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abstract

PURPOSE To understand the clinical context of tumor mutational burden (TMB) when comparing a pan-cancer
threshold and a cancer-specific threshold.

MATERIALS AND METHODS Using whole exome sequencing data from primary tumors in The Cancer Genome
Atlas (n = 3,534) and advanced and/or metastatic tumors fromWeill Cornell Medicine Advanced (n = 696), TMB
status was determined using a pan-cancer and cancer-specific threshold. Survival curves, number of samples
classified as TMB high, and predicted neoantigens were used to evaluate the differences between thresholds.

RESULTS The distribution of TMB varied dramatically among cancer types. A cancer-specific threshold was able
to adjust for the different TMB distributions, whereas the pan-cancer threshold was often too stringent. The
dynamic nature of the cancer-specific threshold resulted in more tumors being classified as TMB high
compared with the static pan-cancer threshold. In addition, no significant difference in survival outcomes was
found with the cancer-specific threshold compared with the pan-cancer threshold. Furthermore, the cancer-
specific threshold maintained higher predicted neoantigen load for the TMB-high samples compared with the
TMB-low samples, even when the threshold was lower than the pan-cancer threshold.

CONCLUSION TMB is determined within the context of cancer type, metastatic state, and disease stage.
Compared with a pan-cancer threshold, a cancer-specific threshold classifies more patients as TMB high while
maintaining clinical outcomes that are not significantly different. Furthermore, the cancer-specific threshold
identifies patients with a high number of predicted neoantigens. Because of the potential impact in the care of
patients with cancer, TMB status should be determined in a cancer-specific manner.

JCO Precis Oncol. © 2019 by American Society of Clinical Oncology

INTRODUCTION

Immunotherapy, especially checkpoint inhibition, has
been added recently as a successful treatment option
for some patients with cancer. It is based on the
presence of neoantigens eliciting a response from
T cells by recognizing these antigens as foreign and
infiltrating the tumor microenvironment.1,2 However,
only a subset of patients respond to checkpoint in-
hibitor immunotherapy; therefore, predictive bio-
markers are critical to guide the selection of patients
for these therapies. Although high-level programmed
death-ligand 1 expression, microsatellite instability,
and mismatch-repair deficiency have been deemed
clinically relevant, other markers, including tumor
mutational burden (TMB), interferon gamma profile,
and human leukocyte antigen (HLA) genotype, have
also exhibited promising results.3 TMB is commonly
defined as the total number of somatic mutations in
a tumor genome, divided by the number of bases
sequenced in megabases (Mb).4,5 Previously, patients
with higher TMB (TMB high) demonstrated increased

response to immunotherapy compared with patients
with lower TMB (TMB low), especially in non–small-
cell lung cancer.6,7 However, no consensus has been
established to define a standard threshold for TMB
high. In addition, the methods for calculating TMB
are inconsistent, especially the inclusion or exclusion
of synonymous mutations. Last, previous studies have
adopted panel target sequencing with small re-
gions of genomic DNA, possibly excluding neoantigen
candidates.8 Therefore, exploring the TMB distribution
with more extensive sequencing platforms, such as
whole exome sequencing (WES), can provide a more
comprehensive view of TMB. In the current study, we
compared two TMB thresholds: the Chalmers et al
threshold and our Weill Cornell Medicine (WCM)
threshold.4 The Chalmers et al threshold is a static
cutoff of 20 mutations/Mb applied pan-cancer; it was
selected because it was developed using a large data
set composed of targeted panel and WES samples.
Different cancer types have a wide range of TMB.9 To
define more precise TMB thresholds that accurately
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reflect TMB in each cancer type, the WCM threshold uses
interquartile range (IQR): mean (TMB) + 1.25 × IQR (TMB)
applied within each cancer, meaning each cancer type will
have its own threshold reflective of the distribution of muta-
tions within that cancer type. We sought to improve our un-
derstanding of TMBdistribution in various cancer types and of
how a varying distribution affects a TMB-high threshold.

