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Abstract

We introduce CASC: a new, modern, and header-only C++ library which provides a data structure 

to represent arbitrary dimension abstract simplicial complexes (ASC) with user-defined classes 

stored directly on the simplices at each dimension. This is accomplished by using the latest C++ 

language features including variadic template parameters introduced in C++11 and automatic 

function return type deduction from C++14. Effectively CASC decouples the representation of the 

topology from the interactions of user data. We present the innovations and design principles of 

the data structure and related algorithms. This includes a metadata aware decimation algorithm 

which is general for collapsing simplices of any dimension. We also present an example 

application of this library to represent an orientable surface mesh.
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1 INTRODUCTION

For problems in computational topology and geometry, it is often beneficial to use simple 

building blocks to represent complicated shapes. A popular block is the simplex, or the 

generalization of a triangle in any dimension. Due to the ease of manipulation and the 

coplanar property of triangles, triangulations have become commonplace in fields such as 

geometric modeling and visualization as well as topological analysis. Discretizations are 
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also used for efficient solving of Partial Differential Equations (PDE). The use of meshes 

has become increasingly popular even in the fields of computational biology and 

medicine[24].

As methods in structural biology improve and new datasets become available, there is 

interest in integrating experimental and structural data to build new predictive computer 

models[19]. A key barrier that modelers face is the generation of multi-scale, computable, 

geometric models from noisy datasets such as those from Electron Tomography (ET)[23]. 

This is typically achieved in at least two steps: (1) segmentation of relevant features, and (2) 

approximation of the geometry using meshes. Subsequently, numerical techniques such as 

Finite Elements Modeling or Monte Carlo can be used to investigate the transport and 

localization of molecules of interest.

While many have studied mesh generation in the fields of engineering and animation, few 

methods are suitable for biological datasets. This is largely due to noise introduced by limits 

in image resolution or contrast. Even while using state-of-the-art segmentation algorithms 

for ET datasets there are often unresolved or missed features. Due to these issues, the 

generated meshes often have holes and other non-manifolds which must be resolved prior to 

mathematical modeling. Another challenge is the interpretation of a voxel valued 

segmentation. The conversion of zig-zag boundaries into a mesh can lead to other problems 

such as extremely high aspect ratio triangles or, in general, poorly conditioned elements[23]. 

To remedy this, various smoothing and decimation algorithms must also be applied prior to 

simulation.

Previous work by us and others have introduced a meshing tool for biological models, 

GAMer, for building 3D tetrahedral meshes which obey internal and external constraints, 

such as matching embedding and/or enclosing molecular surfaces. It also provides the ability 

to use various mesh improvement algorithms for volume and surface meshes[13, 22]. 

GAMer uses the Tetgen library as the primary tetrahedral volume generator[20]. While the 

algorithms are sound, the specific implementation is prone to segmentation faults even for 

simple meshes. Careful analysis of the code has identified that the data structures used for 

the representation of the mesh is primarily at fault. This article will focus entirely on the 

representation of topology in very complex mesh generation codes. We note that the 

algorithms which handle geometric issues like shape regularity and local adaptivity are well 

understood[2, 16], among others. Similarly there is a large body of literature related to local 

mesh refinement and decimation[3, 4]. Our innovations serve to enable the implementation 

of these algorithms in the most general and robust way.

GAMer currently employs a neighbor list data structure which tracks the adjacency and 

orientation of simplices. Neighbor lists are quick to construct, however the representation of 

non-manifolds often leads to code instability. Algorithms must check for aberrant cases 

creating substantial overhead. We note that while the need to gracefully represent 2D and 3D 

non-manifolds for ET applications drove our initial focus, we are also interested in mesh 

generation in higher dimensions with applications to: numerical general relativity (3D+1)

[14, 18], computational geometric analysis (nD)[15], phase space simulations (6D), and 
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arbitrary collective variable spaces in molecular modeling for enhanced sampling[21]. We 

therefore chose following requirements for a mesh data structure to serve as design goals:

• General and capable of representing non-manifold, mixed dimensional, oriented 

and non-oriented meshes in arbitrary dimensions.

• Support for inline and flexible data storage. In some applications, data must be 

associated with the topology. For example, problems in general relativity 

typically require the storage of metric tensors on all simplex dimensions.

• Support for intuitive and simple manipulations and traversals.

