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Abstract

Purpose: To enable simultaneous high-resolution mapping of brain function and metabolism.

Methods: An encoding scheme was designed for interleaved acquisition of fMRI data in echo 

volume imaging (EVI) trajectories and MRSI data in echo-planar spectroscopic imaging (EPSI) 

trajectories. The scheme eliminates water and lipid suppression and utilizes FID signals to encode 

both functional and metabolic information with ultrashort TE, short TR, and sparse sampling of 

k, t -space. A subspace-based image reconstruction method was introduced for processing both 

the fMRI and MRSI data. The complementary information in the fMRI and MRSI data sets was 

also utilized to improve image reconstruction in the presence of intra-scan head motion, field drift, 

and tissue susceptibility changes.

Results: In vivo experimental results were obtained from healthy human subjects in resting-state 

fMRI/MRSI experiments. In these experiments, the proposed method was able to simultaneously 

acquire metabolic and functional information from the brain in high resolution. For scans of 6.5 

minutes, we achieved 3.0×3.0×1.8 mm3 spatial resolution for fMRI, 1.9×2.5×3.0 mm3 nominal 

spatial resolution for MRSI, and 1.9×1.9×1.8 mm3 nominal spatial resolution for QSM 

(quantitative susceptibility maps).

Conclusion: This work demonstrates the feasibility of simultaneous high-resolution mapping of 

brain function and metabolism with improved spatial resolution and synergistic image 

reconstruction.
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1. INTRODUCTION

Since its inception in the early 1990s, functional MRI (fMRI) has been developed into a 

premier tool for neuroimaging, which measures blood oxygen level dependent (BOLD) 

signal changes related to brain activities (1–4). Complementary to fMRI, MR spectroscopic 

imaging (MRSI) can map the spatial distributions of brain metabolites and neurotransmitters 

without exogenous contrast agents and is a useful tool for studying brain metabolism (5–9).

Currently, fMRI and MRSI experiments are performed in two separate scans using different 

data acquisition schemes. Specifically, fMRI scans usually use gradient-echo based 

acquisitions to collect a sequence of T2*-weighted images that capture the BOLD signal 

changes; such acquisitions typically require 8–10 minutes to achieve spatial and temporal 

resolutions on the orders of 3 mm and 3 sec, respectively (10,11). On the other hand, MRSI 

scans involve the acquisition of both spatial and spectral encodings, thus resulting in long 

acquisition times (on the order of 20 min) (9,12–14). Given these different characteristics of 

data acquisition for fMRI and MRSI experiments, it has been challenging to perform 

simultaneous fMRI and MRSI studies. Early efforts on joint fMRI/MRSI studies used 

separate fMRI and single-voxel fMRS scans to measure neurochemical changes related to 

neural activity (15–25). These studies produced encouraging experimental results indicating 

coupling between brain activity and neurochemical changes (15–25). However, single-voxel 

fMRS techniques suffer from several well-known practical limitations, including large voxel 

size (typically, 20×20×20 mm3) (19,26–28), which often results in significant spectral 

distortions and partial volume effects. Additionally, the acquisition of fMRI and fMRS data 

over different time intervals limits our ability to observe concurrent functional and metabolic 

signal changes.

To overcome these limitations of the existing fMRS techniques, we have developed a novel 

method for simultaneous high-resolution functional and metabolic imaging by leveraging 

our progress in ultrafast MRSI (29,30) and our success in achieving simultaneous QSM and 

MRSI (31). Independent of our work, Bridge et al. recently achieved simultaneous fMRI and 

MRS with the spectra collected from a single voxel with 20 mm isotropic voxel size (32). 

Posse et al. also reported their preliminary results in a joint fMRI/MRSI study by collecting 

fMRI data during the water suppression period of the MRSI scan; Posse’s method achieved 

4×7×8 mm3 nominal spatial resolution for fMRI and 4×4×7 mm3 for MRSI data with a 

relatively small brain coverage (42 mm along the slice direction). Our proposed method 

achieves much higher resolution (3.0×3.0×1.8 mm3 for fMRI, 1.9×2.5×3.0 mm3 for MRSI, 

and 1.9×1.9×1.8 mm3 for QSM) with a larger brain coverage (FOV: 230×230×72 mm3). In 

addition, the proposed method utilizes the complementary information in the fMRI and 

MRSI data to improve image reconstruction in the presence of intra-scan head motion, field 

drift and susceptibility changes.