MATERIALS AND METHODS

Data Acquisition

Data from The Cancer Genome Atlas (TCGA) was obtained
from the National Cancer Institute Genomic Data Commons
through the R package TCGAbiolinks.10 Clinical and ge-
nomic data were obtained for bladder urothelial carcinoma
(BLCA; n = 375),11 breast invasive carcinoma (BRCA; n =
598),12 colon adenocarcinoma (COAD; n = 84),13 glio-
blastoma multiforme (GBM; n = 327),14 kidney chromo-
phobe (KICH; n = 65),15 kidney renal clear cell carcinoma
(KIRC; n = 174),16 brain lower grade glioma (LGG; n =
506),14 lung adenocarcinoma (LUAD; n = 90),17 lung
squamous cell carcinoma (LUSC; n = 95),18 ovarian serous
cystadenocarcinoma (OV; n = 224),19 prostate adenocar-
cinoma (PRAD; n = 326),20 rectum adenocarcinoma
(READ; n = 32),13 thyroid carcinoma (THCA; n = 411),21

and uterine corpus endometrial carcinoma (UCEC; n =
227).22 Detailed characterizations of each cohort can be
found in their respective publications. Predicted neo-
antigens for TCGA samples were obtained through The
Cancer Immunome Atlas.23

TMB Calculation

TMB was calculated as the total number of nonsynonymous
mutated bases in the tumor genome divided by theMb of the
genome covered. The WCM Advanced cohort was se-
quenced using our EXaCT-1 WES Haloplex pipeline using
tumor-normal pairs,24 which covers 37 Mb of the genome.
Samples were collected under a protocol approved by the
institutional review board of Weill Cornell Medical College,
and written informed consent was obtained. Because TMB is
divided by the total size of genome sequenced to help adjust

for technical batch effects, the size of sequenced regions
was determined for each TCGA cohort according to their
respective publications.11-22 Samples with purity of less than
50% according to ABSOLUTE (TCGA) or Clonality Estimate
in Tumors (EXaCT-1; Weill Cornell Medine Clinical Genomics
Lab, New York, NY) were removed.25,26 Germline variants
and variants appearing in the Exome Aggregation Consor-
tium database with a frequency of at least 1% were removed
to filter them out.27 Variants with a variant allele frequency
(VAF) of less than 10% were filtered out after correcting VAF
for tumor purity by dividing VAF by purity. A summary of
filtering steps can be seen in the Data Supplement.

Mutational Signatures

Mutational signatures were determined using the decon-
structSigs R package.28 For each sample, a matrix containing
the frequency a mutation appears within a trinucleotide
context was generated. This matrix was compared with the
signatures published previously in the Catalogue of Somatic
Mutations in Cancer,29 resulting in signature contributions.

Statistical Methods

The Wilcoxon rank sum test was used to compare sample
distributions. Statistical work was performed in R (version
3.5.1, R Foundation),30 with plots being generated using
the packages ggplot2 and ggsurvminer.31,32 The Survival R
package was used for survival curves and Cox regression.33

Regression results were visualized using the forestplot R
package.34 The SurvivalROC R package was used to
generate receiver operating characteristic (ROC) curves.35

Principal component analysis was performed with the
prcomp R function using the output from deconstructSigs.

RESULTS

Distribution of TMB using WES

TMB has been shown previously to vary among cancer
types when estimated from targeted-panel sequencing.4 To
characterize TMB using WES, we investigated the distri-
bution of TMB within each cancer type in our internal
WCM Advanced cohort (n = 696) and the TCGA cohort

CONTEXT

Key Objective
Can a cancer-specific tumor mutational burden (TMB) provide more useful information compared with a fixed pan-cancer

threshold?
Knowledge Generated
A cancer-specific TMB threshold can dynamically adjust to identify dramatically more patients as TMB high compared with

a restrictive pan-cancer threshold. The additional patients do not have a significantly different outcome compared with the
other TMB-high patients.