Here we describe the development of a scalable colored abstract simplicial complex data 

structure called CASC. Simplices are stored as nodes on a Hasse diagram. For ease of 

traversal all adjacency is stored at the node level. An additional data object can be stored at 

each node which is typed according to the simplex dimension at compile time. This means 

that, for example, for a mesh the 0-simplices can be assigned a vertex type while the 2-

simplices can store some material property instead. Typing of each k-simplex is achieved 

using variadic templates introduced in C++11. CASC thus provides a natural separation 

between the combinatorics represented by the ASC from the underlying data types at each 

simplex dimension and their interactions. In §2 we briefly define an ASC and some relevant 

definitions followed by the introduction of the CASC data structure and it’s construction in 

§3. We then demonstrate the use of CASC to represent a surface mesh and compute vertex 

tangents in §5.

1.1 Related Work

Although many data structures to represent simplicial complexes have been developed, to 

the best of our knowledge there currently exists no data structure which supports meshes of 

arbitrary dimension with user-selected typed data stored directly on each simplex. A full 

review of all existing data structures is beyond the scope of this work, however we highlight 

several representative examples. Many data structures such as the half-edge and doubly-

connected edge list among others are restricted to the representation of two-manifolds 

only[9]. Other data structures such as SIG[8], IS[10], IA*[7], SimplexTree[6], AHF[11, 17], 

LinearCellComplex, and dD Triangulations[5] support or can be extended to represent 

arbitrary dimensional simplicial complexes. However, their current implementations either 

do not consider the storage of data beyond possibly embedding, or do not support inline 

storage of user data. LinearCellComplex from CGAL supports only a linear geometrical 

embedding[1]. AHF implemented in MOAB uses separate arrays of data which are then 

referenced using a handle[11, 17]. In addition to the limitations of data storage, some make 

assumptions limiting their generality. dD Triangulations, for example, assumes that a 

simplicial complex is pure and therefore does not support the representation of mixed 

dimensional complexes[5].
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2 BACKGROUND – ABSTRACT SIMPLICIAL COMPLEXES

An Abstract Simplicial Complex (ASC) is a combinatorial structure which can be used to 

represent the connectivity of a simplicial mesh, independent of any geometric information. 

More formally, the definition of an ASC is as follows.

Definition 2.1. Given a vertex set V, an abstract simplicial complex ℱ of V is a set of 

subsets of V with the following property: for every set X ∈ ℱ, every subset Y ⊂ X is also a 

member of ℱ.

The sets s ∈ ℱ are called a simplex or face of ℱ; similarly a face X is said to be a face of 

simplex s if X ⊂ s. Since X is a face of s, s is a coface of X. Each simplex has a dimension 

characterized by dim s = −s− – 1, where −s− is the cardinality of set s. A simplex of dim s = 

k is also called a k-simplex. The dimension of the complex, dim(ℱ), is defined by the largest 

dimension of any member face. Simplices of the largest dimension, dim(ℱ) are referred to as 

the facets of the complex.

If one simplex is a face of another, they are incident. Every face of a k-simplex s with 

dimension (k − 1) is called a boundary face while each incident face with dimension (k + 1) 

is a coboundary face. Two k-simplices, f and s are considered adjacent if they share a 

common boundary face, or coboundary face. The boundary of simplex s, ∂s, is the sum of 

the boundary faces.

Having introduced the concept of an ASC, we can also define several operations useful 

when dealing with ASCs. A subcomplex is a subset that is a simplicial complex itself. The 

Closure (Cl) of a simplex, f, or some set of simplices F ⊆ ℱ is the smallest simplicial 

subcomplex of ℱ that contains F:

Cl( f ) = {s ∈ ℱ ∣ s ⊆ f }; Cl(F) = ⋃
f ∈ F

Cl( f ) (closure) . (1)

It is often useful to consider the local neighborhood of a simplex. The Star (St) of a simplex 

f is the set of all simplices that contain f:

St( f ) = {s ∈ ℱ ∣ f ⊆ s}; St(F) = ⋃
f ∈ F

St( f ) (star) . (2)

The Link (Lk) of f consists of all faces of simplices in the closed star of f that do not 

intersect f:

Lk( f ) = {s ∈ Cl ∘ St( f ) ∣ s ∩ f = ∅} = Cl ∘ St( f ) − St ∘ Cl( f ) (link) . (3)

For some algorithms, it is often useful to iterate over the set of all vertices or edges etc. We 

use the following notation for the horizontal “level” of an abstract simplicial complex.
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Lvlk(ℱ) = {s ∈ ℱ ∣ dim s = k} (4)

A subcomplex which contains all simplices s ∈ ℱ where dim(s) ≤ k is the k-skeleton of ℱ:

ℱk = Cl ∘ Lvlk(ℱ) = ⋃
i ≤ k

Lvli(ℱ) . (5)

By Definition 2.1, an ASC forms a partially ordered set, or poset. Posets are frequently 

represented by a Hasse diagram, a directed acyclic graph, where nodes represent sets, and 

edges denote set membership. Several example simplicial complexes and their 

corresponding Hasse diagrams are shown in Fig. 1. Colloquially we will use up and down to 

refer to the coboundary and boundary of a simplex respectively. In Hasse diagrams, we 

follow a convention that simplices shown graphically on the same horizontal level have the 

same simplex dimension. Furthermore, simplices of greater dimension are drawn above 

lesser simplices.

