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Abstract

Purpose: Current state-of-the-art models for estimating the pharmacokinetic parameters do not 

account for intervoxel movement of the contrast agent (CA). We introduce an optimal mass 

transport (OMT) formulation that naturally handles intervoxel CA movement and distinguishes 

between advective and diffusive flows.

Method: Ten patients with head and neck squamous cell carcinoma (HNSCC) were enrolled in 

the study between June 2014 and October 2015 and underwent DCE MRI imaging prior to 

beginning treatment. The CA tissue concentration information was taken as the input in the data-

driven OMT model. The OMT approach was tested on HNSCC DCE data that provides 

quantitative information for forward flux (ΦF) and backward flux (ΦB). OMT-derived ΦF was 

compared with the volume transfer constant for CA, Ktrans, derived from the Extended Tofts 

Model (ETM).

Results: The OMT-derived flows showed a consistent jump in the CA diffusive behavior across 

the images in accordance with the known CA dynamics. The mean forward flux was 0.0082 

± 0.0091 (min−1) whereas the mean advective component was 0.0052 ± 0.0086 (min−1) in the 

HNSCC patients. The diffusive percentages in forward and backward flux ranged from 8.67–

18.76% and 12.76–30.36%, respectively. The OMT model accounts for intervoxel CA movement 

and results show that the forward flux (ΦF) is comparable with the ETM-derived Ktrans.

Correspondence: Saad Nadeem, Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, 
USA, nadeems@mskcc.org.
*Equally contributing authors.

conflict of interest
There are no conflicts of interest.

HHS Public Access
Author manuscript
Magn Reson Med. Author manuscript; available in PMC 2020 December 01.

Published in final edited form as:
Magn Reson Med. 2019 December ; 82(6): 2314–2325. doi:10.1002/mrm.27897.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusion: This is a novel data-driven study based on optimal mass transport principles applied 

to patient DCE imaging to analyze CA flow in HNSCC.
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1 | INTRODUCTION

Head and neck (HN) tumors are heterogeneous with complex anatomy [1], Accurate 

detection and delineation of tumor extent is critical to optimize treatment planning; patients 

therefore routinely undergo non-invasive imaging for careful assessment of this complex 

anatomy. Non-invasive magnetic resonance imaging (MRI) has served an important role as a 

diagnostic test for initial staging and follow-up tumors in the HN region [2, 3, 4].

Dynamic contrast-enhanced (DCE) MRI involves the acquisition of successive T1-weighted 

images with administration of a T1-shortening Gadolinium-based contrast agent (CA) [5]. 

DCE imaging has been considered to be a promising tool for clinical diagnostics, including 

head and neck cancers [6, 7]. DCE data can be evaluated by semi-quantitative analysis and 

model based quantitative analysis [5, 8]. Semi-quantitative analyses (ie, time to peak (TTP), 

maximum contrast enhancement) provide only limited information about tumor physiology 

[9].

The Tofts and Extended Tofts (ETM) pharmacokinetic models are the most commonly used 

models for quantitative DCE-MRI analysis [5]. In DCE-MRI, CA concentration is derived 

from changes in signal intensity over time, then fitted to a tracer model to estimate 

pharmacokinetic (PK) parameters related to tumor vascular permeability and tissue 

perfusion [5]. The volume transfer constant for CA (Ktrans) represents the contrast agent 

transport from the blood plasma into the extravascular extracellular space (EES), and has 

been shown to be a prognostic factor in head and neck cancer [6, 7].

The accuracy and precision of this quantitative parameter can be influenced by arterial input 

function (AIF) quantification, temporal resolution in data acquisition, signal-to-noise ratio 

(SNR), and model selection [10, 11, 12, 13, 14, 15, 16]. Moreover, these quantitative metrics 

are macroscopic, representing averages over highly heterogeneous microscopic processes, 

and requires an appropriate model to analyze the data.

The problem of optimal mass transport (OMT) was posed for finding the minimal 

transportation cost for moving a pile of soil from one location to another. OMT was given a 

modern and relaxed formulation with the Monge-Kantorovich problem [17, 18]. 

