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Abstract

Background: Brain mitochondrial dysfunction is implicated in the pathophysiology of mood 

disorders. Brain cytochrome-c-oxidase (COX) activity is associated with mitochondrial function. 

Near-infrared spectroscopy (NIRS) non-invasively measures oxidized COX (oxCOX) and tissue 

oxygenation index (TOI) reflecting cerebral blood flow and oxygenation.

Methods: oxCOX and TOI were assessed in prefrontal cortex (Fp1/2, Brodmann area 10) in 

patients in a major depressive episode (N=13) with major depressive disorder (MDD; N=7) and 

bipolar disorder (BD; N=6) compared to controls (N = 10). One MDD patient and all BD patients 

were taking medications. Computational modelling estimated oxCOX and TOI related indices of 

mitochondrial function and cerebral blood flow, respectively.

Results: oxCOX was lower in patients than controls (p=0.014) correlating inversely with 

depression severity (r=−0.72, p = 0.006), driven primarily by lower oxCOX in BD compared with 

controls. Computationally modelled mitochondrial parameters of the electron transport chain, such 

as the nicotinamide adenine dinucleotide ratio (NAD+/NADH p=0.001) and the proton leak rate 

across the inner mitochondrial membrane (klk2 p=0.008), were also lower in patients and 

correlated inversely with depression severity. No such effects were found for TOI.

Conclusions: In this pilot study, oxCOX and related mitochondrial parameters assessed by 

NIRS indicate an abnormal cerebral metabolic state in mood disorders proportional to depression 
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severity, potentially providing a biomarker of antidepressant effect. Since the effect was driven by 

the medicated BD group, findings need to be evaluated in a larger, medication-free population.
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1 Introduction

More than 300 million people suffer from mood disorders globally. Mood disorders are 

projected to be the leading cause of disability-adjusted life years lost by 2030 (NIH 2018). 

Heterogeneity of depression is indicated by pleomorphism of its symptom and the 

observations that up to 60% of patients do not respond adequately to medications (Nemeroff 

2007; Wiles, Thomas, and Abel A 2014). Multiple neurobiological and psychosocial factors 

are thought to contribute to mood disorders, yet biomarkers that can guide treatment 

selection have proven limited (Strawbridge, Young, and Cleare 2017).

Mitochondrial dysfunction has been proposed as a contributing factor to the 

pathophysiology of mood disorders (Bansal and Kuhad 2016; Kato 2017). Mitochondria are 

intracellular organelles that produce adenosine triphosphate (ATP), the main source of 

cellular energy (Picard, Wallace, and Burelle 2016). Impaired mitochondrial function results 

in decreased ATP production, and more apoptosis and oxidative stress (Fišar and Hroudová 

2010; Hroudová and Fišar 2011). ATP deficiency and the resulting alterations in energy 

metabolism may explain some features of mood disorders, e.g., physiological (sleep 

disturbances, fatigue), psychological (depressed mood, lack of motivation) and 

neurocognitive (impaired concentration and memory) abnormalities (E. Streck et al. 2014; 

Karabatsiakis et al. 2014). Primary mitochondrial disorders are associated with higher rates 

of depression (Anglin et al. 2012).

Prior to generation of ATP, oxidative phosphorylation diverts electrons extracted from 

nutrients into a transmembrane proton gradient, a process mediated by the electron transport 

chain (ETC) (Li et al. 2006). Cytochrome-c-oxidase (COX) is the final enzyme in the ETC, 

which is responsible for the maintenance of the transmembrane proton gradient that is used 

for ATP synthesis (Wikstrom 1977). Based on its rate-limiting role in this oxidative process 

(Arnold 2012), COX is considered a key marker of mitochondrial function (Srinivasan and 

Avadhani 2012).

Lower COX levels have been previously reported in major depressive disorder (MDD) and 

bipolar disorder (BD) based on peripheral blood measures, muscle biopsies and postmortem 

brain samples (for review see (L. Holper, Ben-Shachar, and Mann 2018)). In MDD, lower 

COX enzyme activity has been reported in peripheral platelets (Ben-Shachar et al. 1999) and 

muscle (Gardner et al. 2003, 2008) but greater COX mRNA expression has been found in 

serotonergic neurons of postmortem nucleus raphe in depressed suicide decedents (Sanchez-

Bahillo et al. 2008). In BD, low COX enzyme activity, mRNA and protein expression have 

been reported in peripheral blood (Ben-Shachar et al. 1999; de Sousa et al. 2015; Naydenov 

AV et al. 2007; Washizuka et al. 2005; Beech et al. 2010), postmortem hippocampus (Altar 

et al. 2005; Konradi C et al. 2004) and postmortem frontal cortex (Iwamoto, Bundo, and 
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Kato 2005; H. K. Kim et al. 2016; X. Sun et al. 2006). Further, there is evidence of abnormal 

mitochondrial function in vivo in the brain using neuroimaging methods. Specifically, 18F-

fluorodeoxyglucose positron emission tomography (18F-FDG-PET) reveals metabolic 

changes in glucose utilization primarily in MDD that generally involves lower glucose 

uptake in dorsolateral prefrontal cortical and increased uptake in subcortical and ventral 

prefrontal cortex (De Crescenzo et al. 2017; Su et al. 2014; Schöll, Damián, and Engler 

2014). Phosphorus (31)P magnetic resonance spectroscopy (MRS) has been used to assess 

decreased phosphocreatine as an indicator of mitochondrial oxidative phosphorylation, for 

example in frontal lobe, primarily in BD (for reviews see (Kato 2017; Quiroz et al. 2008; 

Clay, Sillivan, and Konradi 2011; Stork and Renshaw 2005; Moretti, Gorini, and Villa 

2003)). However, while these techniques can assess some aspects of mitochondrial 

functions, they cannot measure COX activity directly.