3 COLORED ABSTRACT SIMPLICIAL COMPLEX

In this section we introduce the CASC data structure and its implementation. For a given 

simplicial complex, each simplex is represented by a node (asc_Node) in the Hasse diagram, 

and defined by a set of keys corresponding to the vertices which comprise the simplex. Note 

that we use node to refer to objects in CASC Hasse diagram and not 0-simplices. Instead, 0-

simplex are referred to as the vertices of the mesh. Furthermore we refer to the Ø-simplex or 

−1-simplex as the root simplex interchangeably. When a node is instantiated, we assign it a 

unique Integer Internal Identifier (iID) for use in the development of CASC algorithms. The 

iID is constant and never exposed to the end-user except for debugging purposes. Instead 

nodes can be referenced by the user using the SimplexID which acts as a convenience 

wrapper around an asc_Node*, providing additional support for move semantics for fast data 

access. All topological relations (i.e., edges of the Hasse diagram) are stored in each node as 

a dictionary which maps user specified keys to SimplexIDs up and down. An example data 

structure diagram of triangle {1,2,3} is shown in Fig. 2. Based upon this example, if a user 

has the SimplexID of 1-simplex {1, 2} and wishes to get 2-simplex {1, 2, 3}, they can look 

in the Up dictionary of SimplexID{1, 2} for key 3 which maps to a SimplexID{1, 2, 3}. The 

vertices which constitute each simplex are not stored directly, but can be accessed by 

aggregating all keys in Down.

We note that while the representation of all topological relations is redundant and may not 

be memory optimal, it vastly simplifies the traversals across the complex. Furthermore, the 

associate algorithms and innovations using variable typing are general and thus compatible 

with other more condensed representations.
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3.1 Variable Typing Per Simplex Dimension

We achieve coloring by allowing user-defined data to be stored at each node. The typical 

challenge for strongly typed languages such as C++ is that the types must be defined at 

compile time. Typical implementations would either hard code the type to be stored at each 

level or use a runtime generic type, such as void*. However, each of these have drawbacks. 

For the former, this requires writing a new node data structure for every simplicial complex 

we may wish to represent. For the latter, using void* adds an extra pointer dereference 

which defeats cache locality and may lead to code instability. Another possible 

implementation might be to require users of the library to derive their data types from a 

common class through inheritance. This solution puts an unnecessary burden on users who 

may have preexisting class libraries, or simply wish to store a built in type, such as an int. 

Furthermore, under the inheritance scheme, changes to the underlying container may require 

users to update their derived classes. To avoid this cumbersome step, we have employed the 

use of variadic templates introduced in C++11 to allow for unpacking and assignment of 

data types. The user specifies the types to be stored at each level in a list of templates to the 

object constructor, see Fig. 3.

The variadic templating allows CASC to represent complexes of any user-defined 

dimension. To specify an N-simplicial complex, CASC requires the definition of an 

index/key type followed by N + 1 data types and N edge types. The first data type provided 

after the key type corresponds to data stored on the Ø-simplex which can be thought of as 

global metadata. For example, suppose we have a 2-simplicial complex intended for 

visualization and wish to store locations of vertices and colors of faces. A suitable ASC can 

be constructed using the following template command:

If we now wish to represent a tetrahedral mesh, instead of constructing a new data structure, 

we can simply adjust the command:

In both cases, the first template argument is the key type for referring to vertices followed by 

the data type for each k-simplex. Supposing that the user does not wish to store data on any 

given level, by passing “void” as the template argument, the compiler will optimize the node 

data type and no memory will be allocated to store data. In both cases, the 0- and 1-

simplices will have no data.

