
The Implementation of the Colored Abstract Simplicial Complex
and its Application to Mesh Generation

CHRISTOPHER T. LEE*,
Department of Chemistry and Biochemistry, University of California San Diego

JOHN B. MOODY*,
ViaSat, Inc. Carlsbad-Bldg 10-2063, 6155 El Camino Real, Carlsbad, CA 92009

ROMMIE E. AMARO,
Department of Chemistry and Biochemistry, University of California San Diego

J. ANDREW MCCAMMON,
Department of Chemistry and Biochemistry, University of California San Diego

MICHAEL J. HOLST
Department of Mathematics, University of California San Diego

Abstract

We introduce CASC: a new, modern, and header-only C++ library which provides a data structure

to represent arbitrary dimension abstract simplicial complexes (ASC) with user-defined classes

stored directly on the simplices at each dimension. This is accomplished by using the latest C++

language features including variadic template parameters introduced in C++11 and automatic

function return type deduction from C++14. Effectively CASC decouples the representation of the

topology from the interactions of user data. We present the innovations and design principles of

the data structure and related algorithms. This includes a metadata aware decimation algorithm

which is general for collapsing simplices of any dimension. We also present an example

application of this library to represent an orientable surface mesh.

Keywords

Abstract Simplicial Complexes; Molecular Modeling; Mesh Generation; Mesh Decimation;
Variadic Templates; C++ Library

1 INTRODUCTION

For problems in computational topology and geometry, it is often beneficial to use simple

building blocks to represent complicated shapes. A popular block is the simplex, or the

generalization of a triangle in any dimension. Due to the ease of manipulation and the

coplanar property of triangles, triangulations have become commonplace in fields such as

geometric modeling and visualization as well as topological analysis. Discretizations are

*Contributed equally to this work

HHS Public Access
Author manuscript
ACM Trans Math Softw. Author manuscript; available in PMC 2020 August 01.

Published in final edited form as:
ACM Trans Math Softw. 2019 August ; 45(3): . doi:10.1145/3321515.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

also used for efficient solving of Partial Differential Equations (PDE). The use of meshes

has become increasingly popular even in the fields of computational biology and

medicine[24].

As methods in structural biology improve and new datasets become available, there is

interest in integrating experimental and structural data to build new predictive computer

models[19]. A key barrier that modelers face is the generation of multi-scale, computable,

geometric models from noisy datasets such as those from Electron Tomography (ET)[23].

This is typically achieved in at least two steps: (1) segmentation of relevant features, and (2)

approximation of the geometry using meshes. Subsequently, numerical techniques such as

Finite Elements Modeling or Monte Carlo can be used to investigate the transport and

localization of molecules of interest.

While many have studied mesh generation in the fields of engineering and animation, few

methods are suitable for biological datasets. This is largely due to noise introduced by limits

in image resolution or contrast. Even while using state-of-the-art segmentation algorithms

for ET datasets there are often unresolved or missed features. Due to these issues, the

generated meshes often have holes and other non-manifolds which must be resolved prior to

mathematical modeling. Another challenge is the interpretation of a voxel valued

segmentation. The conversion of zig-zag boundaries into a mesh can lead to other problems

such as extremely high aspect ratio triangles or, in general, poorly conditioned elements[23].

To remedy this, various smoothing and decimation algorithms must also be applied prior to

simulation.

Previous work by us and others have introduced a meshing tool for biological models,

GAMer, for building 3D tetrahedral meshes which obey internal and external constraints,

such as matching embedding and/or enclosing molecular surfaces. It also provides the ability

to use various mesh improvement algorithms for volume and surface meshes[13, 22].

GAMer uses the Tetgen library as the primary tetrahedral volume generator[20]. While the

algorithms are sound, the specific implementation is prone to segmentation faults even for

simple meshes. Careful analysis of the code has identified that the data structures used for

the representation of the mesh is primarily at fault. This article will focus entirely on the

representation of topology in very complex mesh generation codes. We note that the

algorithms which handle geometric issues like shape regularity and local adaptivity are well

understood[2, 16], among others. Similarly there is a large body of literature related to local

mesh refinement and decimation[3, 4]. Our innovations serve to enable the implementation

of these algorithms in the most general and robust way.

GAMer currently employs a neighbor list data structure which tracks the adjacency and

orientation of simplices. Neighbor lists are quick to construct, however the representation of

non-manifolds often leads to code instability. Algorithms must check for aberrant cases

creating substantial overhead. We note that while the need to gracefully represent 2D and 3D

non-manifolds for ET applications drove our initial focus, we are also interested in mesh

generation in higher dimensions with applications to: numerical general relativity (3D+1)

[14, 18], computational geometric analysis (nD)[15], phase space simulations (6D), and

LEE et al. Page 2

ACM Trans Math Softw. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

arbitrary collective variable spaces in molecular modeling for enhanced sampling[21]. We

therefore chose following requirements for a mesh data structure to serve as design goals:

• General and capable of representing non-manifold, mixed dimensional, oriented

and non-oriented meshes in arbitrary dimensions.

• Support for inline and flexible data storage. In some applications, data must be

associated with the topology. For example, problems in general relativity

typically require the storage of metric tensors on all simplex dimensions.

• Support for intuitive and simple manipulations and traversals.

Here we describe the development of a scalable colored abstract simplicial complex data

structure called CASC. Simplices are stored as nodes on a Hasse diagram. For ease of

traversal all adjacency is stored at the node level. An additional data object can be stored at

each node which is typed according to the simplex dimension at compile time. This means

that, for example, for a mesh the 0-simplices can be assigned a vertex type while the 2-

simplices can store some material property instead. Typing of each k-simplex is achieved

using variadic templates introduced in C++11. CASC thus provides a natural separation

between the combinatorics represented by the ASC from the underlying data types at each

simplex dimension and their interactions. In §2 we briefly define an ASC and some relevant

definitions followed by the introduction of the CASC data structure and it’s construction in

§3. We then demonstrate the use of CASC to represent a surface mesh and compute vertex

tangents in §5.

