github.com/bbuchfink/diamond

Art (MountRainier) (Huang et al. 2012) https://www.niehs.nih.gov/research/resources/software/
biostatistics/art/index.cfm

Data links and publicly available resource 
information

Supplementary Table 1

Database of results https://microbial-genes.bio
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