By using variadic templates, we allow the user to specify both the dimension of the 

simplicial complex as well as the types stored at each level. Because the type deduction is 

performed at compile time, there is no runtime performance impact on user codes. There is, 

however, some additional code complexity introduced. If the user wishes to retrieve the data 

stored in a simplicial complex, they must know what level they are accessing at compile 

time. A consequence is that the exposed identifier object, SimplexID, is templated on the 

integral level, so that types can be deduced. This does not present a problem for simple use 

cases, such as:

LEE et al. Page 6

ACM Trans Math Softw. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



However, when implementing algorithms intended to be generic on any simplicial complex, 

templated code must be written. We discuss the implementation of several such algorithms 

in the following section.

4 IMPLEMENTED ALGORITHMS

The following algorithms are provided with the CASC library:

• Basic Operations

– Creating and deleting simplices (insert/remove)

– Searching and traversing topological relations (GetSimplexUp/

GetSimplexDown)

• Traversals

– By level (get_level)

– By adjacency (neighbors_up/neighbors_down)

– Traversals across multiple node types (Visitor Design Pattern/double 

dispatch)

• Complex Operations

– Star/Closure/Link

– Metadata aware decimation

4.1 Basic Operations

4.1.1 Creating and deleting simplices.—Since the CASC data structure maintains 

every simplex in the complex and all topological relations, inserting a k-simplex, s, into the 
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complex means ensuring the existence of, and possibly creating, 𝒪(2k) nodes and 𝒪(k ⋅ 2k − 1)
edges (see derivation in SI). Fortunately, the combinatorial nature of simplicial complexes 

allows this to be performed recursively. A generalized recursive insertion operation for any 

dimensional complex and user specified types, is described in Algorithm 1. The insertion 

algorithm defines an insertion order such that all dependent simplices exist in the complex 

prior to the insertion of the next simplex.

As an illustrative example of the template code used in this library, Algorithm 1 is rewritten 

in C++ template function-like pseudocode shown in Algorithm 6. While the templated code 

is more complicated, it provides many optimizations. For example, since the looping and 

recursion are performed at compile time, for any k-simplex we wish to insert, any modern 

compiler should optimize the code into a series of insertNode() calls; the setupForLoop() 

and forLoop() function calls can be completely eliminated. As a result, the optimized 

templated code will exhibit superior run time performance. To illustrate the insertion 

operation, a graphical representation of inserting tetrahedron {1,2,3,4} by Algorithm 6 is 

shown in Fig. 4, and step-by-step in Fig. S6. In the example, new simplex root ∪ v is added 

sequentially to the complex and any missing topological relations are found by traversing the 

faces of root and backfilling.

The removal of any simplex is also performed using a recursive template function. When 

removing simplex s, in order to maintain the property of being a simplicial complex, all 

cofaces of s or f ∈ St(s) must also be removed along with any boundary/coboundary 

relations of f. The implemented removal algorithm traverses up the complex and removes 

simplex s and all cofaces of s level by level.

4.1.2 Searching and traversing topological relations.—The algorithms for 

retrieving a simplex as well as for basic traversals from one simplex to another across the 

data structure are the same. Given a starting simplex, and an array of keys up, the new 

simplex can be found recursively by Algorithm 2; The annotated code used is shown in §A.

3. Traversals from one simplex to another require a key lookup followed by a pointer 

dereference and therefore occur in approximately constant time (𝒪(1)). Since all topological 

relations are stored, the traversal order across the array of keys does not matter. The same 

algorithm can be applied going down in dimension. For the retrieval of an arbitrary simplex, 

we start the search up from the root node of the complex.

4.2 Traversals

Thus far, we have presented algorithms for the creation of a simplicial complex as well as 

the basic traversal across faces and cofaces. For many applications, other traversals, such as 

by adjacency, may be more useful. We present several built-in traversal algorithms as well as 

the visitor design pattern for complicated operations.

4.2.1 By level.—It is often useful to have a traversal over all simplices of the same level. 

For example, iterating across all vertices to compute a center of mass. To support this in an 

efficient fashion,
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simplices of the same dimension are stored in a level specific map of iIDs to node pointers. 

Notably, the map for each level is instantiated with the correct user specified node type with 

respect to level at compile time. To achieve this, we again use variadic templates to generate 

a tuple of maps, where each tuple element corresponds to the map for a specific level’s node 

type.

Since asc_nodes are templated on the integral level, we can use a template type map to map 

an integral sequence to the node pointer type,

tuple 〈1, 2, 3, …〉 Node 〈k〉 ∗
tuple〈Node〈1〉 ∗ , Node〈2〉 ∗ , Node〈3〉 ∗ , …〉,

producing a tuple of integrally typed node pointers. Subsequently, we can map again to 

generate a tuple of maps,

tuple〈Node〈1〉 ∗ , Node〈2〉 ∗ , …〉 map < int, T >
tuple〈map〈int, Node〈1〉 ∗ 〉, map〈int, Node〈2〉 ∗ 〉, …〉 .