1.1 Related Work

Although many data structures to represent simplicial complexes have been developed, to

the best of our knowledge there currently exists no data structure which supports meshes of

arbitrary dimension with user-selected typed data stored directly on each simplex. A full

review of all existing data structures is beyond the scope of this work, however we highlight

several representative examples. Many data structures such as the half-edge and doubly-

connected edge list among others are restricted to the representation of two-manifolds

only[9]. Other data structures such as SIG[8], IS[10], IA*[7], SimplexTree[6], AHF[11, 17],

LinearCellComplex, and dD Triangulations[5] support or can be extended to represent

arbitrary dimensional simplicial complexes. However, their current implementations either

do not consider the storage of data beyond possibly embedding, or do not support inline

storage of user data. LinearCellComplex from CGAL supports only a linear geometrical

embedding[1]. AHF implemented in MOAB uses separate arrays of data which are then

referenced using a handle[11, 17]. In addition to the limitations of data storage, some make

assumptions limiting their generality. dD Triangulations, for example, assumes that a

simplicial complex is pure and therefore does not support the representation of mixed

dimensional complexes[5].

LEE et al. Page 3

ACM Trans Math Softw. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2 BACKGROUND – ABSTRACT SIMPLICIAL COMPLEXES

An Abstract Simplicial Complex (ASC) is a combinatorial structure which can be used to

represent the connectivity of a simplicial mesh, independent of any geometric information.

More formally, the definition of an ASC is as follows.

Definition 2.1. Given a vertex set V, an abstract simplicial complex ℱ of V is a set of

subsets of V with the following property: for every set X ∈ ℱ, every subset Y ⊂ X is also a

member of ℱ.

The sets s ∈ ℱ are called a simplex or face of ℱ; similarly a face X is said to be a face of

simplex s if X ⊂ s. Since X is a face of s, s is a coface of X. Each simplex has a dimension

characterized by dim s = −s− – 1, where −s− is the cardinality of set s. A simplex of dim s =

k is also called a k-simplex. The dimension of the complex, dim(ℱ), is defined by the largest

dimension of any member face. Simplices of the largest dimension, dim(ℱ) are referred to as

the facets of the complex.

If one simplex is a face of another, they are incident. Every face of a k-simplex s with

dimension (k − 1) is called a boundary face while each incident face with dimension (k + 1)

is a coboundary face. Two k-simplices, f and s are considered adjacent if they share a

common boundary face, or coboundary face. The boundary of simplex s, ∂s, is the sum of

the boundary faces.

Having introduced the concept of an ASC, we can also define several operations useful

when dealing with ASCs. A subcomplex is a subset that is a simplicial complex itself. The

Closure (Cl) of a simplex, f, or some set of simplices F ⊆ ℱ is the smallest simplicial

subcomplex of ℱ that contains F:

Cl(f) = {s ∈ ℱ ∣ s ⊆ f }; Cl(F) = ⋃
f ∈ F

Cl(f) (closure) . (1)

It is often useful to consider the local neighborhood of a simplex. The Star (St) of a simplex

f is the set of all simplices that contain f:

St(f) = {s ∈ ℱ ∣ f ⊆ s}; St(F) = ⋃
f ∈ F

St(f) (star) . (2)

The Link (Lk) of f consists of all faces of simplices in the closed star of f that do not

intersect f:

Lk(f) = {s ∈ Cl ∘ St(f) ∣ s ∩ f = ∅} = Cl ∘ St(f) − St ∘ Cl(f) (link) . (3)

For some algorithms, it is often useful to iterate over the set of all vertices or edges etc. We

use the following notation for the horizontal “level” of an abstract simplicial complex.

LEE et al. Page 4

ACM Trans Math Softw. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lvlk(ℱ) = {s ∈ ℱ ∣ dim s = k} (4)

A subcomplex which contains all simplices s ∈ ℱ where dim(s) ≤ k is the k-skeleton of ℱ:

ℱk = Cl ∘ Lvlk(ℱ) = ⋃
i ≤ k

Lvli(ℱ) . (5)

By Definition 2.1, an ASC forms a partially ordered set, or poset. Posets are frequently

represented by a Hasse diagram, a directed acyclic graph, where nodes represent sets, and

edges denote set membership. Several example simplicial complexes and their

corresponding Hasse diagrams are shown in Fig. 1. Colloquially we will use up and down to

refer to the coboundary and boundary of a simplex respectively. In Hasse diagrams, we

follow a convention that simplices shown graphically on the same horizontal level have the

same simplex dimension. Furthermore, simplices of greater dimension are drawn above

lesser simplices.

3 COLORED ABSTRACT SIMPLICIAL COMPLEX

In this section we introduce the CASC data structure and its implementation. For a given

simplicial complex, each simplex is represented by a node (asc_Node) in the Hasse diagram,

and defined by a set of keys corresponding to the vertices which comprise the simplex. Note

that we use node to refer to objects in CASC Hasse diagram and not 0-simplices. Instead, 0-

simplex are referred to as the vertices of the mesh. Furthermore we refer to the Ø-simplex or

−1-simplex as the root simplex interchangeably. When a node is instantiated, we assign it a

unique Integer Internal Identifier (iID) for use in the development of CASC algorithms. The

iID is constant and never exposed to the end-user except for debugging purposes. Instead

nodes can be referenced by the user using the SimplexID which acts as a convenience

wrapper around an asc_Node*, providing additional support for move semantics for fast data

access. All topological relations (i.e., edges of the Hasse diagram) are stored in each node as

a dictionary which maps user specified keys to SimplexIDs up and down. An example data

structure diagram of triangle {1,2,3} is shown in Fig. 2. Based upon this example, if a user

has the SimplexID of 1-simplex {1, 2} and wishes to get 2-simplex {1, 2, 3}, they can look

in the Up dictionary of SimplexID{1, 2} for key 3 which maps to a SimplexID{1, 2, 3}. The

vertices which constitute each simplex are not stored directly, but can be accessed by

aggregating all keys in Down.