Applications include image processing and computer vision, econometrics, fluid flows, 

statistical physics, machine learning, expert systems, and meteorology [19, 20]. Benamou 

and Brenier [21] presented a dynamical version of OMT which has received much deserved 

attention. Their approach considers the minimization of kinetic energy subject to a 

continuity equation that enforces mass preservation.
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It has been demonstrated that the differences in elevated tumor pressure lead to exudate 

convective flow out of the tumor such that any flow into the tumor may be ascribed to 

diffusion [22]. In the present work, we propose to employ methods from optimal mass 

transport (OMT) theory to study the problem of estimating CA flow from tumor DCE-MRI 

data. For the approach here, we add a diffusion term to the continuity equation. The resulting 

advection/diffusion equation regularizes the flow and moreover, as we will argue, gives a 

better physical picture of the underlying dynamics. This type of approach was exploited in 

our previous work [23] for the study of the glymphatic system.

We note that if one integrates the advection/diffusion equation over a given “compartment” 

and applies OMT theory, one derives an equation very similar to the ETM model [24]. In 

contrast to the conventional methods, the OMT framework provides dynamic information, 

formative of the time-varying directional nature of the flow. Other than using the advection/

diffusion flow from computational fluid dynamics, we do not impose any prior constraints or 

assumptions of the underlying physics of the model; for example, we do not require AIF as 

an input. It is important to emphasize that our analysis is data driven, and all of our 

conclusions are based on the imagery.

2 | METHODS

2.1 | Optimal Mass Transport

The main tool we will be employing is based on the theory of optimal mass transport 

(OMT). We provide the theoretical details relevant to this work and simply refer the 

interested reader to [19, 20] for more details. A comprehensive list of symbols used in the 

following text and their interpretation is given in Table 1.

For our purposes, we will review the fluid dynamical version of OMT for given initial and 

final densities associated with the same total mass, μ0 and μ1, defined on some domain 

A ⊂ ℝd over the normalized time interval t ∈ 0, 1 [21]:

inf
μ, v

A0
1 1

2 μt, x vt, x 2 dx dt (1)

subject to : ∂t μ + ∇ ⋅ μv = 0 (2)

μ0, ⋅ = μ0 ⋅ , μ1, ⋅ = μ1 ⋅ , (3)

where μ = μt, x ∈ ℝ is the density, v = vt, x ∈ ℝd is the velocity, and the spatial dimension is 

taken to be d = 2 or d = 3 Here, the objective is to find the density μ and velocity ν 
characterizing the mass-preserving flow (2) with fixed temporal endpoints (3) that requires 

minimal expended kinetic energy (1). In simple terms, this approach seeks a flow over some 
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time-space interval that minimizes the mass weighted kinetic energy of the flow and 

existence of the arguments μopt and νopt at which the infimum is obtained has been proven 

[21].

2.1.1 | Optimal Mass Transport with diffusion—We modify the original Benamou 

and Brenier OMT formulation by adding a diffusion term in the continuity equation (2). This 

allows for both advection and diffusion of the contrast agent and has the added benefit of 

regularizing the flow. Various aspects of regularized OMT have been studied in a number of 

recent works including [25, 26, 27, 28] which have extensive lists of references.

Accordingly, we substitute constraint (2) with the advection/diffusion equation

∂t μ + ∇ ⋅ μv = ∇ ⋅ D∇μ, (4)

where D, encapsulating spatially-varying diffusion, is a positive definite symmetric matrix 

modelling the diffusion. We now formulate the regularized OMT problem as the infimum of 

the action given by (1) subject to the advection/diffusion constraint (4) with the given initial 

and final conditions (3).

2.1.2 | Hamilton-Jacobi equation—Using calculus of variations [20], one can show 

the optimal velocity for the regularized OMT problem is of the form

vopt = − ∇λ,

where λ satisfies the following diffused version of a Hamilton-Jacobi equation:

∂tλ − 1
2 ∇λ 2 = ∇ ⋅ D∇λ . (5)

The latter equation derived from OMT (minimizing kinetic energy of the flow subject to an 

advection/diffusion constraint) is very revealing regarding the proposed model. Indeed, we 

note that the optimal velocity is the gradient of a function, and via (5), the bulk flow 

(advection) is clearly influenced as well by the diffusion. This will be described further in 

Section 2.1.3 below.

