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Abstract

Purpose: Many outcomes derived from electronic health records (EHR) are not only imperfect 

but may suffer from exposure-dependent differential misclassification due to variability in the 

quality and availability of EHR data across exposure groups. The objective of this study was to 

quantify the inflation of type I error rates that can result from differential outcome 

misclassification.

Methods: We used data on gold-standard and EHR-derived second breast cancers in a cohort of 

women with a prior breast cancer diagnosis from 1993–2006 enrolled in Kaiser Permanente 

Washington. We simulated an exposure that was independent of the true outcome status. A 

surrogate outcome was then simulated with varying sensitivity and specificity according to 

exposure status. We estimated the type I error rate for a test of association relating this exposure to 

the surrogate outcome, while varying outcome sensitivity and specificity in exposed individuals.

Results: Type I error rates were substantially inflated above the nominal level (5%) for even 

modest departures from non-differential misclassification. Holding sensitivity in exposed and 

unexposed groups at 85%, a difference in specificity of 10% between the exposed and unexposed 

(80% vs 90%) resulted in a 36% type I error rate. Type I error was inflated more by differential 

specificity than sensitivity.

Conclusions: Differential outcome misclassification may induce spurious findings. Researchers 

using EHR-derived outcomes should use misclassification-adjusted methods whenever possible or 

conduct sensitivity analyses to investigate the possibility of false-positive findings, especially for 

exposures that may be related to the accuracy of outcome ascertainment.
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Introduction

Electronic health records (EHR) have become an important data source for investigating 

adverse outcomes associated with pharmacologic exposures. However, EHR-derived data are 

imperfect, and many recent studies have drawn attention to multiple challenges of working 

with this data source1–3. One challenge of working with EHR data is the lack of gold-

standard information on patient outcomes. It is well known that non-differential outcome 

misclassification, in which sensitivity and specificity of the surrogate outcome are unrelated 

to the true exposure status, tends to bias results towards the null4. However, if 

misclassification is differential, bias can be towards or away from the null5,6. Differential 

misclassification of outcomes with respect to exposure status may be common in EHR-based 

studies investigating pharmacologic exposures because patients receiving treatments of 

interest may access the health care system more frequently, leading to richer EHR data and 

possibly more sensitive and/or less specific outcome ascertainment for these patients7.

EHR-based studies are frequently used for hypothesis generation and identification of novel 

risk factors. A key concern for findings from such studies is lack of reproducibility8–11. For 

EHR-based discovery, outcome misclassification is a key contributor to irreproducibility12. 

Using data from the eMERGE study, we previously quantified the loss of power attributable 

to outcome misclassification13. However, spurious associations induced by outcome 

misclassification are also an important contributor to lack of reproducibility.

We have previously developed and validated an EHR-based algorithm for identifying second 

breast cancers in women with a personal history of breast cancer14,15. An EHR-derived 

second breast cancer measure can be paired with pharmacologic exposures derived from 

prescription or drug dispensing databases to identify medications that may increase or 

decrease the risk of a second breast cancer. Using the previously developed EHR-based 

algorithm, we conducted statistical simulation studies to investigate bias in association 

parameter estimates due to differential outcome misclassification. We found that, when 

misclassification of second breast cancers was non-differential, parameter estimates were 

only minimally biased. However, under differential misclassification bias became relatively 

severe16.

The objective of this paper was to extend our previous investigation on bias due to 

differential misclassification in EHR-derived outcomes to quantify the magnitude of type I 

error resulting from exposure-dependent differential misclassification. Quantifying type I 

error is important in the context of EHR-based pharmacoepidemiologic studies because it 

provides a measure of the frequency of false-positive findings that may result from this type 

of measurement error. The results from this investigation can improve understanding of the 

lack of reproducibility of some EHR-derived findings.

Methods

The BRAVA Study of Second Breast Cancers

We used data from the BRAVA study, an investigation of second breast cancer algorithm 

development that incorporated a subset of patients from a larger, prior study17. BRAVA data 
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come from Kaiser Permanente Washington (KPWA), a large integrated health care system in 

Washington-state. We included women enrolled in KPWA with a primary stage I – IIB 

invasive breast cancer diagnosis between 1993 and 2006. Patient demographics, primary 

breast cancer characteristics, co-morbidities, and medication exposures were extracted from 

the KPWA virtual data warehouse and manual chart abstraction. Dates of second breast 

cancers were manually abstracted from patient records and extracted from a tumor registry 

to provide gold-standard outcome information. In addition, a “high specificity algorithm” for 

second breast cancer events15 was applied to structured EHR data to obtain an algorithm-

derived second breast cancer indicator. Estimated sensitivity and specificity for this 

algorithm were 89% and 99%, respectively15. The BRAVA study was reviewed and 

approved by the Kaiser Permanente Washington Institutional Review Board.