A more detailed description of our proposed method is given subsequently, followed by 

some representative experimental results to demonstrate the performance of the proposed 

method.
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2. METHODS

2.1. Data Acquisition

The proposed data acquisition scheme is illustrated in Figs. 1–3. By eliminating water 

suppression often used in MRSI acquisitions, we can effectively interleave MRSI and fMRI 

acquisitions during the same time period. As can be seen from Fig. 1, FID-based 

acquisitions are used to enable ultrashort TEs and short TRs; large k-space coverage is 

achieved by using extended EPSI readout with ramp sampling as well as variable density 

sampling along the phase encoding directions; fMRI data is collected in EVI-based 

trajectories with sparse sampling of k, T -space so that both fMRI and MRSI data are 

collected in the 3D mode to improve signal-to-noise ratio (SNR).

During the MRSI data acquisition, FID signals with spatiospectral encodings are acquired in 

EPSI trajectories. As compared with conventional EPSI trajectories shown in Fig. 2(a), our 

trajectories have a larger k-space coverage (thus higher spatial resolution) and longer echo 

spacing (e.g., 1.76 ms, which is below the Nyquist sampling requirement for spectral 

encoding). This trade-off between increased spatial and reduced spectral encodings is 

enabled by the SPICE subspace imaging framework (29,30,33). To further extend k-space 

coverage and reduce data acquisition time, k, t -space is sampled sparsely in variable 

density. More specifically, k-space is partitioned into three regions as shown in Fig. 2(b): a 

central region, a middle region and an outer region. The central region is sampled at the 

Nyquist rate spatially but a factor of two below the Nyquist rate temporally; the middle 

region is sampled below the Nyquist rate by a factor of two both spatially and temporally; 

the outer region is sampled below the Nyquist rate by a factor of three spatially and a factor 

of six temporally using blipped EPSI trajectories.

During the fMRI data acquisition, an FID signal is first collected for a very short period (1 

ms) immediately after the excitation pulse for each TR. This “navigator” signal is used for 

tracking B0 field drift (34). After collecting the navigator signal, bipolar gradients are turned 

on to collect fMRI data in EVI trajectories. To improve data acquisition efficiency, ramp 

sampling is used along the readout direction and blipped phase encodings are applied along 

the kz direction by dividing each TR into several segments as shown in Fig. 3.

2.2. Data Processing

For notational simplicity, the fMRI and MRSI data collected by the proposed method are 

denoted by df k, T  and ds k, t , respectively; the time variables “t” and “T” represent 

temporal signal changes at two time scales, with T = nTR and t = nδt with δt = 1.76 ms. The 

MRSI data are collected at high temporal resolution ( δt) to resolve the spectral distributions 

of different molecules while the fMRI data are acquired at a relatively lower temporal 

resolution ( TR). Since both df k, T  and ds k, t  are sparsely sampled, special algorithms are 

needed for data processing and image reconstruction.
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For MRSI data processing, the overall spatiospectral variations are represented using a 

union-of-subspaces model which exploits the partial separability (PS) of MRSI signals (33). 

More specifically, we express the spatiotemporal functions of MRSI signals ρs x, t  as:

ρs x, t = ρw x, t + ρl x, t + ρm x, t

=
n = 1

Nw
Uw, n x Vw, n t +

n = 1

Nl
Ul, n x V l, n t +

n = 1

Nm
Um, n x Vm, n t ,

[1]

where ρw x, t , ρl x, t , ρm x, t  represent the spatiotemporal functions of water, lipids, and 

metabolites, respectively. This subspace model exploits the fact that each signal component 

resides in a low-dimensional subspace spanned by a small number of basis functions (i.e., 

Vw, n , V l, n , and Vm, n ). With Eq. [1], the MRSI image reconstruction problem becomes 

a parameter estimation problem, i.e., determination of the spatial coefficients Uw, n , Ul, n , 

and Um, n  from ds k, T . Because of sparse sampling, spectral overlaps, a huge dynamic 

range of different signal components, and low-SNR of the measured data, it is not desirable 

to solve the parameter estimation problem directly using conventional model-fitting 

methods. We solved this problem using the SPICE framework incorporating prior 

information and pre-learnt spectral basis. More specifically, the field drift effect is first 

corrected using the field drift information (including frequency and phase changes) 

estimated from the navigator signals (34). Then the field inhomogeneity effect is removed 

using the high-resolution field map estimated from the unsuppressed water signals as was 

done in the original SPICE method (29). To avoid solving the parameter estimation problem 

for the spatiospectral model in Eq. [1] jointly for all the molecular components, the water 

and lipid components are first eliminated from ds k, t . This is the so-called “nuisance 

removal” problem that has been extensively investigated (35–37). Our method uses a 

Papoulis-Gerchberg (PG)-based iterative algorithm for lipid removal and a subspace model-

based method for water removal. A detailed description of these algorithms can be found in 

(35–39). After the water and lipid components are removed from Eq. [1], the spatiospectral 

distributions of the desired molecules are determined by fitting the spatiospectral model to 

the nuisance-removed MRSI data as was done in the original SPICE method but using a set 

of pre-learnt spectral basis (29,33,40,41).