By using this variadic template mapping strategy we now have the correct typenames 

assigned. Any level of the tuple can be accessed by getting the integral level using functions 

in the C++ standard library. Variations of this mapping strategy are also used to construct the 

SimplexSet and SimplexMap structures below.

For end users, the implementation details are entirely abstracted away. Continuing from the 

example above, iteration over all vertices of simplicial complex, mesh, can be performed 

using the provided iterator adaptors as follows.

Listing 1. Example use of iterator adaptors for traversal across vertices of mesh.
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The function get_level_id<k>() retrieves level k from the tuple and returns an iterable range 

across the corresponding map.

4.2.2 By adjacency.—Many geometric algorithms operate on the local neighborhood of 

a given simplex. Unlike other data structures such as the halfedge, CASC does not store the 

notion of the next simplex. Instead, adjacency is identified by searching for simplices with 

shared faces or cofaces in the complex. The algorithm for finding neighbors with shared 

faces is shown in Algorithm 3. We note that the set of simplices with shared faces may be 

different than the set of simplices with shared cofaces. Both adjacency definitions have been 

implemented and we leave it to the end user to select the relevant function. Once a neighbor 

list has been aggregated, it can be traversed using standard methods. While the additional 

adjacency lookup step is extra in comparison to other data structures, in many cases, the 

generation of neighbor lists need only be done once and cached. The trade off is that CASC 

offers facile manipulations of the topology without having to worry about reorganizing 

neighbor pointers.

4.2.3 Traversals over multiple node types.—When performing more complicated 

traversals, such as iterating over the star of a simplex, multiple node types may be 

encountered. In order to avoid typename comparison based branch statements, we have 

implemented visitor design pattern-based breadth first searches (BFS). The visitor design 

pattern refers to a double dispatch strategy where a traversal function takes a visitor functor 

which implements an overloaded visit() function. At each node visited, the traversal function 

will call visit() on the current node. Since the functor overloads visit() per node type, the 

compiler can deduce which visit function to call. Example pseudocode is shown in Listing 2. 

This double dispatch strategy, eliminates the need for extensive runtime typename 

comparisons, and enables easy traversals over multiple node types. We provide breadth first 

traversals up and down the complex from a set of simplices. These visitor traversals are used 

extensively in the complex operations described below.
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Listing 2. Example pseudocode of double dispatch to traverse the complex while scaling the 

mesh by 2 and coloring the faces green.

4.3 Complex Operations

4.3.1. Star/Closure/Link.—The star, link, and closure can be computed using the visitor 

breadth first traversals to collect simplices. These operations typically produce a set of 

simplices spanning multiple simplex dimensions, and thus simplex typenames, which cannot 

be stored in a traditional C++ set. We have implemented a multi-set data structure called the 

SimplexSet, which is effectively a tuple of typed sets corresponding to each level. The 

SimplexSet is constructed using the same mapping strategy as the tuple of maps used for the 

iteration across levels. For convenience, we provide functions for typical set operations such 

as insertion, removal, search, union, intersection, and difference. Using a combination of the 

star and closure functions with SimplexSet difference we can get the link by Eq. 3.

4.3.2 Metadata aware decimation.—We have implemented a general decimation 

algorithm which operates by collapsing simplices of higher dimensions into a vertex. While 

edge collapses for 2-manifolds are well studied, a general dimensional collapse is useful for 

decimating higher-dimensional meshes used to solve PDEs such as those encountered in 

general relativity. Since simplices are being removed from the complex, user data may be 
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lost. Our implementation is metadata aware and allows the user to specify what data to keep 

post decimation. This is achieved by using a recursive algorithm to produce a map of 

removed simplices to new simplices. The user can use this mapping to define a function 

which maps the original stored data to the post decimation topology. This decimation 

strategy is implemented as an inplace operation yielding decimated mesh containing data 

mapped according to a user specified callback function.

This decimation algorithm is a generalization of an edge collapse operation to arbitrary 

dimensions. It is formally defined as follows:

Definition 4.1. Given simplicial complex ℱ, simplex to decimate s ∈ ℱ, vertex set V of ℱ, 

and new vertex p ∉ V, we define function,
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φ( f ) = f if f ∩ s = ∅
p ∪ ( f s) if f ∩ s ≠ ∅ , (6)

where f is any simplex f ∈ ℱ. We define the decimation of ℱ by replacing s with p as φ(ℱ).