Relevance
When interpreting a patient’s TMB, the overall TMB seen in the specific cancer type should be taken into consideration to give

the TMB context.
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(n = 3,534; Fig 1; Data Supplement). Only TCGA cohorts
with a corresponding publication were included; we ex-
cluded cohorts only published through TCGA pan-cancer
atlas studies. The WCM Advanced cohort was sequenced

using the EXaCT-1 pipeline and contained mostly meta-
static samples. The distribution of TMB varied drasti-
cally among cancers. For example, the TMB for prostate
cancer in TCGA ranged from 0.03 mutations/Mb to 14.13

−1

0

1

2

T
H

C
A

 (
n

 =
 4

11
)

K
IC

H
 (

n
 =

 6
5)

LG
G

 (
n

 =
 5

06
)

P
R

A
D

 (
n

 =
 3

26
)

G
B

M
 (

n
 =

 3
27

)

B
R

C
A

 (
n

 =
 5

98
)

K
IR

C
 (

n
 =

 1
74

)

R
E

A
D

 (
n

 =
 3

2)

LU
A

D
 (

n
 =

 9
0)

C
O

A
D

 (
n

 =
 8

4)

O
V

 (
n

 =
 2

24
)

B
LC

A
 (

n
 =

 3
75

)

U
C

E
C

 (
n

 =
 2

27
)

LU
S

C
 (

n
 =

 9
5)

Cancer Type

lo
g 1

0 T
M

B 
(m

ut
at

io
ns

/M
b)

Distribution of TMB for TCGA Samples

Threshold

Chalmers et al

WCM

−1

0

1

2

T
h

yr
o

id
 (

n
 =

 1
0)

B
ra

in
 (

n
 =

 1
68

)

P
ro

st
at

e 
(n

 =
 1

83
)

Lu
n

g
 (

n
 =

 1
8)

K
id

n
ey

 (
n

 =
 5

1)

P
an

cr
ea

s 
(n

 =
 2

4)

B
la

d
d

er
 (

n
 =

 8
1)

C
o

lo
re

ct
al

 (
n

 =
 6

3)

S
to

m
ac

h
 (

n
 =

 3
0)

B
re

as
t 

(n
 =

 6
8)

Cancer Type

lo
g 1

0 T
M

B 
(m

ut
at

io
ns

/M
b)

Distribution of TMB for WCM Advanced Samples

Threshold

Chalmers et al

WCM

A

B

FIG 1. Tumor mutational burden (TMB) varies among cancer types. (A) Distribution of TMB for The Cancer Genome
Atlas (TCGA) and (B) Weill Cornell Medicine (WCM) Advanced. Different TMB-high classification thresholds are
shown. The Chalmers et al threshold (blue line) is applied pan-cancer, and the WCM threshold (red diamond) is
applied per cancer. The bottom of the box represents the 25th percentile, and the top of the box represents the 75th
percentile. Each point represents a patient. BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma;
COAD, colon adenocarcinoma; GBM, glioblastoma multiforme; KICH, kidney chromophobe; KIRC, kidney renal clear
cell carcinoma; LGG, brain lower grade glioma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma;
OV, ovarian serous cystadenocarcinoma; PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma; THCA,
thyroid carcinoma; UCEC, uterine corpus endometrial carcinoma.
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mutations/Mb, with a mean of 1.23 mutations/Mb (n =
326). However, the TMB for bladder cancer in TCGA
ranged from 0.04 mutations/Mb to 99.68 mutations/Mb,
with a mean of 6.92 mutations/Mb (n = 375).

Because of the higher frequency of metastatic samples in
the WCM Advanced cohort, we sought to understand how
the distribution of TMB changes between primary and
metastatic samples. TMB was compared among 94 pri-
mary and metastatic matched samples from 41 different
patients in the WCM Advanced cohort (Data Supplement).
Overall, metastatic samples had higher TMB than matched
primary samples (Wilcoxon one-sided paired P value =
.0062; Wilcoxon two-sided paired P value = .012).