For fMRI data processing, we solved two key problems: a) image reconstruction from 

df k, T  and b) determination of the functional activation maps from the fMRI images. The 

second problem includes motion correction, co-registration, segmentation, spatial 

smoothing, and independent component analysis (ICA). This problem is solved using the 

standard fMRI data processing pipeline (42–46), which performs motion correction, co-

registration, segmentation, and spatial smoothing using the SPM software platform and 

performs ICA analysis using the fastICA algorithm (45). To solve the first problem, i.e., 
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reconstructing fMRI images from df k, T , df k, T  is expressed in terms of a PS model using 

a single subspace as:

df k, T =
n = 1

Nf
Uf, n k V f, n T , [2]

where Vf, n  is a set of temporal basis functions for the fMRI signals. Such a model has 

been successfully used for dynamic imaging (47) and fMRI (48,49). With this model, the 

image reconstruction problem can be divided into two subproblems: a) determination of the 

temporal basis Vf, n  and b) estimation of the spatial coefficients Uf, n . Using our 

proposed data acquisition scheme shown in Fig. 3(b), 50% of the spatial encodings in 

df k, T  are acquired in high temporal resolution (3 seconds); the data from these encodings 

are used to estimate the temporal basis functions, Vf, n T , using SVD as was done in (47–

49). More specifically, a Casorati matrix is formed based on these data and its Nf principal 

right singular vectors are chosen as Vf, n ; more details about this method can be found in 

(47). After the temporal basis functions are determined, the spatial coefficients Uf, n  are 

determined from the sparsely sampled df k, T  by solving the following optimization 

problem:

Uf = argmin
Uf

df − ΩℱUfVf 2
2 + λ WUf 2

2, [3]

where Uf and Vf are matrix representations of the spatial coefficients and temporal basis; df
is a vector containing all the data in df k, T ; Ω is the k, T -space sampling operator as shown 

in Fig. 3(b); W is a diagonal weighting matrix for edge-preserving regularization (47); λ is a 

regularization parameter, which is chosen empirically based on the discrepancy principle 

(50). Equation [3] is a typical Tikhonov regularization problem that can be solved efficiently 

(50).

2.3. Implementation and Experimental Study

To demonstrate the feasibility of our proposed method, we implemented the proposed 

sequence on a 3T scanner (Siemens Prisma). In our current implementation, the sequence 

used a 27° slab-selective excitation, TR = 160 ms, TE = 1.6 ms, and readout bandwidth = 

167 kHz. It collected the following signal components sequentially in one acquisition cycle 

of 9 seconds: MRSI data for 2.4 seconds (over 15 TRs), fMRI data for 1.2 seconds (over 8 

TRs), MRSI data for 2.4 seconds (over 15 TRs), fMRI data for 0.3 seconds (over 2 TRs), 

MRSI data for 2.4 seconds (over 15 TRs), and then fMRI data for 0.3 seconds (over 2 TRs). 

This acquisition cycle was repeated until sufficient encodings were acquired for both fMRI 

and MRSI. For our imaging study, we set FOV = 230×230×72 mm3. The MRSI data covered 
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k-space with 110×120×36 encodings for water imaging and 110×96×24 for metabolic 

imaging, which correspond to 1.9×1.9×1.8 mm3 and 1.9×2.5×3.0 mm3 nominal spatial 

resolutions, respectively. The sequence acquired 76 frequency encodings along kx, 38 phase 

encodings along ky, and 5 phase encodings along kz for the fMRI component. Therefore, 8 

TRs (1.2 seconds) were allocated to obtain a complete fMRI data frame with 76×76×40 k-

space points, which have a factor of 2 undersampling along ky direction. The sequence 

collected the 8-TR fMRI data frames every 9 seconds; between every two 8-TR fMRI 

frames, two 2-TR fMRI data frames were acquired with a factor of 4 undersampling along 

the kz direction. So, the effective temporal resolution of the fMRI data is 3 seconds as shown 

in Fig. 3(b). The entire scan time was 6.5 minutes, which generated 120 fMRI data frames.