2.1.3 | OMT relation to Tracer Kinetic Model—We briefly sketch the relation to the 

very popular Tofts-Kermode model [5]. For simplicity, we indicate details in 2D. The basic 

idea is to integrate the advection/diffusion equation (4) over a given compartment V and use 

the divergence theorem. Accordingly, we let S denote the boundary of V. We first note that

V ∇ ⋅ D∇μdV =S D∇μ ⋅ ndS = :𝒟μ, (6)

where n denotes the outward normal to the surface S.
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Remark: In [29], ∇μ · n is interpreted as the difference between the concentrations of the 

contrast agent in the plasma and EES weighted by the permeability, defined as Ktrans [5], 

divided by the total surface area of the vasculature within the voxel multiplied by the volume 

of tissue within the voxel. This instantiation of Fick’s law serves to relate diffusive flux to 

differences in concentration.

Next we note that

V ∇ ⋅ μv dV =S μv ⋅ n dS (7)

= −S μ∇λ ⋅ n dS = :𝒫μ . (8)

This part, derived from advection, may be interpreted as arising from Darcy’s law 

(difference in pressure) but because of (5), there is also the influence of diffusion. We should 

emphasize that OMT theory gives a unique solution of (4) with optimal velocity given as the 

gradient of a function via (5).

Finally, setting

VμdV = : ρt, (9)

we see that at the optimal solution of the OMT problem, (4) becomes an ordinary differential 

equation of the form

dρt
dt + 𝒫μ = 𝒟μ, (10)

which leads to pharmacokinetic modelling.

Combining 𝒫μ and 𝒟μ (10), the rate of change of CA density over the compartment can be 

written as

dρt
dt =S D∇μ − μv ⋅ n dS, (11)

where j = D∇μ − μν is the total flux. Although the direction of the flux, j, is influenced by 

both the density gradient ∇μ and the velocity ν, we chose to focus our attention on the 

velocity since it is affected by time-varying changes in the given images as well as diffusion, 

as seen from the Hamilton-Jacobi equation (5). Interestingly, we find that the velocity alone 

yields information that aligns well with the current understanding of the contrast behavior 

which we will elaborate on below.

Elkin et al. Page 5

Magn Reson Med. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.2 | Full OMT model for flow of contrast agent

In this section, we summarize our overall model based on the regularized OMT model. In 

what follows, we will take the diffusion matrix D = σ2I, that is, a constant times the identity. 

In other words, diffusion is not a tensor quantity, and there are no preferred directions.

In consideration of the data, we make the following assumptions to motivate the proposed 

regularized model:

• A given sequence of N + 1 images taken at times t = Ti for i = 0, …, N are 

considered to be noisy observations of the CA’s true mass density at the 

respective times in which the images were captured:

μT i, x + y = μTi
y x, (12)

where γ is independent and identically distributed Gaussian noise with covariance Γ, μTi
y

denotes the given noisy observed density and μTi
 denotes the desired ‘true’ density.

a. The flow is described by the advection/diffusion equation,

∂t μ + ∇ ⋅ μv = σ2Δμ, (13)

where σ2 ∈ ℝ is the diffusivity of the medium. We take d = 3 in what follows. Further, in our 

treatment above we took T = 1. Here we take a general final time T. The mathematical 

treatment is identical.

We propose to find the desired ‘true’ CA density interpolant μ:0, T × ℝd ℝ between two 

given noisy observations μ0
y and μT

y  at times t = 0 and t = T respectively and the velocity field 

v:0, T × ℝd ℝd characterizing the evolution as the minimum arguments of the following 

action with a free endpoint term

0
T A1

2 μ v
2
dxdt + ε2 μT , x − μT

y x
Γ
2 , (14)

subject to the advection/diffusion constraint (13). The notation indicates that the variance 

operation is inversely scaled by the covariance. In this way, the low noise signals are more 

heavily weighted in the fitting to the observed values. The parameter ϵ2. is used to weight 

how harshly this data term should be penalized relative to the kinetic energy of the transport. 