We note that while the representation of all topological relations is redundant and may not

be memory optimal, it vastly simplifies the traversals across the complex. Furthermore, the

associate algorithms and innovations using variable typing are general and thus compatible

with other more condensed representations.

LEE et al. Page 5

ACM Trans Math Softw. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3.1 Variable Typing Per Simplex Dimension

We achieve coloring by allowing user-defined data to be stored at each node. The typical

challenge for strongly typed languages such as C++ is that the types must be defined at

compile time. Typical implementations would either hard code the type to be stored at each

level or use a runtime generic type, such as void*. However, each of these have drawbacks.

For the former, this requires writing a new node data structure for every simplicial complex

we may wish to represent. For the latter, using void* adds an extra pointer dereference

which defeats cache locality and may lead to code instability. Another possible

implementation might be to require users of the library to derive their data types from a

common class through inheritance. This solution puts an unnecessary burden on users who

may have preexisting class libraries, or simply wish to store a built in type, such as an int.

Furthermore, under the inheritance scheme, changes to the underlying container may require

users to update their derived classes. To avoid this cumbersome step, we have employed the

use of variadic templates introduced in C++11 to allow for unpacking and assignment of

data types. The user specifies the types to be stored at each level in a list of templates to the

object constructor, see Fig. 3.

The variadic templating allows CASC to represent complexes of any user-defined

dimension. To specify an N-simplicial complex, CASC requires the definition of an

index/key type followed by N + 1 data types and N edge types. The first data type provided

after the key type corresponds to data stored on the Ø-simplex which can be thought of as

global metadata. For example, suppose we have a 2-simplicial complex intended for

visualization and wish to store locations of vertices and colors of faces. A suitable ASC can

be constructed using the following template command:

If we now wish to represent a tetrahedral mesh, instead of constructing a new data structure,

we can simply adjust the command:

In both cases, the first template argument is the key type for referring to vertices followed by

the data type for each k-simplex. Supposing that the user does not wish to store data on any

given level, by passing “void” as the template argument, the compiler will optimize the node

data type and no memory will be allocated to store data. In both cases, the 0- and 1-

simplices will have no data.

By using variadic templates, we allow the user to specify both the dimension of the

simplicial complex as well as the types stored at each level. Because the type deduction is

performed at compile time, there is no runtime performance impact on user codes. There is,

however, some additional code complexity introduced. If the user wishes to retrieve the data

stored in a simplicial complex, they must know what level they are accessing at compile

time. A consequence is that the exposed identifier object, SimplexID, is templated on the

integral level, so that types can be deduced. This does not present a problem for simple use

cases, such as:

LEE et al. Page 6

ACM Trans Math Softw. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

However, when implementing algorithms intended to be generic on any simplicial complex,

templated code must be written. We discuss the implementation of several such algorithms

in the following section.

4 IMPLEMENTED ALGORITHMS

The following algorithms are provided with the CASC library:

• Basic Operations

– Creating and deleting simplices (insert/remove)

– Searching and traversing topological relations (GetSimplexUp/

GetSimplexDown)

• Traversals

– By level (get_level)

– By adjacency (neighbors_up/neighbors_down)

– Traversals across multiple node types (Visitor Design Pattern/double

dispatch)

• Complex Operations

– Star/Closure/Link

– Metadata aware decimation

4.1 Basic Operations

4.1.1 Creating and deleting simplices.—Since the CASC data structure maintains

every simplex in the complex and all topological relations, inserting a k-simplex, s, into the

LEE et al. Page 7

ACM Trans Math Softw. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

complex means ensuring the existence of, and possibly creating, 𝒪(2k) nodes and 𝒪(k ⋅ 2k − 1)
edges (see derivation in SI). Fortunately, the combinatorial nature of simplicial complexes

allows this to be performed recursively. A generalized recursive insertion operation for any

dimensional complex and user specified types, is described in Algorithm 1. The insertion

algorithm defines an insertion order such that all dependent simplices exist in the complex

prior to the insertion of the next simplex.

As an illustrative example of the template code used in this library, Algorithm 1 is rewritten

in C++ template function-like pseudocode shown in Algorithm 6. While the templated code

is more complicated, it provides many optimizations. For example, since the looping and

recursion are performed at compile time, for any k-simplex we wish to insert, any modern

compiler should optimize the code into a series of insertNode() calls; the setupForLoop()

and forLoop() function calls can be completely eliminated. As a result, the optimized

templated code will exhibit superior run time performance. To illustrate the insertion

operation, a graphical representation of inserting tetrahedron {1,2,3,4} by Algorithm 6 is

shown in Fig. 4, and step-by-step in Fig. S6. In the example, new simplex root ∪ v is added

sequentially to the complex and any missing topological relations are found by traversing the

faces of root and backfilling.

The removal of any simplex is also performed using a recursive template function. When

removing simplex s, in order to maintain the property of being a simplicial complex, all

cofaces of s or f ∈ St(s) must also be removed along with any boundary/coboundary

relations of f. The implemented removal algorithm traverses up the complex and removes

simplex s and all cofaces of s level by level.