Simulation Study

The objective of simulation studies was to estimate the frequency of false-positive findings 

(i.e., type I errors) that is induced when a surrogate outcome subject to differential 

misclassification is used rather than the gold-standard outcome. Simulations used BRAVA 

data on second breast cancers and patient characteristics combined with a simulated, 

hypothetical medication exposure that does not affect second breast cancer risk. We used 

data from BRAVA on a binary gold-standard outcome (second breast cancers, D), a binary 

surrogate outcome (algorithm-derived second breast cancers, S), and patient risk factors (X). 

We then simulated a binary exposure (E), which was independent of true second breast 

cancer status but associated with the sensitivity and specificity of the surrogate outcome. E 
represents a novel exposure suspected of increasing second breast cancer risk such as a 

medication.

Differential misclassification was induced by defining different accuracy measures for the 

surrogate S conditional on the exposure level E. Specifically, for j, k=0, 1, we define 

exposure-dependent accuracy measures (i.e., sensitivity and specificity) as ajk = P(S = 1|D = 

j, E = k) with D=0 indicating no second breast cancer and 1 indicating a second breast 

cancer diagnosis, and E=0 for no exposure and 1 for exposure. Differential misclassification 

was defined as aj0 ≠ aj1, for j=0, 1.

In simulation studies, we used values for S and D observed in the BRAVA data and 

simulated E from a Bernoulli distribution with probability given by the following equation. 

Specifically, under the independence of outcome and exposure, the probability of E =1 

conditional on S and D is given by

P E = 1 S = i,   D = j   = α j1
i 1 − α j1

1 − i
P E = 1 /∑k = 0, 1   α jk

i 1 − α jk
1 − i

P E = k ,

where j = 0, 1.

We set the marginal prevalence of exposure, P(E=1), to 0.2. We fixed a10, sensitivity in the 

unexposed group, at 0.85 and a00, 1-specificity in the unexposed group, at 0.1. We then 

varied sensitivity and 1-specificity in the exposed group, a11 and a01, across a range of 
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values. We repeated the process of simulating the exposure variable E 1000 times for each 

combination of a11 and a01.

The target of inference was the odds ratio for the association between D and E, adjusted for 

patient risk factors X. However, we assume that in the context of an EHR-based study only 

information on S is available rather than D and therefore estimate the association between S 
and E adjusted for X. Although E was simulated independent of X, we adjusted for X in all 

analyses to mirror common practice in pharmacoepidemiologic studies of adjusting for 

variables known to be strongly associated with the outcome of interest. In settings where the 

association of these factors with the exposure of interest is uncertain, they are typically 

included in regression models to address the possibility of confounding.

Additional simulation studies using simulated true and surrogate disease outcomes, as 

opposed to observed values in the BRAVA cohort, in addition to simulated exposures 

allowed us to investigate a broad range of values for outcome prevalence as well as 

sensitivity and specificity in the unexposed group. As results were similar, we present only 

analyses using outcomes from BRAVA data combined with simulated exposures. The 

additional simulations are available in the Online Methods Supplement.

Statistical analysis

Using BRAVA data on S and X combined with simulated exposure data (E), we estimated 

the association between E and S using multivariable logistic regression. Logistic regression 

models adjusted for simulated exposure, E, and variables in X: age (continuous), year at 

diagnosis (categorical), primary breast cancer stage (categorical), and estrogen and 

progesterone receptor (ER, PR) status (categorical). For each model, we used the p-value 

based on the Wald statistic for the odds ratio (OR) associated with E to determine whether to 

accept or reject the null hypothesis, using a threshold for statistical significance of 0.05. For 

each combination of a01 and a11, we computed the proportion of simulations in which we 

rejected the null hypothesis. Since, in all settings, E was simulated to be independent of D, 

this proportion estimated the type I error. Using a significance threshold of 0.05, 5% of 

simulations would result in rejected null hypotheses if there were no type I error inflation.

Results

Our simulations used data on 3,152 women included in the BRAVA study (Table 1). In this 

sample, 407 patients were observed to experience a second breast cancer during study 

follow-up based on tumor registry and manual abstraction of patients’ medical records. 

Thus, the prevalence of second breast cancer events in the BRAVA dataset, P(D = 1), in this 

cohort was 0.129. Adjusted logistic regression models for the association between a 

simulated, independent exposure and second breast cancer status exhibited substantial 

inflation of the type I error rate as both sensitivity and specificity of the surrogate second 

breast cancer measure for exposed individuals deviated from their values in unexposed 

individuals (Figure 1). When sensitivity and specificity were the same in exposed and 

unexposed individuals (non-differential misclassification), type I error was 0.05. Holding 

specificity equal in exposed and unexposed individuals, when sensitivity was 10% higher in 

exposed individuals compared to unexposed (i.e., 0.95 vs 0.85) the type I error rate increased 
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to 17%. Similarly, holding sensitivity equal between the two groups, a 10% decrease in 

specificity between exposed and unexposed individuals (i.e., 0.80 vs 0.90) resulted in a type 

I error rate of 36%.