We refer to (14) (with constraint (13) and fixed initial condition μ0, · = μ0
y ·) as the 

generalized regularized OMT problem (GR-OMT).
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2.3 | Patient Studies

The institutional review board approved and granted a waiver of informed consent for this 

retrospective clinical study, which was compliant with the Health Insurance Portability and 

Accountability Act. A total of 10 patients with neck nodal metastases and histologically-

proven squamous cell carcinoma were enrolled into the study between June 2014 and 

October 2015. The 10 human papillomavirus positive (HPV+) patients were grouped as 

complete responders (CR) and non-CR based on the standard-of-care imaging and clinical 

follow-up according to the criteria in RECISTv1.1 [30].

2.4 | DCE-MRI data acquisition

MRI studies were performed on a 3-Tesla (T) scanner (Ingenia; Philips Healthcare; 

Netherlands) using a neurovascular phased-array coil [?]. The standard MR acquisition 

parameters were as follows: multiplanar (axial, coronal, and sagittal) T2-weighted (T2w), 

fat-suppressed, fast spin-echo images (repetition time [TR]=4000 ms; echo time [TE]=80 

ms; number of averages (NA)=2; matrix=256×256; slice thickness=5 mm; field of view 

[FC)V]=20–24 cm), and multiplanar T1-weighted (T1w) images (TR=600 ms; TE=8 ms; 

NA=2; slice thickness=5 mm; matrix=256×256; slice thickness=5 mm; FC)V=20–24 cm). 

Multiple flip angle pre-contrast T1w images were subsequently acquired for T10 

measurement and DCE-MRI. Pre-contrast T1w images were acquired using a fast-

multiphase spoiled gradient recalled (SPGR) echo sequence and the acquisition parameters 

were as follows: TR = 7 ms, TE = 2.7 ms, flip angles θ = 5°, 15%, 30°, single-excitation, 

NA = 1, pixel bandwidth = 250 Hz/pixel, 256 × 128 matrix that was zero filled to 256 × 256 

during image reconstruction and FOV = 20–24 cm2.

The dynamic imaging sequence was acquired using the parameters for pre-contrast T1w with 

a flip angle of 15°. After acquisition of the first 5–6 images, antecubital vein catheters 

delivered a bolus of 0.1 mmol/kg Gd-DTPA (Magnevist; Berlex Labs, Montville, NJ) at 2 

mL/s, followed by saline flush using an MR-compatible programmable power injector 

(Spectris; Medrad, Indianola, PA). Arterial concentration of contrast was not sufficient to 

induce an observable T2* effect; although this effect is present in high-field imaging (>3T), 

we assume that it is sufficiently small and exclude it from subsequent calculations. The 

entire node was covered with 5-mm thick slices, zero gap, resulting in collection of 8–10 

slices with 7.46–8.1 second temporal resolution, for 40–60 time course data points. The time 

duration of dynamic imaging ranged 5–6 minutes.

2.5 | DCE-MRI Theory

The T1.-weighted (T1w) DCE signal for the spoiled gradient-echo recalled sequence is given 

by [31]:

St =
M0sinθe

−TER2*t
1 − e

−TRR1t

1 − cosθe
−TRR1t (15)
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where St is the voxel signal intensity at time t, M0 is the equilibrium magnetization of the 

protons, θ is the flip angle, TR is repetition time, and TE is echo time. R1t is the time course 

of longitudinal relaxation rate (R1 = 1/T1) and R2*t is time course of transverse relaxation rate 

R2* = 1/T2* . For TE ≪ T2*, e
−TRR2*t2

≈ 1.

The time course of measured signal is converted to the T1. relaxation rate. Under the fast 

exchange limit, the change in R1 (ΔR1 = R1 – R10 is linearly proportional to the tissue CA 

concentration Ct (mM).

R1t = R10 + r1Ctt ΔR1t = r1Ctt (16)

where R10 is the pre-contrast relaxation rate R1, and r1. is the longitudinal relaxivity of CA.

2.6 | DCE-MRI Analysis

The Ctt was fitted to extended Tofts model (ETM) to estimate the physiological parameters. 