4.1.2 Searching and traversing topological relations.—The algorithms for

retrieving a simplex as well as for basic traversals from one simplex to another across the

data structure are the same. Given a starting simplex, and an array of keys up, the new

simplex can be found recursively by Algorithm 2; The annotated code used is shown in §A.

3. Traversals from one simplex to another require a key lookup followed by a pointer

dereference and therefore occur in approximately constant time (𝒪(1)). Since all topological

relations are stored, the traversal order across the array of keys does not matter. The same

algorithm can be applied going down in dimension. For the retrieval of an arbitrary simplex,

we start the search up from the root node of the complex.

4.2 Traversals

Thus far, we have presented algorithms for the creation of a simplicial complex as well as

the basic traversal across faces and cofaces. For many applications, other traversals, such as

by adjacency, may be more useful. We present several built-in traversal algorithms as well as

the visitor design pattern for complicated operations.

4.2.1 By level.—It is often useful to have a traversal over all simplices of the same level.

For example, iterating across all vertices to compute a center of mass. To support this in an

efficient fashion,

LEE et al. Page 8

ACM Trans Math Softw. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

simplices of the same dimension are stored in a level specific map of iIDs to node pointers.

Notably, the map for each level is instantiated with the correct user specified node type with

respect to level at compile time. To achieve this, we again use variadic templates to generate

a tuple of maps, where each tuple element corresponds to the map for a specific level’s node

type.

Since asc_nodes are templated on the integral level, we can use a template type map to map

an integral sequence to the node pointer type,

tuple 〈1, 2, 3, …〉 Node 〈k〉 ∗
tuple〈Node〈1〉 ∗ , Node〈2〉 ∗ , Node〈3〉 ∗ , …〉,

producing a tuple of integrally typed node pointers. Subsequently, we can map again to

generate a tuple of maps,

tuple〈Node〈1〉 ∗ , Node〈2〉 ∗ , …〉 map < int, T >
tuple〈map〈int, Node〈1〉 ∗ 〉, map〈int, Node〈2〉 ∗ 〉, …〉 .

By using this variadic template mapping strategy we now have the correct typenames

assigned. Any level of the tuple can be accessed by getting the integral level using functions

in the C++ standard library. Variations of this mapping strategy are also used to construct the

SimplexSet and SimplexMap structures below.

For end users, the implementation details are entirely abstracted away. Continuing from the

example above, iteration over all vertices of simplicial complex, mesh, can be performed

using the provided iterator adaptors as follows.

Listing 1. Example use of iterator adaptors for traversal across vertices of mesh.

LEE et al. Page 9

ACM Trans Math Softw. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The function get_level_id<k>() retrieves level k from the tuple and returns an iterable range

across the corresponding map.

4.2.2 By adjacency.—Many geometric algorithms operate on the local neighborhood of

a given simplex. Unlike other data structures such as the halfedge, CASC does not store the

notion of the next simplex. Instead, adjacency is identified by searching for simplices with

shared faces or cofaces in the complex. The algorithm for finding neighbors with shared

faces is shown in Algorithm 3. We note that the set of simplices with shared faces may be

different than the set of simplices with shared cofaces. Both adjacency definitions have been

implemented and we leave it to the end user to select the relevant function. Once a neighbor

list has been aggregated, it can be traversed using standard methods. While the additional

adjacency lookup step is extra in comparison to other data structures, in many cases, the

generation of neighbor lists need only be done once and cached. The trade off is that CASC

offers facile manipulations of the topology without having to worry about reorganizing

neighbor pointers.

4.2.3 Traversals over multiple node types.—When performing more complicated

traversals, such as iterating over the star of a simplex, multiple node types may be

encountered. In order to avoid typename comparison based branch statements, we have

implemented visitor design pattern-based breadth first searches (BFS). The visitor design

pattern refers to a double dispatch strategy where a traversal function takes a visitor functor

which implements an overloaded visit() function. At each node visited, the traversal function

will call visit() on the current node. Since the functor overloads visit() per node type, the

compiler can deduce which visit function to call. Example pseudocode is shown in Listing 2.

This double dispatch strategy, eliminates the need for extensive runtime typename

comparisons, and enables easy traversals over multiple node types. We provide breadth first

traversals up and down the complex from a set of simplices. These visitor traversals are used

extensively in the complex operations described below.

LEE et al. Page 10

ACM Trans Math Softw. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Listing 2. Example pseudocode of double dispatch to traverse the complex while scaling the

mesh by 2 and coloring the faces green.

4.3 Complex Operations

4.3.1. Star/Closure/Link.—The star, link, and closure can be computed using the visitor

breadth first traversals to collect simplices. These operations typically produce a set of

simplices spanning multiple simplex dimensions, and thus simplex typenames, which cannot

be stored in a traditional C++ set. We have implemented a multi-set data structure called the

SimplexSet, which is effectively a tuple of typed sets corresponding to each level. The

SimplexSet is constructed using the same mapping strategy as the tuple of maps used for the

iteration across levels. For convenience, we provide functions for typical set operations such

as insertion, removal, search, union, intersection, and difference. Using a combination of the

star and closure functions with SimplexSet difference we can get the link by Eq. 3.

4.3.2 Metadata aware decimation.—We have implemented a general decimation

algorithm which operates by collapsing simplices of higher dimensions into a vertex. While

edge collapses for 2-manifolds are well studied, a general dimensional collapse is useful for

decimating higher-dimensional meshes used to solve PDEs such as those encountered in

general relativity. Since simplices are being removed from the complex, user data may be

LEE et al. Page 11

ACM Trans Math Softw. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

lost. Our implementation is metadata aware and allows the user to specify what data to keep

post decimation. This is achieved by using a recursive algorithm to produce a map of

removed simplices to new simplices. The user can use this mapping to define a function

which maps the original stored data to the post decimation topology. This decimation

strategy is implemented as an inplace operation yielding decimated mesh containing data

mapped according to a user specified callback function.