In data processing, MRSI data from the central and middle regions of k-space which contain 

a total of 110×96×24 spatial encodings, were used for reconstructing the spatiospectral 

functions of the desired molecules (e.g., NAA, Cho, Cr, etc.). For QSM calculation, we used 

the entire MRSI data with 110×120×36 spatial encodings, in which the outer k-space data 

had a relatively large temporal sampling interval of 5.28 ms. The processing method used for 

QSM calculation is based on our previous work on simultaneous MRSI and QSM (31), 

which include: a) estimation of the total field inhomogeneity map from the unsuppressed 

water signals, b) removal of background field by solving a Laplacian boundary value 

problem, and c) reconstruction of the tissue susceptibility map by solving the dipole 

inversion model with anatomical constraints. A detailed description of the QSM calculation 

method can be found in (31).

3. RESULTS

In the resting-state fMRI/MRSI experiments, the spatial maps corresponding to the well-

recognized resting-state functional networks (RSNs) were obtained using ICA analysis (43–

45). Figure 4 shows a set of representative spatial components extracted from our fMRI data, 

which were converted to z-scores and displayed using a threshold of z >2. The 

corresponding RSNs include the default mode network (DMN), medial visual network 

(MVN), lateral visual network (LVN), executive control network (ECN), sensorimotor 

network (SMN), and auditory network (AN). These network structures are consistent with 

those in the literature (51–54).

In addition to the resting-state networks, spatiospectral functions of brain metabolites were 

also obtained from the data acquired in our experiments. Figure 5 shows the concentration 

maps of several metabolites, including N-acetylaspartate (NAA), creatine (Cr), choline 

(Cho) and glutamate + glutamine (Glx), from different slices across the brain. As can be 

seen, both the SNR and resolution of the metabolite maps are rather good given the short 

acquisition time. To illustrate the spectral quality of our reconstructions, a set of 

representative spectra is displayed in Fig. 6. As can be seen, high-quality spectra of the brain 

metabolites were produced by the proposed method. To further analyze the spectra 

quantitively, spectral quantification was performed on the averaged spectra from the gray 

matter and white matter (55). The quantification results showed that NAA/Cr was 1.24±0.20 

in gray matter and 1.31±0.19 in white matter; Cho/Cr was 0.22±0.06 and 0.25±0.05 in grey 
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and white matter, respectively, which were consistent with the literature values (56). The 

QSM maps generated from the MRSI data have a higher spatial resolution than the 

metabolite maps due to the additional outer k-space data collected for QSM calculation 

using our variable density sparse sampling scheme. Note that the functional, metabolic 

information and QSM were all obtained simultaneously from a single 6.5-min scan, in 

contrast to three separate long scans needed in current practice, e.g., 10 min for fMRI 

(43,44), 8 min for QSM (57) and 20 min for MRSI (12,13).

4. DISCUSSION

This work demonstrates the feasibility of simultaneous high-resolution imaging of brain 

function and metabolism in a single scan using a new SPICE-based data acquisition and 

processing method. This method also effectively utilizes the complementary information in 

the fMRI and MRSI data to improve the quality and robustness of fMRI and MRSI under 

practical experimental conditions. The MRSI data contain the “full” spatiospectral 

information of the fat and water signals, which are not available from conventional fMRI 

experiments. With this information, we can effectively identify and remove the well-known 

chemical shift artifacts and susceptibility distortions associated with EPI acquisitions often 

used for fMRI experiments. This capability enables 3D fMRI in EVI trajectories without fat 

suppression. The EVI-based acquisition has several advantages over conventional multi-slice 

EPI acquisitions, which include: a) no fat suppression, b) no timing shifts among the 

different slices, c) no spatial gaps between the adjacent slices, and d) more efficient use of 

the free precession period after each pulse for data acquisition.

Another advantage of our simultaneous fMRI/MRSI method lies in the fact that the fMRI 

data can be used as navigators to detect field drift and head motion for MRSI data 

processing. Field drift due to gradient switching is inevitable, and can cause spatial 

displacement or frequency shift in most MRSI applications. Mapping the field drift is 

important for achieving accurate and consistent MRSI results. Hence capturing these field 

changes can improve the robustness of our methods for practical applications. For motion 

detection, the fMRI data are collected in high temporal resolution (3 seconds) and can 

capture bulk head motion during the whole scan, an example of which is given in Fig. 7, 

where the subject moved twice during the scan. As can be seen, by removing the motion-

corrupted data, the motion artifacts were significantly reduced in the resulting images.