Defining the TMB-High Threshold

Recent studies have used a dichotomous TMBmeasurement
to classify patients as TMB high or TMB low.6,36 However,
a standard cutoff for TMB has yet to be firmly established. We
focused on two TMB thresholds: that of Chalmers et al and
that of WCM. The Chalmers et al threshold is a constant cutoff
of 20mutations/Mb for all cancer types,4 whereas our custom
WCM threshold is a formula of mean (TMB) + 1.25 × IQR
(TMB), adapted from a study by Zehir et al.5 The WCM
threshold was applied per cancer to account for the variation
in TMB among cancer types.

Data for patients treated with immunotherapy were not
available for either cohort; however, TCGA survival out-
comes were investigated to understand the differences in
survival between TMB high and TMB low using both
thresholds. TMB-high patients showed significantly im-
proved survival compared with TMB-low patients for BLCA
using both the WCM threshold (log-rank P value = .0014)
and the Chalmers et al threshold (log-rank P value = .009;
Data Supplement). LUSC showed improved survival for
TMB-high patients compared with TMB-low patients when
using the WCM cutoff (log-rank P value = .036) but not
when using the Chalmers et al cutoff (log-rank P value =
.11; Data Supplement). UCEC also showed significantly
improved survival for TMB-high patients compared with
TMB-low patients when using Chalmers et al (log-rank
P value = .023) but did not reach significance when using
WCM (log-rank P value = .055; Data Supplement). BRCA,
COAD, GBM, LGG, OV, PRAD, READ, and THCA did not
have significantly different survival between the TMB-high
and TMB-low groups (log-rank P values . .05). To further
compare the performances of the two thresholds, time-
dependent ROC curves were created at the 5-year time
point (Fig 2D; Data Supplement). To explore the difference
between the patients selected by the thresholds, we split
the samples into three groups: TMB high, WCM-TMB high,
and TMB low. The TMB-high group contained the in-
tersection of samples classified as TMB high by both
thresholds. The WCM-TMB–high group contained sam-
ples classified as TMB high by WCM and TMB low by
Chalmers et al (when Chalmers et al had more TMB high

classifications [UCEC] than WCM, we used Chalmers-TMB
high [CHM-TMB high]). The TMB-low group contained
samples classified as TMB low by both methods (Fig 2A).
The WCM-TMB–high group did not attain significantly
improved survival compared with the TMB-low group for
BLCA (log-rank P value = .072; Fig 2B). The TMB-high and
WCM-TMB–high groups also did not have significantly
different survival (log-rank P value = .60). The WCM
threshold selected more patients in the BLCA cohort with
better overall survival compared with the TMB-low group.
KIRC showed the opposite pattern, with TMB-high patients
having poor survival compared with TMB-low patients for
the WCM threshold (log-rank P value = .0027 (Fig 2C).
Because this trend was specific to renal cancer, there is
likely a different relationship between TMB and patients
with renal cancer without immunotherapy, such as a high
TMB tumor being a more aggressive disease in KIRC. The
Chalmers et al threshold did not classify any patients with
KIRC as TMB high.

Although the survival trends were not significantly different
between the cutoffs, the number of samples classified as
TMB high differed between thresholds. Out of 14 TCGA
cancer types investigated, eight cancers had a statistically
larger TMB-high group for WCM compared with Chalmers
et al (BLCA [fold change = 1.9], BRCA [fold change = 6.7],
GBM [fold change = 2.7], KIRC [no high by Chalmers], LGG
[fold change = 13.0], OV [fold change = 5.67], PRAD [no
high by Chalmers], and THCA [no high by Chalmers]); five
cancers had no statistically significant change in the
number of TMB-high classifications (COAD, KICH, LUAD,
LUSC, and READ); and only UCEC had a large number of
TMB high classified by Chalmers et al compared with WCM
(χ2 test with Yates’s continuity correction; P value , .05;
Fig 3A). The group of samples that were classified as high
by Chalmers et al but not by WCM was referred to as CHM-
TMB high for UCEC. In addition, TMB status was a signif-
icant predictor of survival for BLCA, KIRC, and KICH
(Fig 3B). Patients with BLCA with high TMB had improved
survival compared with those with low TMB (P value =
.0028; hazard ratio [HR], 0.29 [95% CI, 0.13 to 0.65]),
whereas patients with KIRC (P value = .0047; HR, 3.26
[95%CI, 1.44 to 7.37]) and KICH (P value = .066; HR, 7.16
[95% CI, 0.88 to 58.33]) with high TMB had worse survival
compared with those with low TMB.