This decimation algorithm is a generalization of an edge collapse operation to arbitrary

dimensions. It is formally defined as follows:

Definition 4.1. Given simplicial complex ℱ, simplex to decimate s ∈ ℱ, vertex set V of ℱ,

and new vertex p ∉ V, we define function,

LEE et al. Page 12

ACM Trans Math Softw. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

φ(f) = f if f ∩ s = ∅
p ∪ (f s) if f ∩ s ≠ ∅ , (6)

where f is any simplex f ∈ ℱ. We define the decimation of ℱ by replacing s with p as φ(ℱ).

Note that decimation under this definition is not guaranteed to preserve the topology, as can

by seen by decimating any edge or face of a tetrahedron.

Decimation of a simplicial complex must result in a valid triangulation. Here we show that

decimation by Definition 4.1 produces a valid abstract simplicial complex.

THEOREM 4.2. φ(ℱ) is an abstract simplicial complex.

PROOF. Given simplices y and x, let y ∈ φ(ℱ) and let x ⊂ y. We will show that x ∈ φ(ℱ).
There are two cases for y ∪ p, as they can be disjoint or intersecting.

Considering the disjoint case where y ∩ p = Ø. This implies that y ∈ ℱ and y ∩ s = Ø. Since

ℱ is a simplicial complex, y ∈ ℱ implies that x ∈ ℱ. Furthermore since y ∩ s = Ø and x ⊂ y,

then x ∩ s = Ø implying that φ(x) = x and thus x ∈ φ(ℱ).

Alternately in the intersecting case where y ∩ p ≠ 0, that is y ∩ p = p. Since x ⊂ y there are

two sub-cases where x either contains p or does not.

Supposing that x ∩ p = Ø. Then x ⊂ (f \ s) implying that x ∈ ℱ and x ∩ s = Ø. Therefore by

the disjoint case, φ(x) = x implies that x ∈ φ(ℱ).

Supposing that x ∩ p = p. We can rewrite any such simplex x as x = w ∪ p where w ∩ p = Ø.

Furthermore we can write that y = x ∪ r where x ∩ r = Ø and r ∩ p = Ø and thus y = w ∪ p ∪
r. There exists some set q such that f = w ∪ r ∪ q and q ⊆ s such that φ(f) = p ∪ ((w ∪ r ∪ q)

\ s) = y Since f ∈ ℱ then w ∪ q ∈ ℱ. Therefore φ(w ∪ q) = p ∪ ((w ∪ q)\ s) = p ∪ w = x and

thus x ∈ φ(ℱ).

For all cases and sub-cases we have shown that x ∈ φ(ℱ) therefore φ(ℱ) is an abstract

simplicial complex.

A pseudocode implementation for this decimation is provided in Algorithm 4. Given some

simplicial complex ℱ and simplex s ∈ ℱ to decimate, this algorithm works in four steps.

First, we compute the complete neighborhood, nbhd = St(Cl(s)), of s. Simplices not in the

complete neighborhood will be invariant under φ and are ignored. Next, we use a nested set

of breadth first searches to walk over the complete neighborhood and compute p ∪ f \ s for

each simplex in the neighborhood. The results are inserted into a SimplexMap which maps

φ(f) to a SimplexSet of all f which map to φ(f). Third, we iterate over the SimplexMap and

run the user defined callback on each mapping to generate a list of new simplices and

associated mapped data stored in SimplexDataSet. Finally, the algorithm removes all

simplices in the complete neighborhood and inserts the new mapped simplices.

LEE et al. Page 13

ACM Trans Math Softw. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

An example application of this decimation operation is shown in Figure 5. In Figure 5a we

show the geometric realization of the complex before and after the decimation of simplex

{3,4}. In Figure 5b we show the detailed Hasse diagrams for the constructed example. Note

that there are two possible mapping situations. In one case, f ∈St(Cl(s)) ∩ Cl(St(s)), groups

of simplices are merged. In the other case, simplices f ∈ Cl(St(s)) \ St(Cl(s)) only need to be

reconnected to the new merged simplices. By carefully choosing the traversal order, some

optimizations can be made.

We apply the decimation on the constructed example shown in Figure 5 and show the order

of operations with respect to the current visited simplex for each visitor function in Table 1.

Starting out, MainVisitor and InnerVisitor will visit {3,4}. At this point, GrabVisitor will

search BFS down from {3,4} to grab the set {{3,4}, {3}, {4}} and remove it from the

neighborhood, eliminating some future calculations at {3} and {4}. All simplices in this set

will map to new simplex {6} after decimation. Continuing upwards, InnerVisitor will find

simplex {1,3,4} and GrabVisitor will grab set {{1,3,4}, {1,3}, {1,4}}. Again this set of

simplices will map to common simplex {1,6} post decimation. A similar case occurs with

simplex {3,4,5}. At this point, all simplices in St(Cl(s)) ∩ Cl(St(s)) have been visited and

removed from the neighborhood and MainVisitor continues BFS down and finds {3} and

calls BFS up (InnerVisitor). Note that since simplex {3} has already been grabbed,

InnerVisitor will continue upwards and find {0,3}. Looking down there are no simplices

which are faces of {0,3} in the neighborhood. So on and so forth.