Note that decimation under this definition is not guaranteed to preserve the topology, as can 

by seen by decimating any edge or face of a tetrahedron.

Decimation of a simplicial complex must result in a valid triangulation. Here we show that 

decimation by Definition 4.1 produces a valid abstract simplicial complex.

THEOREM 4.2. φ(ℱ) is an abstract simplicial complex.

PROOF. Given simplices y and x, let y ∈ φ(ℱ) and let x ⊂ y. We will show that x ∈ φ(ℱ). 
There are two cases for y ∪ p, as they can be disjoint or intersecting.

Considering the disjoint case where y ∩ p = Ø. This implies that y ∈ ℱ and y ∩ s = Ø. Since 

ℱ is a simplicial complex, y ∈ ℱ implies that x ∈ ℱ. Furthermore since y ∩ s = Ø and x ⊂ y, 

then x ∩ s = Ø implying that φ(x) = x and thus x ∈ φ(ℱ).

Alternately in the intersecting case where y ∩ p ≠ 0, that is y ∩ p = p. Since x ⊂ y there are 

two sub-cases where x either contains p or does not.

Supposing that x ∩ p = Ø. Then x ⊂ (f \ s) implying that x ∈ ℱ and x ∩ s = Ø. Therefore by 

the disjoint case, φ(x) = x implies that x ∈ φ(ℱ).

Supposing that x ∩ p = p. We can rewrite any such simplex x as x = w ∪ p where w ∩ p = Ø. 

Furthermore we can write that y = x ∪ r where x ∩ r = Ø and r ∩ p = Ø and thus y = w ∪ p ∪ 
r. There exists some set q such that f = w ∪ r ∪ q and q ⊆ s such that φ(f) = p ∪ ((w ∪ r ∪ q) 

\ s) = y Since f ∈ ℱ then w ∪ q ∈ ℱ. Therefore φ(w ∪ q) = p ∪ ((w ∪ q)\ s) = p ∪ w = x and 

thus x ∈ φ(ℱ).

For all cases and sub-cases we have shown that x ∈ φ(ℱ) therefore φ(ℱ) is an abstract 

simplicial complex.

A pseudocode implementation for this decimation is provided in Algorithm 4. Given some 

simplicial complex ℱ and simplex s ∈ ℱ to decimate, this algorithm works in four steps. 

First, we compute the complete neighborhood, nbhd = St(Cl(s)), of s. Simplices not in the 

complete neighborhood will be invariant under φ and are ignored. Next, we use a nested set 

of breadth first searches to walk over the complete neighborhood and compute p ∪ f \ s for 

each simplex in the neighborhood. The results are inserted into a SimplexMap which maps 

φ(f) to a SimplexSet of all f which map to φ(f). Third, we iterate over the SimplexMap and 

run the user defined callback on each mapping to generate a list of new simplices and 

associated mapped data stored in SimplexDataSet. Finally, the algorithm removes all 

simplices in the complete neighborhood and inserts the new mapped simplices.
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An example application of this decimation operation is shown in Figure 5. In Figure 5a we 

show the geometric realization of the complex before and after the decimation of simplex 

{3,4}. In Figure 5b we show the detailed Hasse diagrams for the constructed example. Note 

that there are two possible mapping situations. In one case, f ∈St(Cl(s)) ∩ Cl(St(s)), groups 

of simplices are merged. In the other case, simplices f ∈ Cl(St(s)) \ St(Cl(s)) only need to be 

reconnected to the new merged simplices. By carefully choosing the traversal order, some 

optimizations can be made.

We apply the decimation on the constructed example shown in Figure 5 and show the order 

of operations with respect to the current visited simplex for each visitor function in Table 1. 

Starting out, MainVisitor and InnerVisitor will visit {3,4}. At this point, GrabVisitor will 

search BFS down from {3,4} to grab the set {{3,4}, {3}, {4}} and remove it from the 

neighborhood, eliminating some future calculations at {3} and {4}. All simplices in this set 

will map to new simplex {6} after decimation. Continuing upwards, InnerVisitor will find 

simplex {1,3,4} and GrabVisitor will grab set {{1,3,4}, {1,3}, {1,4}}. Again this set of 

simplices will map to common simplex {1,6} post decimation. A similar case occurs with 

simplex {3,4,5}. At this point, all simplices in St(Cl(s)) ∩ Cl(St(s)) have been visited and 

removed from the neighborhood and MainVisitor continues BFS down and finds {3} and 

calls BFS up (InnerVisitor). Note that since simplex {3} has already been grabbed, 

InnerVisitor will continue upwards and find {0,3}. Looking down there are no simplices 

which are faces of {0,3} in the neighborhood. So on and so forth.