The Ct for ETM is given by [5]:

Ctt = Ktrans
0
t e

−kept − τ
Cptdτ + Cpvp (17)

where Cpt is the time course of the plasma concentration of the CA (i.e., called arterial input 

function [AIF]), Ktrans (min−1) is the volume transfer constant (vascular space to the EES), 

and kep = Ktransvemin−1) is the rate constant for CA transport from the EES to vascular 

space. AIF for each patient was selected from the carotid artery using an automated cross-

correlation routine to locate the single voxel with strongest bolus delivery signal (compared 

against a reference waveform) [32]. Regions of interest (ROI’s) on tumors were identified 

and contoured manually by an experienced neuroradiologist based on T2w images and late 

phases of the T1w DCE images. Tumor volume was calculated from the higher-resolution 

T2w images to lessen the effects of partial-volume on the estimate.

Pre-contrast T1 values (ie, T10) were calculated from the precontrast T1w variable flip angle 

images [33]. The time course of tissue concentration dataset, Ctt, was fitted to Equation (17) 

using a nonlinear fitting technique that minimizes the sum of squared errors (SSE) between 

the model fit and data. Parameter estimation values were bounded in the fitting routine as 

follows: Ktrans ∈ [0, 5] (min−1), ve, and vp ∈ [0, 1], The ETM parametric maps were 

generated using in-house MRI-QAMPER software (Quantitative Analysis Multi-Parametric 

Evaluation Routines) written in MATLAB.

2.7 | OMT Numerical Simulation

We now outline our numerical implementation of the regularized OMT problem based on 

the work of [34].
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We consider a cell-centered grid where cells are determined by voxels with volume hd. 

Linearized variables are denoted in bold and subscripts are used to indicate the time step 

(e.g. n). As proposed in [34], we employ operator splitting to get the discretized advection/

diffusion equation (D-ADE)

I−δtL n + 1 = P n n, n = 0, …, K . (18)

Here, K is the number of time steps, δt is the temporal discretization, P is a (tri)linear 

interpolation matrix that redistributes advected mass to the cell centers, I is the identity 

matrix and L is a discretized diffusion operator ∇ · D∇. Even though we take the diffusion 

operator in the present paper to be of the form σ2Δ, we point out that the methodology 

works the same for a more general operator ∇ · D∇ where D is a symmetric, positive definite 

matrix.

Given an initial density μ0 and velocity ν, the D-ADE (18) gives the density for any time 

step. Recalling that we fixed the initial density to be equal to the given image μ0 = μ0
y, we 

see that the density can be written as a function of the velocity.

Tv = μt, x, t ∈ 0, T . (19)

This allows us to solve the GR-OMT problem (14) as an unconstrained optimization 

problem for ν alone.

As shown in [34], the energy functional is discretized as

0
T A1

2 μ v
2
dx dt ≈ hdδt ⊤IK ⊗ Av ⊙ , (20)

where and are block vectors comprised of the respective linearized variables n and n−1 for n 
= 1, …, K, Ik is the k × k identity matrix, Av is a 1 × d block matrix of Is, s is the number of 

voxels, ⊗ denotes the Kronecker product and ⊙ denotes the Hadamard product. Following 

[34], we solve the following discrete GR-OMT optimization problem:

minΞ = hd δt 1
2

⊤IK ⊗ Av ⊙ + ε2
K + 1 −K + 1

y 2

subject to
I−δtL n+1‐P n n = 0

0 = 0
y .

The constraint is linear with respect to and the objective function Ξ is quadratic with respect 

to and the interpolation matrix P is linear with respect to. Thus one can employ a Gauss-

Newton like method to solve the problem. Full details may be found in [34].
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Recall that the GR-OMT algorithm yields the velocity characterizing the evolution between 

two given images, subject to the advection-diffusion equation (13). As described above, this 

velocity is influenced by both advective and diffusive behavior of the CA and looking at the 

average speed, (i.e. the magnitude of the velocity), turns out to be quite revealing. In 

particular, we define forward flux (ΦF, min−1) to be the average speed of the velocity at 

some initial time interval (CA delivery phase) and backward flux (ΦB, min−1) to be the 

average speed of the velocity for the remaining time interval; we investigated the selection of 

the specific time intervals for the most accurate assessment of ΦF and ΦB. The flow diagram 

for the data processing steps in the GR-OMT pipeline is illustrated in Figure 1.