To investigate COX activity in the present study, we used near-infrared spectroscopy (NIRS), 

an optical neuroimaging method. Compared to PET and MRS, NIRS is non-invasive, 

relatively low-cost, does not involve radiation, and can be applied in a physically minimally 

demanding setting (Obrig and Villringer 2003; Ferrari and Quaresima 2012; Wolf, Ferrari, 

and Quaresima 2007; Ferrari, Mottola, and Quaresima 2004). In our previous work, we 

showed that the COX signal has adequate test-retest reliability (Lisa Holper and Mann 

2018). Consequently, NIRS permits highly feasible assessment of brain COX as a marker of 

mitochondrial function.

NIRS measures the oxidative state of COX’s chromophore (its binuclear copper CuA center), 

termed oxCOX signal, as well as hemodynamic signals in terms of oxygenated (HbO2) and 

deoxygenated (HHb) hemoglobin. Compared to the hemodynamic signals routinely assessed 

using NIRS (Ferrari and Quaresima 2012), the oxCOX signal has hitherto not been routinely 

assessed. While HbO2 and HHb provide information on blood flow and oxygenation, 

oxCOX is considered a key indicator of cellular oxygen metabolism (Ilias Tachtsidis et al. 

2009; Highton et al. 2014; Kolyva et al. 2013; Ghosh et al. 2013). The concentration of 

oxCOX is approximately 10% that of hemoglobin, which makes it harder to detect. On the 

other hand, oxCOX is a stable (Bale, Elwell, and Tachtsidis 2016) and reliable signal (Lisa 

Holper and Mann 2018) with high brain specificity (de Roever et al. 2016). Thus, alterations 

in oxCOX indicate a change in mitochondrial metabolic balance (Bainbridge et al. 2014).

Previously, it has been shown that the oxCOX signal is a potential marker of mitochondrial 

function (Caldwell, Hapuarachchi, et al. 2015). Specifically, lower oxCOX activity, as 

hypothesized in major depressive episodes (MDE), can be related to reductions in 

mitochondrial parameters derived from computational modelling (Caldwell, Hapuarachchi, 

et al. 2015). In the present pilot study, we hypothesized that the oxCOX signal would be 

lower in MDE compared with control subjects.

2 Methods and materials

2.1 Study population

Patients with either DSM-IV MDD or BD were recruited at the New York State Psychiatric 

Institute (NYSPI)/Columbia University Medical Center. Patients were compared with 
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physically and psychiatrically healthy controls (HC). All participants were assessed 

diagnostically using the Structured Clinical Interview for Axis I disorders (SCID-I/P) (First 

et al. 2002), the 24-item Hamilton Depression Rating Scale (HDRS) (Hamilton 1960) and 

the Young Mania Rating Scale (YMRS) (Young et al. 1978). Exclusion criteria for all 

participants included any uncontrolled medical condition, history of head trauma, any other 

major psychiatric disorder such as schizophrenia, schizoaffective disorder, current psychotic 

depression, substance abuse within the previous three months or substance dependence 

within the previous six months, a history of intolerable side effects from both citalopram and 

fluoxetine, a first-degree family history of schizophrenia, current serious suicidal ideation or 

behavior, pregnancy or currently lactating women. The Institutional Review Board of 

NYSPI approved the study protocol, and all participants gave written informed consent. All 

patients were taking part in other study protocols at NYSPI, explaining the variation in 

medication regimens, and why the MDD group was older than the other groups.

2.2 Respiratory challenges

Quantification of the oxCOX signal demands significant changes in arterial oxygen 

saturation to be reliably detected in the cortex. We therefore chose two respiratory 

challenges to systemically manipulate cerebral oxygenation via hypo- and hypercapnia, i.e., 

reduced and increased carbon dioxide in the blood, with the order of the challenges 

counterbalanced between participants (L. Holper, Scholkmann, and Seifritz 2015; Kolyva et 

al. 2014). Hypocapnia was induced by hyperventilation consisting of five repetitions of 

alternate periods of rapidly breathing in and out with constant respiratory volume (20 

seconds) and normal breathing (40 seconds). Hypercapnia was induced by breath-holding 

consisting of five repetitions of alternate periods of breath holding (20 seconds) and normal 

breathing (40 seconds). Prior to recording, participants were trained to perform the 

inspirational breath-holding a volume of air, similar to a normal breath cycle, in order to 

avoid inhaling larger volumes of air than that of a normal breath cycle. Before and after each 

challenge, resting-states of five minutes of data were collected, during which participants 

were asked to sit still in order to allow the hemodynamic cortical system to normalize. The 

resting-state periods were not included in the data analysis.

2.3 NIRS instrumentation

A NIRO 300 instrument (Hamamatsu Photonics) was used to measure the oxCOX, HbO2 

and HHb signals based in four discrete wavelengths (775, 810, 850, and 910 nm) (Ilias 

Tachtsidis et al. 2009, 2004; I Tachtsidis et al. 2007). Although, more recent broadband 

NIRS systems may obtain a more robust oxCOX signal (Bainbridge et al. 2014; Bale et al. 

2014; Arifler et al. 2015), we have reported adequate signal detection and test-retest 

reliability with NIRO 300 (Lisa Holper and Mann 2018). The NIRO 300 measures 

concentration changes of oxCOX, HbO2 and HHb based on conventional differential 

spectroscopy with the use of the modified Beer-Lambert law (Patterson, Chance, and Wilson 

1989; Delpy et al. 1988a). In addition, the system provides the tissue oxygenation index 

(TOI) based on the principle of spatially resolved reflectance spectroscopy (Delpy et al. 

1988b; Matcher et al. 1995), which is in essence the proportion of HbO2 relative to total 

hemoglobin (HbO2 + HHb) concentration (Susumu Suzuki et al. 1999; Ilias Tachtsidis et al. 

2008). The system uses four light sources (pulsed laser diodes) and three detectors 
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(photodiodes) held in a light-proof holder, set at a distance of 4.5 cm, fixed in a rubber probe 

to allow for direct skin contact. Two channels were positioned to cover parts of the 

prefrontal cortex (i.e., Fp1/2, Brodmann area 10). Data were detrended, zero-meaned, and 

bandpass-filtered in the range 0.005 – 0.3 Hz, using a 5th order Butterworth filter, to remove 

physiological noise, based on functions of the HOMER2 processing package (Huppert et al. 