Although the WCM TMB cutoff classified more patients as
TMB high than did the Chalmers et al cutoff, biologic
differences needed to be explored. Predicted neoantigens
from The Cancer Immunome Atlas compared the TMB-
high, the WCM-TMB–high, and the TMB-low groups for
TCGA samples (Fig 4A).23 The TMB-low group had sig-
nificantly fewer neoantigens than both the TMB-high
(Wilcoxon P value , 2.3e-16) and WCM-TMB–high
(Wilcoxon P value = 2.1e-14) group. However, the TMB-
high and WCM-TMB–high group neoantigen counts were
also significantly different (Wilcoxon P value = 7.6e-11;
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Fig 4A). Because of the observed variation in TMB among
cancer types, neoantigens were also compared between
the TMB groups for each cancer (Figs 4B and 4C; Data
Supplement). TMB high and WCM-TMB–high LUAD
cancers did not have a significantly different number of
neoantigens (Wilcoxon P value. .05), whereas the TMB-low

group had significantly fewer neoantigens than both
the TMB-high and the WCM-TMB–high groups (Wilcoxon
P value , .05). BLCA showed the number of predicted
neoantigens in the TMB-low group to be significantly lower
than in the TMB-high (Wilcoxon P value = 9.4e-12) and
WCM-TMB–high (Wilcoxon P value = 1.1e-9) groups.
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However, the TMB-high group also had significantly more
neoantigens than the WCM-TMB–high group (Wilcoxon
P value. .01). Overall, the TMB-high andWCM-TMB–high
groups showed increased neoantigen counts compared
with the TMB-low group.

Finally, mutational signatures were compared among TMB
groups. The weight of contribution for Catalogue of Somatic
Mutations in Cancer mutational was calculated for the
patients with TCGA in the three different TMB groups and
was used to generate principal component analysis plots
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(Fig 5; Data Supplement).29 BLCA showed an apolipo-
protein B mRNA editing enzyme, a catalytic polypeptide-
like signature (signature 2), andmismatch repair deficiency
(signature 26) that were significantly different for the TMB-
low group compared with both the TMB-high (signature 2
Wilcoxon P value = 1.4e-6; signature 26Wilcoxon P value =
.0024) and the WCM-TMB–high (signature 2 Wilcoxon
P value = 4.1e-4; signature 26 Wilcoxon P value = .0013)
group, whereas there was no significant difference
between the TMB-high and the WCM-TMB–high group
(P value . .05; Fig 5C). However, UCEC showed the de-
fective polymerase-ε signature (signature 10) contribution

to be different in the TMB-high group compared with both
the CHM-TMB–high (Wilcoxon P value = 4.4e-9) and the
TMB-low (Wilcoxon P value , 2.2e-16) group but not
different between the CHM-TMB–high and TMB-low group
(Wilcoxon P value = .2).

Clinical Context of TMB

Cox regression for patients with TCGA was performed to
explore additional associations of survival predictors (Data
Supplement). For BLCA, disease stage and age were sig-
nificant predictors of survival, in addition to TMB classified
with the WCM threshold (Fig 6). In stage III patients, TMB
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and age were not significant predictors of survival (TMB
P value = .17; age P value = .078). In addition, patients with
low TMB and stage III bladder cancer had the lowest
survival rate. There was no significant difference in survival
between stages I or II and stage III when the patients were
TMB high (log-rank P value = .33), suggesting that ad-
vanced pathologic stage as a determinant of overall survival
may be interpreted in the context of TMB.