A significant advantage of OMT framework is that we also get directional information from 

the velocity which cannot be inferred from imaging alone. In accordance with the finding 

that contrast is advectively driven out of the tumor and enters the tumor via diffusion due to 

differences in concentration gradient; a voxel is considered to be advective if the time-

varying velocity vector at the corresponding location points out of the tumor for a majority 

of the time steps and diffusive if the velocity vector points inward for a majority of the time 

steps. The diffusive percentage is then defined to be the number of diffusive voxels divided 

by the tumor volume. Using smaller time intervals/increments in our pipeline, the diffusive 

percentage spike (indicating reflux) can be used to separate the backward and forward 

fluxes, as shown in Figure 2. Moreover, we had necrotic region segmentations for all 10 

patient datasets and we observed that the speed via our analysis was zero in necrotic regions 

(meaning constant pressure) and non-zero in non-necrotic regions.

2.8 | Statistical Analysis

Pearson correlation was performed between mean Ktrans and me an ΦF (with and without 

diffusion) values across all the 10 patients. The mean Ktrans and me an ΦF (with diffusion) 

values were strongly correlated (r = 0.79, p-value = 0.006). The mean Ktrans and me an ΦF 

(without diffusion) values were also found to be strongly correlated (r = 0.76, p-value = 

0.01).

3 | RESULTS

The mean volume of all tumors used in the study was 24.57 cm3 with standard deviation 

9.51 cm3. For DCE-MRI images, we refer to the i-th image as the image taken at phase i. We 

selected image phases of t = 6 – 21, which typically represent the first pass of CA time 

interval, for forward flux and t = 21 – 39 for backward flux based on the observation that the 

diffusive percentage spikes at t = 21 across all our patients when looking at smaller time 

intervals/increments. As shown in Figure 2, the spike indicates the strong reflux 

(characteristic of backward flux). Figure 1 shows the OMT pipeline run where the 

corresponding forward and backward fluxes and their respective advection/diffusion 

components are illustrated. The mean tumor forward flux in this case is 0.0098 and the 

diffusive percentage in the delivery phase (t = 6 – 21) is 14.21% and increases to 22.66% in 

the remaining interval.

Figure 3 shows comparison of ETM-derived Ktrans and OMT-derived ΦF. Abrupt changes in 

the neighboring slices/voxels are observed for Ktrans since it ignores the intervoxel 
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movement. In contrast, the ΦF shows clearer signal strength and maintains the integrity of 

the neighboring voxels. As observed, Ktrans follows similar trends to ΦF.

We show forward and backward fluxes with corresponding advection and diffusion 

components for two patient datasets in Figures 4 and 5 based on the tumor size. Quantitative 

metrics for forward and backward flux for all the patients (used in this study) with and 

without diffusion are given in Table 2. The corresponding diffusive percentages for all the 

patients along with the tumor volumes and the CR/non-CR status are shown in Table 3. Out 

of 10 patients, there was only one patient (Patient ID: 8) who did not experience a complete 

response to the treatment, with the tumor detectable on six months standard follow-up 

imaging. This patient (Figure 5) exhibited the highest backward flux diffusive percentage, as 

shown in Table 3.

Finally, the sensitivity analysis of different values of σ2 is given in Figure 6. We see that the 

direction of the flux changes gradually as σ2 increases but remains stable. The movement 

becomes more uniform as the value increases with a large difference observed when σ2 = 1, 

as illustrated in (f). Given the stability of the low σ2 values, we used σ2 = 0.0001 for all the 

HNSCC datasets in this study. The σ2 = 0.0001 is half that of the diffusivity for gadolinium 

measured in an in-vivo preclinical study [35].

4 | DISCUSSION

In this paper, we have described a natural fluid flow model applied to DCE-MRI head and 

neck data. The model, unlike ETM, allows to take into account both advective and diffusive 

flows between neighboring voxels. In our framework, we directly applied an advection/

diffusion model to study the optical flow properties of the dynamic imagery with no 

extraneous parameters. Thus the methodology described in the present work is data driven. 