2009). Peripheral physiological measures were estimated using a capnometer (LifeSense 

LS1–9R, Nonin Medical) by means of the arterial tissue oxygen saturation (SpO2) and the 

partial end-tidal carbon dioxide (PetCO2) of the exhaled air. Participants wore a nasal 

cannula through which tidal gases were sampled at 1 Hz.

2.4 Computational modelling

The computational procedures using the BS model outlined below regarding sensitivity 

analysis, model fit and model parameters are described in detail in previous work (Caldwell, 

Hapuarachchi, et al. 2015). The modelling of the oxCOX signal was our a priori primary 

metabolic signal of interest, because it provides important information about mitochondrial 

metabolic state related to reduced COX activity (Caldwell, Hapuarachchi, et al. 2015). The 

modelling of the TOI signal was our a priori secondary hemodynamic signal of interest 

(Caldwell, Hapuarachchi, et al. 2015). All modelling was performed separately for hypo-and 

hypercapnia, but results are presented averaged across both conditions, since no significant 

differences were found, as expected.

2.4.1 BS model—The BS model, described elsewhere (Caldwell, Hapuarachchi, et al. 

2015), models metabolism and cerebral blood flow in the human adult brain. Simulations 

were carried out using the Brain/Circulation Model Developer (Banaji et al. 2008) 

implemented in Python (Python Software Foundation). The model was applied with the 

following variables: 1) Input signals. The two model inputs were the experimentally 

measured PetCO2 and SpO2. 2) Output signals. The two model outputs were oxCOX and 

TOI. 3) Model parameters. Based on the input signals, the model simulates the behavior of 

the output signal based on a large parameter space (N = 139) reflecting cerebral metabolism. 

Simulations were run individually for each patient and control participant.

2.4.2 Sensitivity analysis and optimization—The 20 most influential model 

parameters for the oxCOX and TOI signals (Table 2) were selected for an exploratory 

sensitivity analysis using the extended Fourier Amplitude Sensitivity Test (eFAST) (Cukier 

et al. 1973; Schaibly and Shuler 1973). eFAST calculates the unique contribution of each 

model parameter in determining the model output based on variance decomposition, i.e., the 

first-order sensitivity index (S1) of a given parameter i, and a summed sensitivity index of 

the entire complementary set of parameters (all parameters except i), i.e., the total-order 

sensitivity indices (ST). The larger the S1, the more influential a parameter is on the output, 

while larger ST indicates a greater degree of interaction of a parameter i with other 

parameters.

Optimization of all 20 parameters was carried out using a Global Problem (GLP) solver 

(solver: de, maximum iterations 1000) to minimize the difference (Euclidean distance) 

between the measured and modelled signals on which the corresponding parameters were 
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influential. Parameters for each patient and control participant were optimized at once, in 

order to reduce the dimensionality of the optimizations (Caldwell, Moroz, et al. 2015). The 

initial model values (before optimization) and their ranges used for optimization are given in 

Table 2.

2.4.3 Statistical analysis—Statistical analysis was carried out using Matlab 

(Mathworks, Verision 2017b).

Preconditions for parametric testing, such as normality using the Lilliefors test and 

homogeneity of variance using O’Brien’s modification of Levene’s test, were checked for 

both oxCOX and TOI signals and their related parameter space.

Changes in the absolute block-averaged oxCOX and TOI signals were computed from 

baseline, i.e., time-locked two seconds before onset of hypo-/hypercapnia, to challenge, i.e., 

time-locked two seconds after offset of hypo-and hypercapnia.

Changes in the model parameters were expressed as percentage change (%) of the optimized 

values (after optimization) for each patient and control relative to the initial model values 

(before optimization).

Percentage Change % = Optimized Value − Initial Value
Initial Value *100 (1)

Linear mixed-effect regression was used to statistically assess the effect of patient versus 

control group (fixed effects) on the signal changes and corresponding optimized model 

parameters (responses), while controlling for age, PaCO2 and SaO2 (random effects) to 

account for normal aging and systemic effects; note that repeating the ANOVA without 

controlling for those covariates did not change results. ANOVA with Bonferroni correction 

was applied to account for multiple comparisons.

Spearman correlation coefficients were calculated to assess the relation of the signal changes 

and corresponding optimized model parameters to depression severity as assessed by the 

HDRS.

3 Results

3.1 Study population

Demographics of patients and controls are listed in Table 1. Higher HDRS scores (main 

effect F2 = 26.43, p < 0.0001) were seen in MDD (22.6 ± 11.6) and BD (23.5 ± 3.6) patients 

compared to controls (2.3 ± 2.2). In the MDD group, 6/7 of patients had late-life depression 

(LLD) and were thus older (64.4 ± 17.2) than the control (32.3 ± 10.06) and BD groups 

(40.8 ± 12.4) (main effect F2 = 16.57, p < 0.0001; post-hoc MDD vs. HC p < 0.0001; BD vs. 

HC p = 0.199, MDD vs. BD p = 0.007). Medication status also differed between groups. 

While 6/7 MDD subjects were medication-free, one MDD patient had started taking 

citalopram (20 mg/d) less than two weeks before scanning. All BD patients were on a 
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consistent dose of a mood stabilizer at scanning (1 × lithium 1350mg/d, 4 × valproic acid 

750–1000mg/d, 1 × lamotrigine 250mg/d) and 5/6 had started fluoxetine (20mg/d) less than 

two weeks prior to scanning (range 1 – 13 days).