To reiterate, GrabVisitor grabs the set of simplices which will be mapped to a common

simplex. We show here that the order in which simplices are grabbed by Algorithm 4 will

preserve that all simplices f = w ∪ q where q ⊆ s will map to φ(f) = w ∪ p.

When visiting any simplex f ⊋ q where q ⊆ s and q corresponds to simplices visited by

MainVisitor. We can write f as f = w ∪ q where the sets w and q are disjoint. Looking down

from f all simplices fall into two cases: g = v ∪ q where Ø ⊆ v ⊊ w or h = w ∪ t where t ⊊ q.

All simplices of form g, at worst case, will been grabbed while InnerVisitor proceeded BFS

up from q. Remaining simplices h can be grouped with f and correctly mapped to w ∪ p.

We note that in some non-manifold cases GrabVisitor will not always grab set members in

one visit. Supposing that we removed simplex {1,3,4} from the constructed example, in this

case, InnerVisitor cannot visit {1,3,4} and simplices {1,3} and {1,4} will not be grouped.

Instead {1,3} and {1,4} will be found individually when MainVisitor visits {3} then {4}. To

catch this case and correctly map {1,3} and {1,4} to {1,6}, we use a SimplexMap to

aggregate all maps prior to proceeding. We note that in all cases starting with a valid

simplicial complex, this implementation of the general collapse of simplex s visits each

member in St(Cl(s)) and maps according to Def. 4.1 producing a valid simplicial complex.

There is no guarantee that the result will have the same topological type as the pre-

decimated mesh. The preservation of the topological type under decimation is often a

desirable trait. We will show how to verify the Link Condition for when edge collapse of a

2-manifold will preserve the topological type in §5.1.

LEE et al. Page 14

ACM Trans Math Softw. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

5 SURFACE MESH APPLICATION EXAMPLE

CASC is a general simplicial complex data structure which is suitable for use in mesh

manipulation and processing. For example, we can use CASC as the underlying

representation for an orientable surface mesh. Using a predefined Vertex class which is

wrapped around a tensor library, and a class Orientable which wraps an integer, we can

easily create a surface mesh embedded in ℝ3.

In this case, 1-simplices will store a Vertex type while faces and all edges will store

Orientable. Using SurfaceMesh we can easily create functions to load or write common

mesh filetypes such as OFF as shown in the included library examples.

We can define a boundary morphism which applies on an ordered k-simplex,

∂i
k([a0, …, ak − 1]) = (− 1)i([a0, …, ak − 1] {ai}), (7)

where ai < ai+1. Using Algorithm 5, we can apply this morphism to assign a ±1 orientation to

each topological relation in the complex. Subsequently, for orientable manifolds, we can

compute orientations of faces f1 and f2 which share edge e such that,

Orient(e1) ⋅ Orient(f 1) + Orient(e2) ⋅ Orient(f 2) = 0, (8)

where e1 and e2 correspond to the edge up from e to f1 and f2 respectively. Doing so, we

create an oriented simplicial complex.

Supposing that we wish to compute the tangent of a vertex as defined by the weighted

average tangent of incident faces. This is equivalent to computing the oriented wedge

products of each incident face. This can be written generally as,

LEE et al. Page 15

ACM Trans Math Softw. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tangent(v) = 1
N ∑

i = 0

N
Orient(f i) ⋅ (∂ j(f i) ∧ ∂k(f i)) (9)

= 1
N ∑

i = 0

N
Orient(f i) ⋅ 1

2(ei, j ⊗ ei, k − ei, k ⊗ ei, j), (10)

where N is the number of incident faces, fi is incident face i, j and k are indices of vertex

members of fi not equal to v, and ei,j = ∂j(fi). This can be easily computed using a templated

recursive function.

This demonstrates the ease using the CASC library as an underlying simplicial complex

representation. Using the provided API, it is easy to traverse the complex to perform any

computations.

5.1 Preservation of Topology Type of Surface Mesh Under Edge Decimation by
Contraction

Supposing we wish to decimate a surface mesh by edge contraction under Def. 4.1 without

changing the topology of the complex. This can be verified by checking the Link Condition,

defined with proof from Edelsbrunner[12], stating,

LEMMA 5.1. Let F be a triangulation of a 2-manifold. The contraction of ab ∈ F preserves the
topological type if and only if Lk(a) ∩ Lk(b) = Lk(ab).

Revisiting the example from Fig. 5a, we can construct the topology and check the Link

Condition using operations supported by the CASC library.

LEE et al. Page 16

ACM Trans Math Softw. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The getLink() function utilizes a series of visitor breadth first traversals down then up the

complex, collecting the set of simplex into a SimplexSet object. Then using set operations

provided by SimplexSet the set difference and equality comparison are performed. This

example highlights the simplicity, clarity, and transparency of using the CASC library.

6 CONCLUSIONS

CASC provides a general simplicial complex data structure which allows the storage of user

defined types at each simplex level. The library comes with a full-featured API providing

common simplicial complex operations, as well as support for complex traversals using a

visitor. We also provide a metadata aware decimation algorithm which allows users to

collapse simplices of any dimension while preserving data according to a user defined

mapping function. Our implementation of CASC using a strongly-typed language is only

possible due to recent innovations in language tools. The CASC API abstracts away most of

the complicated templating, allowing it to be both modern and easy to use. We anticipate

that CASC will not only be of use for the ET community but microscopy and modeling as a

whole along with other fields like applied mathematics and CAD.