To reiterate, GrabVisitor grabs the set of simplices which will be mapped to a common 

simplex. We show here that the order in which simplices are grabbed by Algorithm 4 will 

preserve that all simplices f = w ∪ q where q ⊆ s will map to φ(f) = w ∪ p.

When visiting any simplex f ⊋ q where q ⊆ s and q corresponds to simplices visited by 

MainVisitor. We can write f as f = w ∪ q where the sets w and q are disjoint. Looking down 

from f all simplices fall into two cases: g = v ∪ q where Ø ⊆ v ⊊ w or h = w ∪ t where t ⊊ q. 

All simplices of form g, at worst case, will been grabbed while InnerVisitor proceeded BFS 

up from q. Remaining simplices h can be grouped with f and correctly mapped to w ∪ p.

We note that in some non-manifold cases GrabVisitor will not always grab set members in 

one visit. Supposing that we removed simplex {1,3,4} from the constructed example, in this 

case, InnerVisitor cannot visit {1,3,4} and simplices {1,3} and {1,4} will not be grouped. 

Instead {1,3} and {1,4} will be found individually when MainVisitor visits {3} then {4}. To 

catch this case and correctly map {1,3} and {1,4} to {1,6}, we use a SimplexMap to 

aggregate all maps prior to proceeding. We note that in all cases starting with a valid 

simplicial complex, this implementation of the general collapse of simplex s visits each 

member in St(Cl(s)) and maps according to Def. 4.1 producing a valid simplicial complex. 

There is no guarantee that the result will have the same topological type as the pre-

decimated mesh. The preservation of the topological type under decimation is often a 

desirable trait. We will show how to verify the Link Condition for when edge collapse of a 

2-manifold will preserve the topological type in §5.1.
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5 SURFACE MESH APPLICATION EXAMPLE

CASC is a general simplicial complex data structure which is suitable for use in mesh 

manipulation and processing. For example, we can use CASC as the underlying 

representation for an orientable surface mesh. Using a predefined Vertex class which is 

wrapped around a tensor library, and a class Orientable which wraps an integer, we can 

easily create a surface mesh embedded in ℝ3.

In this case, 1-simplices will store a Vertex type while faces and all edges will store 

Orientable. Using SurfaceMesh we can easily create functions to load or write common 

mesh filetypes such as OFF as shown in the included library examples.

We can define a boundary morphism which applies on an ordered k-simplex,

∂i
k([a0, …, ak − 1]) = ( − 1)i([a0, …, ak − 1] {ai}), (7)

where ai < ai+1. Using Algorithm 5, we can apply this morphism to assign a ±1 orientation to 

each topological relation in the complex. Subsequently, for orientable manifolds, we can 

compute orientations of faces f1 and f2 which share edge e such that,

Orient(e1) ⋅ Orient( f 1) + Orient(e2) ⋅ Orient( f 2) = 0, (8)

where e1 and e2 correspond to the edge up from e to f1 and f2 respectively. Doing so, we 

create an oriented simplicial complex.

Supposing that we wish to compute the tangent of a vertex as defined by the weighted 

average tangent of incident faces. This is equivalent to computing the oriented wedge 

products of each incident face. This can be written generally as,
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Tangent(v) = 1
N ∑

i = 0

N
Orient( f i) ⋅ (∂ j( f i) ∧ ∂k( f i)) (9)

= 1
N ∑

i = 0

N
Orient( f i) ⋅ 1

2(ei, j ⊗ ei, k − ei, k ⊗ ei, j), (10)

where N is the number of incident faces, fi is incident face i, j and k are indices of vertex 

members of fi not equal to v, and ei,j = ∂j(fi). This can be easily computed using a templated 

recursive function.

This demonstrates the ease using the CASC library as an underlying simplicial complex 

representation. Using the provided API, it is easy to traverse the complex to perform any 

computations.

5.1 Preservation of Topology Type of Surface Mesh Under Edge Decimation by 
Contraction

Supposing we wish to decimate a surface mesh by edge contraction under Def. 4.1 without 

changing the topology of the complex. This can be verified by checking the Link Condition, 

defined with proof from Edelsbrunner[12], stating,

LEMMA 5.1. Let F be a triangulation of a 2-manifold. The contraction of ab ∈ F preserves the 
topological type if and only if Lk(a) ∩ Lk(b) = Lk(ab).