3.2 Preconditions for parametric testing

The preconditions for parametric testing were fulfilled for both oxCOX and TOI signals and 

their related parameter space (not reported), including normality as assessed using the 

Lilliefors test (oxCOX signal: BD k-stats = 0.25, p = 0.287; MDD k-stats = 0.40, p = 0.001; 

HC k-stats = 0.17, p = 0.500; TOI signal: BD k-stats = 0.22, p = 0.468; MDD k-stats = 0.30, 

p = 0.168; HC k-stats = 0.22, p = 0.195) and homogeneity of variance between groups as 

assessed using O’Brien’s modification of Levene’s test (oxCOX signal F = 1.62, p = 0.222; 

TOI signal F = 0.04, p = 0.961).

3.3 Sensitivity analysis and optimization

In line with previous work (Caldwell, Hapuarachchi, et al. 2015), only a small part of the 

optimized model parameter space dominated the influence on the oxCOX and TOI signals, 

which space we selected for optimization. All parameters optimized reflected aspects of 

mitochondrial function and blood flow. The names and definitions of the parameters as well 

as the order of their sensitivity to the corresponding signals are given in Table 2.

3.4 Signal changes in oxCOX and TOI

Results revealed typical patterns of response to the respiratory challenges with hypocapnia 

producing a decrease in oxCOX and TOI and hypercapnia producing an increase in oxCOX 

and TOI (Bale, Elwell, and Tachtsidis 2016). The absolute block-averaged signal changes 

across both challenges revealed smaller oxCOX responses in the MDE groups (ANOVA 

main effect MDE vs. HC F2,20 = 7.22, p = 0.014), indicating less efficient COX function 

compared to controls (Figure 1, Top). This effect correlated strongly with depression 

severity across the MDE groups (Spearman, r = −0.72, p = 0.006) (Figure 2). By contrast, 

the hemodynamic signal TOI revealed no significant differences between groups (MDE vs. 

HC F2,20 = 0.50, p = 0.487) and no correlation with depression severity (Table 3).

Secondary ANOVA analyses assessing the effects of medication or age of the participants 

revealed no significant effects on either oxCOX or TOI (Table 3). Although the study was 

not powered to detect differences between MDD and BD groups, secondary analysis found 

no significant difference in oxCOX or TOI between MDD and BD groups. Nevertheless, the 

reduction in oxCOX in MDE groups compared to controls was driven primarily by lower 

oxCOX in the BD group, (Table 3).

3.5 Optimized model parameters for oxCOX and TOI

To provide a realistic picture of the differences in the parameters between patients and 

controls, the optimized values were expressed as percentage changes (%) relative to the 

initial value (Figure 1, Bottom). Statistical assessment using linear mixed-effect regression 

revealed that four model parameters optimized for the oxCOX signal were sensitive to the 

effects of depression. In particular, the parameters CuA,o,n (ANOVA main effect MDE vs. 

HC F2,20 = 9.86, p = 0.005), klk2 (F2,20 = 8.72, p = 0.007), NADn/NADHn (F2,20 = 14.18, p 
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= 0.001), and ck1 (F2,20 = 5.09, p = 0.035) decreased in the MDE groups, whereas ϕ (F2,20 = 

6.03, p = 0.023) increased in the MDE groups compared to controls, all primarily accounted 

for by the differences between BD and controls (Table 3). There were no significant 

differences detected between MDD versus BD. A separate ANOVA assessing medication 

effects revealed modest significant effects indicating decreasing NADn/NADHn (F2,20 = 

3.68, p = 0.044) and increasing ϕ (F2,20 = 3.74, p = 0.041) with medication, however without 

significant differences post-hoc comparisons, which again were not powered adequately 

given the small number of cases (Table 3).

Some parameters also showed a moderate correlation with depression severity after 

adjusting for age (Figure 2). In particular, klk2 (r = −0.63, p = 0.022) and COXtis (r = −0.58, 

p = 0.039) were inversely correlated with increasing depression severity indicating lower 

oxidative properties with higher symptom severity (Table 3).

Only one of the parameters optimized for the TOI signal, Kσ, showed a difference between 

MDE and controls (main effect MDE vs. HC F2,20 = 5.71, p = 0.026) but without correlation 

with depression severity. None of the other parameters optimized for TOI showed group 

differences (all p > 0.05) (Figure 1) or correlations with HDRS score (all p > 0.05) (Figure 

2, Table 3). ANOVA assessing medication effects revealed no significant effects on TOI 

parameters (Table 3).

3.6 Power analysis

Due to limitations of sample size, we performed a post-hoc power analysis using the pwr 

package (Champely 2018) in R (R Development Core Team 2008). Given the observed 

mean COX differences between HC and MDE groups of d = 1.13 (between HC and MDD d 

= 0.81, between HC and BD d = 1.28) with N = 23 subjects, we calculated a power of 0.73 

for the comparison between HC versus MDE (0.34 for the comparison HC versus MDD, 

0.64 for the comparison HC versus BD) at a significance level of 0.05 using t-test for 

independent samples. We asked what minimum difference between HC and MDE groups 

would have been detectable with our N = 23 subjects if we would have had a power of 0.8, 

and calculated a change of d = 1.24. Lastly, we ccomputed the number of participants that 

would be needed to detect a change similar in size of our observed effect (d = 1.13) with a 

power of 0.8, yielding at least N = 21 participants.

4 Discussion

This is the first study to evaluate oxCOX signal using NIRS in subjects experiencing major 

depressive episodes. The oxCOX signal is a proposed marker of mitochondrial health (Bale, 

Elwell, and Tachtsidis 2016). Our results indicate that both experimentally measured oxCOX 

signal and computationally modelled mitochondrial parameters are altered in mood 

disorders. There were two main findings. Firstly, experimentally measured oxCOX activity 

was lower in the MDE groups and correlated with depression severity (Figure 1 & 2). 