Compared with the existing fMRS techniques used for studying neurochemical changes in 

response to brain functional activity, our method provides much larger brain coverage and 

higher resolutions in addition to its unique capability for simultaneous mapping of brain 

function and metabolism. For example, in our fMRI/MRSI experiments, we obtained MRSI 

data of 1.9×2.5×3.0 mm3 nominal spatial resolution, which is much higher than typical 

fMRS scans with 20×20×20 mm3 voxel size; we were also able to scan a large brain region 

(e.g. 230×230×72 mm3) instead of one large voxel per scan. Furthermore, the 

simultaneously acquired QSM maps provide further information about the physiology of 

brain tissues (57,58).
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5. CONCLUSIONS

A new method is presented to enable simultaneous fMRI and MRSI of the brain by 

synergistically integrating SPICE-based MRSI with EVI-based fMRI. Brain imaging 

experiments have also been carried out to demonstrate the feasibility and potential of the 

proposed method. Experimental results show that the proposed method can acquire spatial 

maps of brain metabolites, functional networks, and tissue susceptibility simultaneously at 

high-resolution. The proposed method offers significantly higher spatial resolution and 

larger brain coverage than any existing techniques. With further improvement, the method 

can provide a powerful tool for mapping brain function and metabolism simultaneously.
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Figure 1. 
Time diagram of the proposed pulse sequence with interleaved acquisition of the MRSI and 

fMRI data. The MRSI data are acquired in modified EPSI trajectories while the fMRI data 

are acquired in EVI trajectories. In the MRSI acquisition, blipped gradients (shown in red) 

are applied in selected TRs to extend the k-space coverage (see Fig. 2). No water or lipid 

suppression is applied; in our current implementation, TE = 1.6 ms, TR = 160 ms, N1 = 15, 

N2 = 8, and N2’ = 2.
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Figure 2. 
Sampling scheme for MRSI data acquisition. a) Spatiospectral encodings in one TR using a 

modified EPSI trajectory; note that as compared with conventional EPSI trajectories, the 

proposed method achieves larger k-space coverage (thus higher spatial resolution) by 

reducing the number of spectral encodings. b) Phase encodings with variable density 

sampling of k-space; the central region (blue) is sampled at the spatial Nyquist rate; the 

middle region (green region) is under sampled by a factor of two in ky direction while the 

outer region (red region) is under sampled by factor of three spatially and a factor of six 

temporally.
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Figure 3. 
Sampling scheme for fMRI data acquisition. a) EVI trajectory traversed in one TR: data 

along the kx (readout) and ky (phase encoding) directions are collected in EPI trajectories, 

and 5 phase encodings are acquired along kz using blipped phase gradients (see Fig. 1). b) 

k, T -space sampling: full data frames are collected with 8 TRs and sparse data frames are 

collected with 2 TRs; the resulting frame rate is 3 seconds.
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Figure 4. 
Activation maps obtained from a 6.5-min resting-state fMRI/MRSI scan using the proposed 

method. The maps showed spatial patterns for: (a) default mode network (DMN), (b) medial 

visual network (MVN), (c) lateral visual network (LVN), (d) executive control network 

(ECN) (e) sensorimotor network (SMN), and (f) auditory network (AN), respectively. These 

resting-state network structures are consistent with those in the literature (51–54).
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Figure 5. 
Metabolite maps and QSM generated from the same experimental data described in Figure 

4. The metabolite maps were reconstructed at 1.9×2.5×3.0 mm3 nominal spatial resolution 

while the QSM was reconstructed at 1.9×1.9×1.8 mm3 spatial resolution.

Guo et al. Page 16

Magn Reson Med. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Representative results showing the spectral quality of the proposed method: (a) localized 

spectra from the selected spatial region, and (b) spectral fitting results of the averaged 

spectra from the gray matter and white matter, respectively. The spectral quantification 

results showed that NAA/Cr was 1.24±0.20 in gray matter and 1.31±0.19 in white matter; 

Cho/Cr was 0.22±0.06 and 0.25±0.05 in grey and white matter, respectively, which are 

consistent with the literature values (56).

Guo et al. Page 17

Magn Reson Med. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
(a) Detected field drift and head motion parameters (translation and rotation) from the fMRI 

data. In this scan, the subject was instructed to move his head twice during the scan at 2.1 

min and 4.7 min, respectively. The detected motion was in good agreement with the 

expected timing. (b) The water images from the motion-corrupted MRSI data. (c) the water 

images by removing motion corrupted data followed by SENSE reconstruction. Note that 

the motion artifacts were significantly reduced from the MRSI data. This capability 

improves the robustness of our method for practical applications.
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