Revisiting the example from Fig. 5a, we can construct the topology and check the Link 

Condition using operations supported by the CASC library.
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The getLink() function utilizes a series of visitor breadth first traversals down then up the 

complex, collecting the set of simplex into a SimplexSet object. Then using set operations 

provided by SimplexSet the set difference and equality comparison are performed. This 

example highlights the simplicity, clarity, and transparency of using the CASC library.

6 CONCLUSIONS

CASC provides a general simplicial complex data structure which allows the storage of user 

defined types at each simplex level. The library comes with a full-featured API providing 

common simplicial complex operations, as well as support for complex traversals using a 

visitor. We also provide a metadata aware decimation algorithm which allows users to 

collapse simplices of any dimension while preserving data according to a user defined 

mapping function. Our implementation of CASC using a strongly-typed language is only 

possible due to recent innovations in language tools. The CASC API abstracts away most of 

the complicated templating, allowing it to be both modern and easy to use. We anticipate 

that CASC will not only be of use for the ET community but microscopy and modeling as a 

whole along with other fields like applied mathematics and CAD.

One limitation is the ease of extending to other languages. The generality of CASC is reliant 

upon the C++ compiler. Sacrificing this, specific realizations of CASC can be wrapped using 

tools like SWIG for use in other languages. Another limitation of CASC is the memory 
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efficiency. The current Hasse diagram based implementation was selected for the sake of 

transparency, ease of traversal, and manipulation. Optimizations to the memory efficiency of 

CASC can be made by employing more compact representations. The variadic template 

approach we use to attach user data to simplices is compatible with data structures which 

explicitly represent all simplices but only a subset of topological relations. This includes 

data structures such as SimplexTree[6], IS[10], and SIG[8] among others. Other compressed 

data structures which skip levels of low importance using implicit nodes are not compatible 

with the current CASC implementation. Skipped levels would need to be implemented as 

exceptions to the combinatorial variadic rules. Similarly, although CASC in its current form 

is restricted to the representation of simplicial complexes, the combinatorial strategy can be 

easily adapted to support other regular polytopes by changing the boundary relation storage 

rules. In the future we hope to incorporate parallelism into the CASC library. A copy of 

CASC along with online documentation can found on GitHub https://github.com/ctlee/casc.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Hasse diagrams of several Abstract Simplicial Complexes and a geometric realization from 

left to right: the empty set, a vertex, an edge, a triangle, a tetrahedron.
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Fig. 2. 
Data structure diagram of a triangle represented using CASC. Each simplex is represented as 

a node containing a dictionary up and/or down which maps the vertex index to a pointer to 

the next simplex. Data can be stored at each node with type determined at compile time. 

Effectively each level can contain different metadata as defined by the user, separating the 

interactions of user data from the representation of topology.
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Fig. 3. 
Template arguments for ASC are unpacked and assigned to nodes accordingly. The first 

argument “int” is the key type for labeling vertices while the following arguments define 

node data types. Notably, Node<2> does not allocate memory for data as the corresponding 

template argument was “void”. By passing in additional types, simplicial complexes of 

higher dimensions are instantiated.
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Fig. 4. 
Recursive insertion of tetrahedral simplex {1,2,3,4}. The order of node insertions is 

represented by the numbered red arrows. When each node is created, the black arrows to 

parent simplices are created by backfilling.
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Fig. 5. 
The example decimation of edge s = {3, 4} in a constructed example.

(a) A geometric realization of the complex before and after decimation.

(b) Explicitly drawn out Hasse diagrams for the constructed example where the TOP is 

before, and BOTTOM is after decimation. Grey arrows mark the relationships between sets 

of simplices before and after. Because there is always a mapping, users can define strategies 

to manage the stored data.
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Table 1.

Traversal order of the visitors for the decimation shown in Figure 5a.

Order MainVisitor InnerVisitor GrabVisitor Maps to

1 {3,4} {3,4} {3,4}, {3}, {4} {6}

2 {3,4} {1,3,4} {1,3,4}, {1,3}, {1,4} {1,6}

3 {3,4} {3,4,5} {3,4,5}, {3,5}, {4,5} {3,6}

4 {3} {0,3} {0,3} {0,6}

5 {3} {0,1,3} {0,1,3} {0,1,6}

6 {3} {0,3,5} {0,3,5} {0,5,6}

7 {4} {2,4} {3,5} {5,6}

8 {4} {1,2,4} {1,2,4} {1,2,6}

9 {4} {2,4,5} {2,4,5} {2,5,6}
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