Secondly, optimized mitochondrial parameters for oxCOX relating to the electron transport 

chain detected lower activity in MDE, largely in the BD disorder group, when compared 

with HC, with lower activity correlating with depression severity (Figures 1 & 2). These 

parameters are potential mitochondrial contributors to an oxCOX marker. Combining 

Holper et al. Page 8

Depress Anxiety. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



oxCOX measurements derived from NIRS with computational modelling may therefore 

potentially enhance our understanding of which factors drive mitochondrial dysfunction in 

MDEs. Our power analysis indicated that the study was relatively underpowered, so these 

data should therefore be considered pilot results that require replication with a larger sample 

size. Confidence in the findings is thus tempered by the small sample size limiting statistical 

power for subgroup comparisons, such as between MDD and BD. Although the results 

appear to be largely driven by the BD subjects, despite the lack of a significant difference 

between MDD versus BD, we observed differences between MDE and controls and lack of a 

difference between BD and controls. Together, our results suggest that mitochondrial 

abnormalities that have been previously reported in the periphery (L. Holper, Ben-Shachar, 

and Mann 2018) may be present in the brain in mood disorders.

The computational model used here cannot prove dysfunction of the modelled mitochondrial 

mechanisms, because the optimized parameters are estimates and not true physical 

quantities. The model can, however, approximate alterations in the mitochondrial 

mechanisms that in principle can produce the reduced oxCOX response observed in 

depressed patients (Caldwell, Hapuarachchi, et al. 2015). These mechanisms may reflect 

disease-specific information that may together be used as a marker of mitochondrial health 

in MDEs. We briefly highlight the main functions of the parameters analysed here, and 

discuss their relevance to current literature in mood disorders.

COX (also known as complex IV) is the last enzyme of the ETC within the process of 

oxidative phosphorylation at the inner mitochondrial membrane. CuA,o,n represents the 

normal concentration of its oxidized CuA center (i.e., after the loss of electrons), indicating 

the portion of COX already used for electron transfer, in contrast to the concentration of 

reduced CuA (CuA,r,n, i.e., after the gain of electrons), whereas COXtis indicates its overall 

concentration in tissue. In the case of COX deficiency as part of the pathophysiology of 

depression, both CuA,o,n and COXtis would be expected to decrease because of less 

functional COX availability, as observed in the present study (Figure 1). The correlation with 

depression severity corroborates our results suggesting that CuA,o,n and COXtis can be 

related to physical quantities (Figure 2).

The NAD+/NADH ratio (nicotinamide adenine dinucleotide, NAD) is the product of 

complex I (NADH dehydrogenase) of the ETC. The two enzymes, complexes I and IV, are 

functionally closely related in that complex IV is required for the assembly and stability of 

complex I (Li et al. 2007; Diaz et al. 2006; Schäfer et al. 2007). Although, our model does 

not directly estimate complex I activity, we can use its product, the NAD+/NADH ratio, as 

an indicator of complex I functioning. The NAD+/NADH ratio defines the balance between 

oxidized NAD+ biosynthetic and reduced NADH consuming pathways, which plays a 

critical role in energy production and antioxidant defences. Due to its proton pumping 

function at the beginning of the ETC (Schäfer et al. 2007; Rich 2003; Belenky, Bogan, and 

Brenner 2007), the NAD+/NADH ratio can be thought of as the fuel of the ETC (Belenky, 

Bogan, and Brenner 2007; Houtkooper et al. 2010; Lin and Guarente 2003). A decrease of 

the NAD+/NADH ratio can lead to the formation of reactive oxygen species that potentially 

contribute to mitochondrial damage (Lin and Guarente 2003; Murphy 2009; Ben-Shachar 

and Karry 2008). In the case of deficient COX as part of the pathophysiology of depression, 
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the NAD+/NADH ratio would be expected to decrease, as observed in the present study 

(Figure 1). The correlation of the NAD+/NADH ratio with depression severity indicates that 

the scenario modelled here, could be related to physical quantities (Figure 2).

The potential importance of the interplay between NADH-dehydrogenase (complex I) and 

COX (complex IV) (Li et al. 2007) in depression is also supported by previous studies 

reporting less complex I and IV activity in MDD (Gardner et al. 2003, 2008; Ben-Shachar 

and Karry 2008) and BD (Washizuka et al. 2005; X. Sun et al. 2006; de Sousa et al. 2015; 

Beech et al. 2010; H. K.Kim et al. 2016; Konradi C et al. 2004; Altar et al. 2005; Ben-

Shachar and Karry 2008; Iwamoto, Bundo, and Kato 2005; Naydenov AV et al. 2007), a 

reduced complex I/IV enzyme-ratio in muscle mitochondria of MDD patients (Gardner et al. 

2003) as well as a reduction of the NAD+/NADH ratio in patients with first-episode BD as 

assessed using MRS (S.-Y. Kim et al. 2017). 1

The fundamental proton pumping role of both complexes I and IV (Barney 2017) builds and 

maintains the transmembrane proton gradient used by ATP synthase to synthesize most of 

the cell’s ATP (Wikstrom 1977). The proton-motive force, Δp, resulting from that 

transmembrane proton gradient, promotes proton movement down the electrochemical 

potential across the mitochondrial membranes in two directions. The protons pumped out of 

the mitochondria are used by COX for electron transfer, and thus, reduction of O2 to H2O. 

Protons re-enter the mitochondria via two processes, either associated with ATP production 

or through endogenous proton leak channels (Nicholls 1977; Korzeniewski and Zoladz 

2001). These proton leaks serve the important purpose of preventing dielectric membrane 

breakdown (in limiting Δp), and restricting leakage of single electrons from the ETC to form 

superoxide (Brand et al. 1994; Rolfe and Brand 1997). The parameters klk2 (the parameter 

controlling the sensitivity of the leak current to changes in Δp) and ck1 (a parameter 

controlling the sensitivity of k1 to Δp), correlated with depression severity or differed 

between patients and controls (Figures 1 & 2). Hence, a major endpoint of all of these 

processes is the maintenance of Δp, as it is key to mitochondrial survival (Storey 2004). 

Under conditions of deficient COX activity with insufficient proton pumping, the resultant 

collapse of Δp can lead to cells becoming ATP users instead of being ATP producers 

(Wikström et al. 2015). This ATP imbalance may be related to some of the 

pathophysiological manifestations of mood disorders such as fatigue, lack of motivation or 

working memory deficits (E. Streck et al. 2014; Karabatsiakis et al. 2014).