DISCUSSION

TMB varies drastically among cancer types when mea-
sured through WES. This variation can make it difficult to
classify tumors as having high or low TMB. For example,
the Chalmers et al cutoff of 20 mutations/Mb is higher
than the maximum TMB seen within TCGA prostate
cancer (14.13 mutations/Mb); however, using a lower
threshold might be too lenient for TCGA bladder cancer

(maximum TMB of 99.68 mutations/Mb). The dramatic
difference in TMB among cancer types led us to explore
a TMB threshold applied in a cancer-specific manner.
When comparing a pan-cancer to a cancer-specific
threshold, we found we were able to maintain differ-
ences in survival trends between TMB high and TMB low,
often while including more patients in the TMB-high
group by using the cancer-specific threshold. The
WCM cancer-specific threshold classified more patients as
TMB high compared with the pan-cancer Chalmers et al
threshold in 13 out of the 14 cohorts. Using a TMB
threshold that has a larger number of TMB-high classifi-
cations while not having significantly different survival
trends than a more stringent threshold can potentially open
treatment options to patients if they can be shown
to respond well. ROC curves showed the two thresholds
to have similar performance; however, the performance
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seen in recent publications suggests that TMB alone is not
a critical predictor of survival for nonimmunotherapy
treatment response.6,37,38

Differences in TMB distribution between the TCGA andWCM
Advanced cohorts could be a result of biologic or technical
differences. TCGA contains primary tumor samples, and
WCM Advanced contains mostly metastatic tumor samples.
When comparing different cohorts of patients, many tech-
nical differences can influence TMB, making a static
threshold potentially less accurate. The different assays and
bioinformatics pipelines for the patient cohorts could have
caused batch effects in this study. WCM Advanced was

sequenced using Agilent Haloplex, and TCGA used Agilent
Sure Select. After sequencing, the EXaCT-1 pipeline and
TCGA pipeline use different mutation callers and apply dif-
ferent quality filters. In addition, when comparing TMB
among studies, it is important to understand the variants that
were considered. We excluded synonymous mutations when
calculating TMB, focusing only on variants that were ex-
pected to cause an amino acid change. Therefore, our TMB
distribution could seem different when compared with
studies that include synonymous mutations.

Although this study focused on WES, targeted panels are
often used in a clinical setting and have been used for
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calculating TMB.6,38,39 Targeted panels cover different
genes and sizes of the genome and at a higher sequencing
depth than WES, influencing the estimated distribution of
TMB. The panel must cover at least 2 Mb of the genome to
have high sensitivity and specificity when measuring TMB.8

A static threshold would not be able to adjust to the differing
levels of TMB resulting from different panels. However,
a dynamic threshold would be able to adjust for technical
differences.

The cancer-specific threshold adjusted for the variation in
TMB; however, the pan-cancer threshold classified more
patients as TMB high for UCEC. Mutational signatures for
these samples showed a cluster of patients with POLE
deficiency, which led to a large number of mutations and
a TMB distribution with a large IQR,22 causing the cancer-
specific threshold to be strict in this case.

The survival analyses in this study were limited by a lack of
patients undergoing immunotherapy treatment. However,
the TCGA cohort showed significantly improved survival for

TMB-high samples with BLCA compared with TMB-low
samples. This difference in prognosis should be further
investigated and considered when interpreting the clinical
significance of TMB. In addition, the number of predicted
neoantigens was compared per cancer, showing that
a cancer-specific threshold identifies patients with a higher
number of neoantigens compared with TMB-low patients.
Moreover, TMB might depict only one factor in the success
of immunotherapy. HLA class I molecules play a critical role
in T-cell–mediated immunotherapy by presenting tumor
antigens to CD8+ T cells. This process is affected by the
germline genotype of HLA class I. A recent study has shown
that patients with melanoma and non–small-cell lung
cancer with heterozygous HLA class I exhibit improved
survival compared with patients who are homozygous.40

Because of the limitation of TCGA data, we could not ex-
amine the role of HLA class I in the current study. Overall,
a prospective study with immunotherapy patients is needed
to further elucidate the role of TMB in this context.
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