Discussion

Our analysis found that, in the context of an investigation of second breast cancers using 

EHR-derived outcomes subject to misclassification, type I error was substantially inflated 

above the nominal level when outcome misclassification was differential with respect to 

exposure. Even for an outcome with marginally good sensitivity and specificity, differences 

in accuracy between exposed and unexposed individuals frequently induced a spurious 

association between outcome and exposure. Results were particularly sensitive to differential 

specificity, with type I error increasing to very high levels for even small differences in 

specificity between exposed and unexposed individuals.

Differential misclassification is likely to be common in many settings using health care data, 

particularly those investigating medication exposures. Because classification accuracy is 

dependent on the intensity and type of interaction a patient has with the health care system, 

exposures that tend to result in more frequent contact with the health care system or that are 

correlated with health care seeking behavior are likely to exhibit differential 

misclassification. Previously, we found that differential misclassification induced notable 

bias in effect estimates in the setting of second breast cancers14,16. Based on our results, type 

I error rates for naïve analyses of such exposures will also be substantially inflated.

This study has several strengths. Notably, we used real EHR-derived data on second breast 

cancers including a previously validated EHR-based outcome measure and a chart review-

validated gold-standard outcome to inform our simulations. A simulation approach is ideal 

for characterizing type I error because it provides a setting in which we know, by design, 

that the gold-standard outcome and exposure are not associated. Any observed association is 

therefore certain to be spurious. By coupling simulated exposure data with real EHR data we 

are able to ensure that all other elements of the data distribution are realistic and reflect a 

real-world setting.

Limitations of our study include use of data from a single health care system and disease 

setting. However, our results in terms of differential misclassification and the magnitude of 

induced type I error are likely generalizable to other settings. Type I error is sample size 

dependent. Therefore, our results based on a cohort of approximately 3,000 patients 

represent a lower bound on the inflation of type I rates relative to larger studies. 

Additionally, while this work highlights the sensitivity of type I error rates to differential 

misclassification, we have not investigated the ability of statistical approaches for 

misclassification to correct this type I error inflation.

In conclusion, we found that differential misclassification in EHR-derived outcomes can 

lead to substantially inflated type I error rates and, consequently, false-positive findings. Our 

investigation highlights the importance of using validated outcomes with good operating 
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characteristics, conducting appropriate sensitivity analyses, and using misclassification-

adjusted analytic approaches to reduce the risk of identifying spurious relationships.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key points:

• Exposure-dependent differential outcome misclassification may occur in 

pharmacoepidemiologic studies using EHR-derived outcomes in which 

exposures are related to the frequency or intensity of interaction with the 

health care system.

• Differential outcome misclassification leads to substantial inflation of the type 

I error rate.

• Type I error inflation due to differential outcome misclassification is 

particularly severe when outcome specificity differs between exposed and 

unexposed individuals.

• Exposure-stratified estimates of outcome operating characteristics and 

misclassification adjusted analytic methods are needed to reduce the risk of 

spurious findings.
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Figure 1. 
Color coded contour plot of type I error as a function of sensitivity and specificity in 

exposed individuals (A), plot of type I error rate versus sensitivity in the exposed (B), and 

plot of type I error rate versus specificity in the exposed (C) using outcome and covariate 

data from BRAVA with simulated exposure data. In the contour plot (A), the black dot 

indicates sensitivity and specificity in the unexposed group. In the sensitivity plot (B), 

specificity in the exposed group is fixed at the value for the unexposed group (0.9) and in the 
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specificity plot (C), sensitivity in the exposed group is fixed at the value for the unexposed 

group (0.85).
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Table 1.

Summary statistics for the BRAVA cohort used in simulation studies. Descriptive statistics for this cohort have 

been previously presented9 and are reused by permission of Oxford University Press.

Characteristic
Overall

(N = 3152)
Women with no second breast cancer

(N = 2745)
Women with second breast cancer

(N = 407)

Age (years), mean (SD) 62.8 (13.3) 63.1 (13.2) 60.8 (13.9)

Year of primary diagnosis, N (%)

 1993 – 1995 578 (18.3) 469 (17.1) 109 (26.8)

 1996 – 1999 993 (31.5) 846 (30.8) 147 (36.1)

 2000 – 2003 971 (30.8) 861 (31.4) 110 (27.0)

 2004 – 2006 610 (19.4) 569 (20.7) 41 (10.1)

Primary breast cancer stage, N (%)

 Local 2479 (78.6) 2200 (80.1) 279 (68.6)

 Regional 673 (21.4) 545 (19.9) 128 (31.4)

ER/PR status, N (%)

 ER positive 2459 (78.0) 2177 (79.3) 282 (69.3)

 Both ER and PR negative 462 (14.7) 364 (13.3) 98 (24.1)

 Other 231 (7.3) 204 (7.4) 27 (6.6)

SD: standard deviation; ER: estrogen receptor; PR: progesterone receptor
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