The current literature provides several hypotheses on the connection between mitochondrial 

dysfunction an mood disorders (McCann and Ross 2018), based on glucocorticoid-induced 

stress (Wallace 2005), oxidative stress (Bakunina, Pariante, and Zunszain 2015), and 

susceptibility to genetic alterations (Pei and Wallace 2018). The assumption that COX 

activity might be more deficient in BD compared with MDD, as our findings might suggest 

(Fig. 1–2), needs to be replicated in a future study. A study in a larger and medication-free 

sample of MDD and BD subjects would address this question. It also remains to be 

1Notably, while MRS measures total, free and protein-bound NAD+ and NADH forms because spectroscopy cannot distinguish 
between subcellular (i.e., cytosolic or mitochondrial) compartments (Lu et al. 2014; Du F et al. 2014), the current BS model version 
(Caldwell, Hapuarachchi, et al. 2015) calculates mitochondrial NAD+ and NADH concentrations.
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determined in BD whether this deficient COX activity is absent when the patient becomes 

euthymic and how it is impacted by a switch into mania.

Several methodological limitations should be considered when interpreting our findings. The 

sample size was small and the MDE groups were heterogenous with respect to diagnosis, 

age, and medication status. The majority (6/7) of the MDD patients were older than 60 years 

of age and met criteria for late-life depression (LLD). LLD differs from younger patients 

with MDD in both pathophysiology and clinical presentation (Glover and Srinivasan 2013). 

Since there is an age-dependent decline of mitochondrial functioning (N. Sun, Youle, and 

Finkel 2016; L. Holper, Ben-Shachar, and Mann 2018), the present results may not 

generalize to a younger MDD population. However, our findings of lower activity in MDE 

survived statistical age-adjustment and we therefore suggest that age may not be the main 

contributing factor for the observed reduced COX activity in MDE. The lack of effect of age 

on differences between MDE and HC groups may be explained by the fact that the group 

differences were largely driven by the BD group, and that BD did not have significant age 

differences from HCs. Of note, most of the patients were medicated. One of the MDD 

subjects was taking escitalopram, a selective serotonin reuptake inhibitor (SSRI). We note 

that this patient’s data were not outliers in the analysis. Escitalopram has not been shown to 

affect mitochondrial function in general or COX activity in particular (Gonçalves et al. 2012; 

Shetty et al. 2015), although other SSRIs may decrease mitochondrial function (Adzic et al. 

2016; Hroudová and Fisar 2010). Further, 5/6 of BD patients had commenced antidepressant 

treatment with fluoxetine, another SSRI, within two weeks of scanning. Fluoxetine has so 

far not been reported to have a clear effect on COX but that may depend on sex (Adzic et al. 

2013; Adzic, Mitic, and Radojcic 2017) and be brain region-specific (Shumake et al. 2010; 

Freo et al. 2000; Padilla et al. 2011). Lastly, all BD patients were receiving mood stabilizers 

at the time of scanning. Mood stabilizers, such as lithium or valproic acid, when given as 

long-term treatment have not been found to affect mitochondrial function (Kato 2017; Clay, 

Sillivan, and Konradi 2011), instead, they have been suggested to protect against 

mitochondria-targeted neurotoxicity (Bachmann et al. 2009) thereby preserving or even 

enhancing mitochondrial function in general (X. Sun et al. 2006) and COX activity in 

particular (Hroudová and Fisar 2010; Bachmann et al. 2009; E. L. Streck et al. 2015; 

Cancelier et al. 2017). Our results showed that these medications may had modest effects on 

oxCOX or related parameters (Table 3). Based on the literature and these findings, it is 

unlikely that the larger effects in BD are solely driven by an inhibition of COX by the small 

effects of SSRIs; nevertheless, our findings require further evaluation in medication-free 

depressed patients.

In conclusion, we found in this pilot study that the brain oxCOX signal was lower in MDE, 

and computational modelling identified alterations in key parameters of mitochondrial 

metabolism based on the impaired oxCOX signal. While this preliminary finding is 

consistent with measures of mitochondrial function in blood cells and muscle biopsies, and 

reports of less FDG uptake in dorsolateral prefrontal cortex in MDE, we cannot rule out an 

effect of antidepressants, or be certain that the finding is present in both MDD and BD. The 

small number of subjects as well as the intergroup heterogeneity is not sufficient for a robust 

conclusion. Future research therefore needs to replicate our findings in a larger, unmedicated 

mood disorder sample. Given the reported implication of mitochondrial abnormalities in BD 
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and other psychiatric illnesses reported in blood, muscle and now here in brain, the study of 

mitochondrial metabolism using NIRS is an exciting, novel approach to disease etiology. Its 

correlation with depression severity suggests that oxCOX may be a potential biomarker of 

clinical response, and perhaps even a novel target of treatment.
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Figure 1. Signal and parameter changes.
Boxplots illustrating the oxCOX and TOI signal changes and the parameters optimized for 

the oxCOX signals being significantly different between patients and controls as assessed 

using ANOVA. Note that the parameters values, and thus the percentage changes (%), are 

estimates and not true physical quantities. Note that the oxCOX and TOI signals on top 

assume an arbitrary 50% change in controls. Parameters are defined in Table 2 and statistics 

are reported in Table 3.
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Figure 2. Correlation oxCOX parameters and HDRS.
Scatter plots of the correlation between depression severity and selected parameters 

optimized for the oxCOX signal assessed using Spearman correlation, i.e., CuA,o,n (r = 

−0.72, p = 0.006), klk2 (r = −0.63, p = 0.022) and COXtis (r = −0.58, p = 0.039). These 

parameters correlated inversely with increasing depression severity indicating lower 

oxidative properties with higher symptom severity. Note that the parameters values, and thus 

the percentage changes (%), are estimates and not true physical quantities. Parameters are 

defined in Table 2 and statistics are reported in Table 3.
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Table 1.
Demographics.