One limitation is the ease of extending to other languages. The generality of CASC is reliant

upon the C++ compiler. Sacrificing this, specific realizations of CASC can be wrapped using

tools like SWIG for use in other languages. Another limitation of CASC is the memory

LEE et al. Page 17

ACM Trans Math Softw. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

efficiency. The current Hasse diagram based implementation was selected for the sake of

transparency, ease of traversal, and manipulation. Optimizations to the memory efficiency of

CASC can be made by employing more compact representations. The variadic template

approach we use to attach user data to simplices is compatible with data structures which

explicitly represent all simplices but only a subset of topological relations. This includes

data structures such as SimplexTree[6], IS[10], and SIG[8] among others. Other compressed

data structures which skip levels of low importance using implicit nodes are not compatible

with the current CASC implementation. Skipped levels would need to be implemented as

exceptions to the combinatorial variadic rules. Similarly, although CASC in its current form

is restricted to the representation of simplicial complexes, the combinatorial strategy can be

easily adapted to support other regular polytopes by changing the boundary relation storage

rules. In the future we hope to incorporate parallelism into the CASC library. A copy of

CASC along with online documentation can found on GitHub https://github.com/ctlee/casc.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for their valuable comments and helpful suggestions. This
work is supported by the National Institutes of Health, NIGMS under grant numbers P41-GM103426 and RO1-
GM31749. CTL also acknowledges support from the NIH Molecular Biophysics Training Grant T32-GM008326.
MJH was supported in part by the National Science Foundation, Division of Mathematical Sciences under awards
DMS-CM1620366 and DMS-FRG1262982.

REA is a cofounder and scientific advisor of, and has equity interest in, Actavalon, Inc.

REFERENCES

[1]. [n. d.]. CGAL, Computational Geometry Algorithms Library. http://www.cgal.org

[2]. Babuška I and Aziz AK. 1976 On the Angle Condition in the Finite Element Method. SIAM J.
Numer. Anal 13, 2 (4 1976), 214–226. 10.1137/0713021

[3]. Bank Randolph E., Sherman Andrew H., and Weiser Alan. 1983 Refinement Algorithms and Data
Structures for Regular Local Mesh Refinement In Sci. Comput. Appl. Methematics Comput. to
Phys. Sci, Stepleman RS (Ed.). North-Holland, 3–17.

[4]. Bank Randolph E. and Xu Jinchao. 1996 An Algorithm for Coarsening Unstructured Meshes.
Numer. Math 73, 1 (3 1996), 1–36. 10.1007/s002110050181

[5]. Boissonnat Jean-Daniel, Devillers Olivier, and Hornus Samuel. 2009 Incremental Construction of
the Delaunay Graph in Medium Dimension. In Annu. Symp. Comput. Geom. Aarhus, Denmark,
208–216. https://hal.inria.fr/inria-00412437

[6]. Boissonnat Jean-Daniel and Maria Clément. 2014 The Simplex Tree: An Efficient Data Structure
for General Simplicial Complexes. Algorithmica 70, 3 (11 2014), 406–427. 10.1007/
s00453-014-9887-3

[7]. Canino David, De Floriani Leila, and Weiss Kenneth. 2011 IA*: An Adjacency-Based
Representation for Non-Manifold Simplicial Shapes in Arbitrary Dimensions. Comput. Graph
35, 3 (6 2011), 747–753. 10.1016/j.cag.2011.03.009

[8]. De Floriani Leila, Greenfieldboyce David, and Hui Annie. 2004 A Data Structure for Non-
Manifold Simplicial D-Complexes. In Proc. 2004 Eurographics/ACM SIGGRAPH Symp. Geom.
Process. - SGP ‘04 ACM Press, New York, New York, USA, 83 10.1145/1057432.1057444

LEE et al. Page 18

ACM Trans Math Softw. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/ctlee/casc
http://www.cgal.org
https://hal.inria.fr/inria-00412437

[9]. De Floriani Leila and Hui Annie. 2005 Data Structures for Simplicial Complexes: An Analysis and
a Comparison. In Proc. Third Eurographics Symp. Geom. Process Eurographics Association,
Vienna, 119 http://dl.acm.org/citation.cfm?id=1281920.1281940

[10]. De Floriani Leila, Hui Annie, Panozzo Daniele, and Canino David. 2010 A Dimension-
Independent Data Structure for Simplicial Complexes. In Proc. 19th Int. Meshing Roundtable.
Springer Berlin Heidelberg, Berlin, Heidelberg, 403–420. 10.1007/978-3-642-15414-0_24

[11]. Dyedov Vladimir, Ray Navamita, Einstein Daniel, Jiao Xiangmin, and Tautges Timothy J.. 2015
AHF: Array-Based Half-Facet Data Structure for Mixed-Dimensional and Non-Manifold
Meshes. Eng. Comput 31, 3 (7 2015), 389–404. 10.1007/s00366-014-0378-6

[12]. Edelsbrunner Herbert. 2001 Geometry and Topology for Mesh Generation. Cambridge University
Press, Cambridge 10.1017/CBO9780511530067

[13]. Gao Zhanheng, Yu Zeyun, and Holst Michael. 2013 Feature-Preserving Surface Mesh Smoothing
Via Suboptimal Delaunay Triangulation. Graph. Models 75, 1 (1 2013), 23–38. 10.1016/j.gmod.
2012.10.007 [PubMed: 23580890]

[14]. Holst M, Sarbach O, Tiglio M, and Vallisneri M. 2016 The Emergence of Gravitational Wave
Science: 100 Years of Development of Mathematical Theory, Detectors, Numerical Algorithms,
and Data Analysis Tools. Bull. Amer. Math. Soc 53 (2016), 513–554. 10.1090/bull/1544

[15]. Holst M and Tiee C. 2018 Finite Element Exterior Calculus for Parabolic Evolution Problems on
Riemannian Hypersurfaces. Journal of Computational Mathematics 36, 6(2018), 792–832.