We have shown how the bulk motion is chained to the diffusion through the diffused 

Hamilton-Jacobi equation (5). The relation to the compartmentalized models are revealed in 

(11) that shows explicitly how the time course of CA concentration is effected by a general 

velocity term that captures the conservation principles underlying the compartmental 

models.

ETM takes an input, AIF, a signal curve timecourse of CA delivery from a pre-selected 

arterial region and uses this as convolution for all the voxels in the tumor ROI. We do not 

make any such assumption. AIF for ETM and our analysis gave the same timeframe for 

initial pass of CA delivery in all the HNSCC datasets. ETM provides estimate of Ktrans 

based on the non-linear fitting. The reliance on initial value estimates (AIF and T1 maps) in 

nonlinear least squares fitting is a major difference from the data driven OMT model 

employed in this study.

There is another way of looking at our approach, which may illuminate some of the key 

ideas. Optimal mass transport defines a metric on distributions that allows natural physically 

based interpolations of data. Mathematically, it defines a geodesic path in the space of 

distributions in a certain precise sense [36]. However, it does not take into account diffusion. 

Adding diffusion to the model not only regularizes the OMT framework, but adds another 
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important interpretation to our proposed method. Namely, (4) may be regarded as a Fokker-

Planck equation, and hence describes the transition probabilities of the associated stochastic 

differential equation [37]. Thus, instead of moving along geodesic paths, we are now moving 

along Brownian paths [25]. Therefore, the model we employ seems quite natural, since our 

data are noisy, and we do not want to impose any a priori constraints. Of course, data driven 

approaches, under which our proposed method falls, have become very popular in the 

treatment of many problems in engineering and applied science.

In the future, we will validate our measures using preclinical data and do a multiparameteric 

comparison (including PET/CT). We also plan to estimate the pressure directly from the 

presented approach. Moreover, we will add source terms to our formulation that will allow 

us to combine OMT with other metrics such as L2 and Fisher-Rao [38] while still keeping 

the underlying advection/diffusion model governing the flow. Finally, we will consider more 

general versions of the diffusion coefficient, e.g. taking into account spatial dependence in 

order to further improve our scheme for the kinetic modeling of tumor DCE data.
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Figure 1. 
Optimal Transport pipeline. MR intensity images are converted to concentration images 

which are then fed to our regularized OMT algorithm. The resultant interpolations give 

‘clean’ density maps and the corresponding velocity field is used to compute the forward 

flux by averaging the speed components over the delivery time points and pressure-driven 

advection/diffusion flows on the boundary via the directional component (advective flows 

are represented by movement out of the tumor whereas the diffusion is represented by 

movement into the tumor, i.e. against the pressure gradient).
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Figure 2. 
Smaller time increments. The diffusion percentages are (a) 18.76%, (b) 20.28%, (c) 25.14%, 

(d) 22.10%, (e) 23.66% and (f) 23.49%. We use the diffusion spike at (c) to divide the total 

time interval into t = 6 – 21 for forward flux and t = 21 – 60 for backward flux.
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Figure 3. 
Comparison of mean±standard deviation for Ktrans and forward flux (ΦF) values on 4 

neighboring slices for 3 HNSCC patients. Note the abrupt changes in Ktrans neighboring 

slices/voxels since it ignores the intervoxel movement. In contrast, forward flux shows 

clearer signals and maintains the integrity of the neighboring voxels.
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Figure 4. 
Forward and backward flux and the corresponding advection and diffusion components. The 

diffusion percentage increases from 8.67% in forward flux to 17.42% in backward flux, (e) 

Mean advective (red) and diffusive (blue) speeds given as the percentage of tumor voxels 

with nonzero mean speed (Forward Flux).
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Figure 5. 
Forward and backward flux and the corresponding advection and diffusion components. The 

diffusion percentage increases from 15.20% in forward flux to 30.36% in backward flux, (e) 

Mean advective (red) and diffusive (blue) speeds given as the percentage of tumor voxels 

with nonzero mean speed (Forward Flux).
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Figure 6. 
Comparison of flux j = σ2∇μ − μν for increasing values of σ2. The flux vectors are shown in 

green on the tumor boundary, highlighted in purple. We see that the direction of the flux 

changes gradually as σ2 increases but remains stable. The movement becomes more uniform 

as the value increases with a large difference observed when σ2 = 1, as illustrated in (f). 