Patients with major depression disorder (MDD, N = 7) and bipolar disorder (BD, N = 6) compared to controls 

(N = 10). m = male, f = female. HDRS = Hamilton Depression Rating Scale. Medication: escitalopram 

(20mg/d), fluoxetine (20mg/d), lamotrigine (250mg/d), lithium (1350mg/d), valproic acid (750–1000mg/d).

Subjects Sex Age HDRS Previous
episodes Medication Race Education

(years)

MDD f 30 1 0 none More than one race 17

MDD f 63 39 3 none Black or African American 21

MDD f 63 23 1 none Black or African American 16

MDD f 63 31 1 none Black or African American 13

MDD f 79 19 1 escitalopram White 18

MDD f 70 26 1 none White 17

MDD m 83 18 0 none White 12

BD f 44 21 0 valproic acid, fluoxetine White 16

BD f 29 23 0 lamotrigine, fluoxetine White 15

BD m 56 19 0 lithium White 16

BD m 45 23 1 valproic acid, fluoxetine Black or African American 17

BD f 23 29 3 valproic acid, fluoxetine White 16

BD m 48 26 0 valproic acid, fluoxetine White 17

Control m 52 0 0 none Black or African American 13

Control f 28 5 0 none White 14

Control m 41 0 0 none White 16

Control f 26 1 0 none Black or African American 19

Control m 23 3 0 none Asian 17

Control f 24 6 0 none White 16

Control f 31 1 0 none Black or African American 16

Control f 28 5 0 none White -

Control f 45 0 0 none White 16

Control f 25 3 0 none Black or African American 16
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Table 2.
Optimized model parameters.

The 20 most influential model parameters on oxCOX and TOI included in the optimization are shown with 

initial values and ranges before optimization. Parameters are ordered from top to bottom according to their 

sensitivity to oxCOX and TOI, respectively.

oxCOX parameters Unit Initial
value

Range

oxCOX signal Oxidized cytochrome-c-oxidase assessed by NIRS

CuA,o,n Normal concentration of oxidized CuA mM 0.066 0.046–0.085

Volmit Fraction of brain tissue volume that is mitochondria - 0.067 0.054–0.080

klk2 Constant controlling depending of leak rate Llkon Δp mV−1 0.038 0.030–0.456

Δpn Normal value of Δp (proton-motive force) mV−1 168.611 118.028–219.194

NADn/NADHn Normal NAD+/NADH ratio - 9 0.1–20

k1,n Forward reaction rate for CuAreduction at normal Δp/NADH s−1 8.3 5.810–10.790

ck1 Parameter controlling sensitivity of k1to Δp mV−1 0.01 0.008–0.012

Tmax,0 Maximal muscular tension under normal regulatory stimulus mmHg cm 2.11 1.477–2.743

vCO2,n Normal filtered carbon dioxide partial pressure mmHg 40 28–52

ϕ Oxygen concentration at half-maximal saturation mM 0.036 0.029–0.043

rm Vessel radius at which muscular tension is maximal cm 0.027 0.022–0.032

kunc Parameter simulating effect of uncouplers to the system - 1 0.8–1.2

COXtis Concentration of COX in tissue mM 0.006 0.004–0.007

Llk0 Constant controlling the depending of the leak rate Llk on Δp mM s−1 0.004 0.003–0.006

ptot Total protons moved out of mitochondrial matrix - 20 18–20

Kσ Parameter controlling sensitivity of σe to vessel radius - 10 7–13

CVinh Control parameter representing action of CCO inhibitors - 1 0.8–1.2

vu,n Normal filtered demand - 1 0.7–1.3

h0 Thickness of blood vessel walls at which radius is r0 cm 0.003 0.002–0.004

Pic Intracranial pressure mmHg 9.5 7–11

TOI parameters Unit Initial
value

Range

TOI signal Tissue oxygenation index assessed by NIRS

Tmax,0 Maximal muscular tension under normal regulatory stimulus mmHg cm 2.109 1.477–2.743

D02 Diffusion rate for oxygen between capillaries and mitochondria s−1 0.842 0.589–1.094

rt Radius in the muscular tension relationship cm 0.018 0.014–0.022

ϕ Oxygen concentration at half-maximal saturation mM 0.036 0.029–0.043

vCO2,n Normal filtered carbon dioxide partial pressure mmHg 40 28–52

rn Normal effective blood vessel radius cm 0.019 0.015–0.022

Kσ Parameter controlling sensitivity of σe to vessel radius - 10 7–13

Volv Relative venous blood volume - 0.75 0.525–0.975
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oxCOX parameters Unit Initial
value

Range

klk2 Constant controlling depending of leak rate Llkon Δp mV−1 0.038 0.030–0.456

vO2,n Normal filtered capillary oxygen concentration mM 0.064 0.045–0.084

kaut Overall functioning of autoregulatory response - 1 0–1

NADn/NADHn Normal NAD+/NADH ratio - 9 0.1–20

vu,n Normal filtered demand - 1 0.7–1.3

σe,0 Parameter in elastic tension relationship mmHg 0.143 0.114–0.171

RCO2 Autoregulatory reactivity to carbon dioxide - 2.2 1.5–2.9

ε0NADH Standard redox potential for NADH mV −320 −384−-256

Δpn Normal value of Δp (proton-motive force) mV−1 168.611 118.028–219.194

COXtis Concentration of COX in tissue mM 0.006 0.004–0.007

Llk0 Constant controlling depending of leak rate Llk on Δp mM s−1 0.004 0.003–0.006

p2 Proton cost of reaction reducing a3 − 4 2.8–5.2
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Table 3.