[16]. Liu A and Joe B. 1994 Relationship Between Tetrahedron Shape Measures. BIT 34, 2 (6 1994),
268–287. 10.1007/BF01955874

[17]. Ray Navamita, Grindeanu Iulian, Zhao Xinglin, Mahadevan Vijay, and Jiao Xiangmin. 2015
Array-Based Hierarchical Mesh Generation in Parallel. Procedia Eng. 124 (2015), 291–303.
10.1016/j.proeng.2015.10.140

[18]. Regge T. 1961 General Relativity Without Coordinates. Nuovo Cim. 19, 3 (2 1961), 558–571.
10.1007/BF02733251

[19]. Roberts Elijah. 2014 Cellular and Molecular Structure As a Unifying Framework for Whole-Cell
Modeling. Curr. Opin. Struct. Biol 25 (4 2014), 86–91. 10.1016/j.sbi.2014.01.005 [PubMed:
24509245]

[20]. Si Hang. 2015 TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM Trans.
Math. Softw 41, 2 (2 2015), 1–36. 10.1145/2629697

[21]. Vanden-Eijnden Eric and Venturoli Maddalena. 2009 Markovian Milestoning with Voronoi
Tessellations. J. Chem. Phys 130, 19 (5 2009), 194101 10.1063/1.3129843 [PubMed: 19466815]

[22]. Yu Zeyun, Holst Michael J., and McCammon J. Andrew. 2008 High-Fidelity Geometric
Modeling for Biomedical Applications. Finite Elem. Anal. Des 44, 11 (7 2008), 715–723.
10.1016/j.finel.2008.03.004

[23]. Yu Zeyun, Holst Michael J, Hayashi Takeharu, Bajaj Chandrajit L, Ellisman Mark H,
McCammon J Andrew, and Hoshijima Masahiko. 2008 Three-Dimensional Geometric Modeling
of Membrane-Bound Organelles in Ventricular Myocytes: Bridging the Gap Between
Microscopic Imaging and Mathematical Simulation. J. Struct. Biol 164, 3 (12 2008), 304–313.
10.1016/j.jsb.2008.09.004 [PubMed: 18835449]

[24]. Zhang Yongjie. 2016 Geometric Modeling and Mesh Generation from Scanned Images.
Chapman and Hall/CRC 10.1201/b19466

LEE et al. Page 19

ACM Trans Math Softw. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dl.acm.org/citation.cfm?id=1281920.1281940

Fig. 1.
Hasse diagrams of several Abstract Simplicial Complexes and a geometric realization from

left to right: the empty set, a vertex, an edge, a triangle, a tetrahedron.

LEE et al. Page 20

ACM Trans Math Softw. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
Data structure diagram of a triangle represented using CASC. Each simplex is represented as

a node containing a dictionary up and/or down which maps the vertex index to a pointer to

the next simplex. Data can be stored at each node with type determined at compile time.

Effectively each level can contain different metadata as defined by the user, separating the

interactions of user data from the representation of topology.

LEE et al. Page 21

ACM Trans Math Softw. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.
Template arguments for ASC are unpacked and assigned to nodes accordingly. The first

argument “int” is the key type for labeling vertices while the following arguments define

node data types. Notably, Node<2> does not allocate memory for data as the corresponding

template argument was “void”. By passing in additional types, simplicial complexes of

higher dimensions are instantiated.

LEE et al. Page 22

ACM Trans Math Softw. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4.
Recursive insertion of tetrahedral simplex {1,2,3,4}. The order of node insertions is

represented by the numbered red arrows. When each node is created, the black arrows to

parent simplices are created by backfilling.

LEE et al. Page 23

ACM Trans Math Softw. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5.
The example decimation of edge s = {3, 4} in a constructed example.

(a) A geometric realization of the complex before and after decimation.

(b) Explicitly drawn out Hasse diagrams for the constructed example where the TOP is

before, and BOTTOM is after decimation. Grey arrows mark the relationships between sets

of simplices before and after. Because there is always a mapping, users can define strategies

to manage the stored data.

LEE et al. Page 24

ACM Trans Math Softw. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

LEE et al. Page 25

Table 1.

Traversal order of the visitors for the decimation shown in Figure 5a.

Order MainVisitor InnerVisitor GrabVisitor Maps to

1 {3,4} {3,4} {3,4}, {3}, {4} {6}

2 {3,4} {1,3,4} {1,3,4}, {1,3}, {1,4} {1,6}

3 {3,4} {3,4,5} {3,4,5}, {3,5}, {4,5} {3,6}

4 {3} {0,3} {0,3} {0,6}

5 {3} {0,1,3} {0,1,3} {0,1,6}

6 {3} {0,3,5} {0,3,5} {0,5,6}

7 {4} {2,4} {3,5} {5,6}

8 {4} {1,2,4} {1,2,4} {1,2,6}

9 {4} {2,4,5} {2,4,5} {2,5,6}

ACM Trans Math Softw. Author manuscript; available in PMC 2020 August 01.

	Abstract
	INTRODUCTION
	Related Work

	BACKGROUND – ABSTRACT SIMPLICIAL COMPLEXES
	COLORED ABSTRACT SIMPLICIAL COMPLEX
	Variable Typing Per Simplex Dimension

	IMPLEMENTED ALGORITHMS
	Basic Operations
	Creating and deleting simplices.
	Searching and traversing topological relations.

	Traversals
	By level.
	By adjacency.
	Traversals over multiple node types.

	Complex Operations
	Star/Closure/Link.
	Metadata aware decimation.

	SURFACE MESH APPLICATION EXAMPLE
	Preservation of Topology Type of Surface Mesh Under Edge Decimation by Contraction

	CONCLUSIONS
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Table 1.