Given the stability of the low σ2 values, we used σ2 = 0.0001 for all the HNSCC datasets in 

this paper.
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Table 1.

Symbol Reference List.

Symbol Interpretation

Ct tissue contrast agent concentration (mMol)

Cp plasma contrast agent concentration (mMol)

Ve volume fraction of extravascular extracellular space (EES) in Extended Tofts Model (ETM)

Vp volume fraction of vascular space in ETM

Ktrans contrast agent volume transfer constant from the vascular space to the EES in ETM (min−1)

kep contrast agent transport rate constant from the EES to the vascular space in ETM (min−1)

d spatial dimension

A a subdomain of ℝd

x spatial variable, x ∈ A

t temporal variable

∇ · f spatial divergence of vector field f : ℝd ℝd

∇g spatial gradient of scalar function g : ℝd ℝ
λ potential function of the optimal velocity field

D symmetric positive definite diffusion matrix

σ2 diffusion coeffcient (mm2/min)

γ independent and identically distributed Gaussian noise with covariance Γ

μ noise free density

μγ noisy density

ν velocity

ΦF forward flux (min−1)

ΦB backward flux (min−1)
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Table 2.

Means and standard deviations of Ktrans, forward and backward fluxes for the 10 HNSCC patients. Mean 

forward/backward flux without diffusion = (sum of advective speeds)/(number of advective + diffusive voxels.

Ktrans Forward Flux (ΦF min−1) Backward Flux (ΦB min−1)

Patient ID Mean ± Std. Dev.
with diffusion Mean ± 

Std. Dev.
without diffusion 
Mean ± Std. Dev.

with diffusion Mean ± 
Std. Dev.

without diffusion 
Mean ± Std. Dev.

1 0.0324 ± 0.0348 0.0148 ± 0.0147 0.0099 ± 0.0139 0.0219 ± 0.0117 0.0102 ± 0.0134

2 0.0471 ± 0.0424 0.0405 ± 0.0354 0.0330 ± 0.0357 0.0311 ± 0.0279 0.0157 ± 0.0242

3 0.0047 ± 0.0052 0.0077 ± 0.0134 0.0063 ± 0.0118 0.0089 ± 0.0120 0.0061 ± 0.0113

4 0.0120 ± 0.0443 0.0221 ± 0.0267 0.0165 ± 0.0263 0.0176 ± 0.0288 0.0114 ± 0.0268

5 0.0416 ± 0.1119 0.0215 ± 0.0323 0.0151 ± 0.0298 0.0234 ± 0.0230 0.0131 ± 0.0214

6 0.0411 ± 0.0375 0.0470 ± 0.0412 0.0372 ± 0.0452 0.0438 ± 0.0410 0.0293 ± 0.0437

7 0.0225 ± 0.0211 0.0243 ± 0.0225 0.0167 ± 0.0223 0.0177 ± 0.0244 0.0089 ± 0.0215

8 0.0131 ± 0.0187 0.0082 ± 0.0091 0.0052 ± 0.0086 0.0103 ± 0.0108 0.0033 ± 0.0071

9 0.0082 ± 0.0179 0.0098 ± 0.0184 0.0068 ± 0.0182 0.0032 ± 0.0040 0.0014 ± 0.0026

10 0.0057 ± 0.0103 0.0107 ± 0.0151 0.0079 ± 0.0146 0.0124 ± 0.0151 0.0074 ± 0.0146
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Table 3.

Diffusive percentages (%) in forward and backward flux for the HNSCC patients with tumor volumes and 

complete responder (CR)/non-CR status.

Patient ID Tumor Volume (cm3) Forward Flux (ΦF) Backward Flux (ΦB) CR Status

1 17.04 18.76% 27.61% CR

2 25.23 8.67% 17.42% CR

3 21.76 9.77% 14.70% CR

4 28.28 9.96% 20.16% CR

5 41.55 11.38% 15.63% CR

6 55.27 11.83% 16.60% CR

7 21.99 14.21% 23.11% CR

8 15.04 15.20% 30.36% non-CR

9 26.34 14.21% 22.66% CR

10 66.63 10.78% 12.76% CR
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