ANOVA for oxCOX and TOI and their related parameters. Main effects are shown between diagnoses within 

depressive episodes (MDE) versus controls, with post-hoc comparisons between major depressive disorder 

(MDD) and bipolar disorder (BD) versus controls; there were no significant differences between MDD and 

BD. A separate ANOVA tested medication effects for which main effects are shown between subjects 

receiving medication versus no medication, with post-hoc comparisons between mood stabilizers (MS) and 

antidepressants (AD) versus no medication (none). The covariate age had no significant effect. (Last two 
columns) Spearman correlation for oxCOX and TOI and their related parameters across MDD and BD 

patients with HDRS. Significant effects are highlighted (bold). Definitions of parameters can be found in Table 

2.

ANOVA diagnoses ANOVA medication Correlation

Main effect Post-hoc Main effect Post-hoc

MDE vs
controls

MDD vs
controls

BD vs
controls

Medication vs
none

MS vs
none

AD vs
none MDD/BD vs HDRS

F2,20 p-value p-value p-value F2,20 p-value p-value p-value r p-value

oxCOX signal 7.22 0.014 1.000 0.028 2.35 0.121 1.000 1.000 −0.72 0.006

CuA,o,n 9.86 0.005 0.435 0.012 1.36 0.280 1.000 1.000 −0.22 0.473

Volmit 1.66 0.212 0.678 0.459 0.98 0.391 0.352 0.508 0.42 0.155

klk2 8.72 0.008 0.760 0.017 1.62 0.224 1.000 0.685 −0.63 0.022

Δpn 0.57 0.457 1.000 1.000 0.70 0.509 1.000 1.000 −0.30 0.325

NADn/NADHn 14.18 0.001 0.627 0.002 3.68 0.044 1.000 0.732 −0.19 0.526

k1,n 3.47 0.076 1.000 0.156 3.34 0.056 0.137 0.054 −0.45 0.121

ck1 5.09 0.035 1.000 0.055 3.17 0.064 1.000 0.586 −0.23 0.444

Tmax,0 1.12 0.302 0.265 0.774 3.47 0.051 1.000 0.364 0.13 0.665

vCO2,n 0.09 0.771 1.000 1.000 0.88 0.429 0.398 0.554 0.11 0.719

ϕ 6.03 0.023 1.000 0.107 3.75 0.041 0.708 1.000 −0.01 0.971

rm 0.15 0.702 0.264 1.000 1.80 0.191 0.485 1.000 −0.35 0.246

kunc 0.64 0.434 0.688 0.838 0.37 0.697 0.854 1.000 −0.31 0.302

COXtis 3.96 0.060 1.000 0.101 2.43 0.113 1.000 0.243 −0.58 0.039

Llk0 0.69 0.417 0.352 0.895 1.06 0.364 0.496 1.000 −0.02 0.957

ptot 0.82 0.375 1.000 0.718 1.81 0.189 0.540 1.000 0.49 0.089

Kσ 0.01 0.907 1.000 1.000 0.52 0.604 0.677 0.687 0.12 0.692

CVinh 0.14 0.712 0.871 1.000 0.20 0.818 1.000 1.000 0.09 0.766

vu,n 1.28 0.271 1.000 0.563 1.82 0.188 0.283 1.000 −0.32 0.280

h0 0.00 0.986 1.000 1.000 0.23 0.799 1.000 1.000 0.23 0.444

Pic 2.04 0.168 0.614 0.369 0.52 0.605 0.803 1.000 −0.16 0.606

TOI signal 0.50 0.487 1.000 0.996 1.50 0.248 0.213 0.472 −0.27 0.369

Tmax,0 2.32 0.143 1.000 0.430 1.99 0.163 1.000 0.960 −0.29 0.331
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ANOVA diagnoses ANOVA medication Correlation

Main effect Post-hoc Main effect Post-hoc

MDE vs
controls

MDD vs
controls

BD vs
controls

Medication vs
none

MS vs
none

AD vs
none MDD/BD vs HDRS

F2,20 p-value p-value p-value F2,20 p-value p-value p-value r p-value

D02 0.15 0.699 1.000 1.000 0.37 0.694 0.816 1.000 −0.04 0.901

rt 0.31 0.582 1.000 1.000 2.49 0.108 0.108 0.460 0.16 0.613

ϕ 0.06 0.811 1.000 1.000 0.20 0.824 1.000 1.000 0.18 0.681

vCO2,n 1.10 0.306 0.406 0.661 0.04 0.960 1.000 1.000 0.25 0.403

rn 2.53 0.126 0.756 0.181 3.08 0.068 1.000 0.216 −0.13 0.667

Kσ 5.71 0.026 1.000 0.074 2.06 0.154 1.000 1.000 −0.28 0.349

Volv 2.29 0.145 1.000 0.519 1.62 0.222 1.000 1.000 −0.09 0.779

klk2 2.20 0.153 0.703 0.287 1.46 0.257 0.316 0.857 0.04 0.685

vO2,n 0.07 0.791 0.777 1.000 0.31 0.739 1.000 0.885 0.24 0.424

kaut 1.00 0.329 0.205 0.515 0.12 0.891 1.000 1.000 −0.29 0.334

NADn/NADHn 0.52 0.480 1.000 0.943 3.11 0.067 0.091 0.578 −0.29 0.336

vu,n 0.44 0.513 0.669 0.916 1.29 0.297 1.000 0.493 0.34 0.255

σe,0 0.55 0.468 0.978 0.861 0.98 0.391 1.000 0.739 0.31 0.305

RCO2 0.08 0.780 0.445 1.000 1.17 0.330 0.967 0.393 0.30 0.318

ε0NADH 0.00 0.987 1.000 1.000 0.77 0.478 0.652 1.000 0.20 0.508

Δpn 0.02 0.876 0.925 1.000 0.49 0.619 1.000 0.701 0.49 0.086

COXtis 0.04 0.846 1.000 1.000 0.65 0.534 0.538 0.701 −0.11 0.729

Llk0 0.30 0.592 0.828 1.000 0.89 0.427 1.000 0.655 0.41 0.163

p2 3.00 0.098 1.000 0.163 3.19 0.063 0.177 0.045 0.40 0.173
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