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De novo transcriptome assembly
for four species of crustose coralline
algae and analysis of unique
orthologous genes

Tessa M. Page’?, Carmel McDougall ®*2 & Guillermo Diaz-Pulido (-2

Crustose coralline algae (CCA) are calcifying red macroalgae that reef build in their own right and
perform essential ecosystem functions on coral reefs worldwide. Despite their importance, limited
genetic information exists for this algal group. De novo transcriptomes were compiled for four species
of common tropical CCA using RNA-seq. Sequencing generated between 66 and 87 million raw reads.
Transcriptomes were assembled, redundant contigs removed, and remaining contigs were annotated
using Trinotate. Protein orthology analysis was conducted between CCA species and two noncalcifying
red algae species from NCBI that have published genomes and transcriptomes, and 978 orthologous
protein groups were found to be uniquely shared amongst CCA. Functional enrichment analysis of these
'CCA-specific’ proteins showed a higher than expected number of sequences from categories relating
to regulation of biological and cellular processes, such as actin related proteins, heat shock proteins,
and adhesion proteins. Some proteins found within these enriched categories, i.e. actin and GH18,
have been implicated in calcification in other taxa, and are thus candidates for involvement in CCA
calcification. This study provides the first comprehensive investigation of gene content in these species,
offering insights not only into the evolution of coralline algae but also of the Rhodophyta more broadly.

Crustose coralline algae (CCA) are calcifying red algae that form crusts on marine substrates worldwide, from
polar regions to the tropics, and from intertidal zones to deep below the photic zone?. CCA are particularly
abundant in tropical reefs, occupying much of the hard substrates within coral reef ecosystems®. Tropical CCA
are key players in contributing to the global carbon cycle* and provide various ecosystem functions, such as con-
tributing to the structural complexity of coral reefs by building and cementing the carbonate framework?®, and
inducing the metamorphosis and settlement of coral larvae®” and other economically and ecologically important
invertebrates®. Furthermore, CCA assist coral reefs to withstand and recover from disturbances’, and can there-
fore mitigate some of the negative impacts from the loss of reef structural complexity brought on by anthropo-
genic and naturogenic disruptions.

Coralline algae evolved from a red algal ancestor in the Early Cretaceous and began to diversify during the
Early Miocene!® (Fig. 1). Coralline algae are unique amongst other red algae species due to the type of calcium
carbonate used in this group!!, and their ability to calcify within cell walls'2. Coralline algae produce high mag-
nesium calcite crystals generally oriented radially perpendicular to the cell wall as well as crystals oriented par-
allel to the wall in the interfilament region'®'3, and their calcification process is considered to be an “organic
matrix-mediated process'?”. In contrast, the calcification process of other calcifying algae species, such as
Halimeda spp., is considered to be “biologically induced’, occurring primarily outside the cell'?. Calcification in
coralline algae can be considered, to some extent, to be cellularly regulated, and is somewhat similar to the cal-
cification process of coccolithophores which is thought to be an extreme example of “organic matrix-mediated”
calcification or “biologically controlled” calcification'>!. Studies have also found the calcification process in cor-
alline algae and coccolithophores to be linked to unusual polysaccharides'. The production and maintenance of
these calcified skeletons is what allows CCA to play such a crucial role across tropical coral reefs and sets them
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Figure 1. Phylogenetic tree for the phylum Rhodophyta. Inset depicts the relationship of CCA species from
different orders within the Corallines group. Phylogenetic tree for Rhodophyta based on Freshwater et al.”,
Pueschel 1994%, Ragan et al.8!, Saunders and Bailey 199782, Tree for CCA is adapted from Aguirre et al.!* &
Résler et al.*'. Node labels on inset tree of CCA species depict evolutionary time in millions of years.

Whole Assembled
Genomes Transcriptomes

Chordates 672 642

Arthropods 400 1442

Vascular plants 345 877

Green Algae 51 20

Brown Algae 3 42

Red Algae 9 36

Coralline Algae 0 0

Table 1. Number of published whole genomes and assembled transcriptomes for different taxa. Data taken
from NCBI, as of February 2019. Transcriptome data taken from NCBI’s Transcriptome Shotgun Assembly
Sequence Database and is most likely an overestimate as duplication of species is not taken into account.

apart from other calcifying algal species'®. Coralline algae have been found to also upregulate the pH of their
calcifying fluid/medium during calcification!”. Due to the uniqueness of calcification in coralline algae, and their
importance in general, there is a need for molecular mechanistic studies on coralline algae*. The use of molecular
studies could lead to an understanding of the independent evolution of calcification in coralline algae, as well as
an understanding of how these calcified organisms persisted and diversified during times of previously high pCO,
and temperature'®.

An appreciation of the importance of CCA and the services they provide, and their sensitivity to climate
change impacts, has led to a number of studies into their biology", calcification'”?°, phylogeny'®*!, and physi-
ology**?. However limited molecular information (genomes, transcriptomes, gene expression profiles, or pro-
teomes) exists for these species. This knowledge gap greatly limits our ability to fully understand whole organism
function and the responses of this group of red algae to pressing environmental issues, such as changes in their
environment brought on by human-induced change (e.g. ocean acidification and warming or declining water
quality). The sequencing of genomes and/or transcriptomes provides essential information for the elucidation
of the mechanisms that underpin physiological and biological traits and responses. Although sequencing has
become more readily accessible??*, genomes and annotated transcriptomes for many environmentally and
economically important species are unavailable. ‘Omics’ studies are lacking in algae in general®, with minimal
genomic information available in algae when compared to land plants®” or other phyla. Only 51 whole genomes
are available for green algae, 3 for brown algae, and 9 for red algae, compared to the 672 for chordates, the 400 for
arthropods, and the 345 for vascular plants (Table 1). A similar trend is seen for transcriptomes (Table 1). For cor-
alline algae no complete genomes or transcriptomes have been published, however, mitochondrial®*-* and plastid
genomes®! have been sequenced for some species. Therefore, there is a major knowledge gap in our understanding
of the molecular landscape of coralline algae.

In the present study, we generated transcriptomes for four species of tropical CCA: Porolithon cf. onkodes,
Sporolithon cf. durum, Lithothamnion cf. proliferum, and Lithophyllum cf. insipidum, hereinafter referred to as
Porolithon, Sporolithon, Lithothamnion, and Lithophyllum, respectively. These species were collected in the Great
Barrier Reef, Australia, and were selected because they are common and abundant in tropical reefs and belong
to different evolutionary lineages in the coralline algae (sensu lato). To ensure inclusion of stress-response genes
within our transcriptomes we included samples taken after exposing the CCA to combined and independent
increased temperature and decreased pH treatments. Orthology inferences were conducted to identify putative
orthologous genes between these CCA species and other red algae for which genomic or transcriptomic data was
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Sporolithon Porolithon Lithothamnion Lithophyllum

Raw reads 81,176,680 87,281,439 66,119,011 64,651,990
Contigs, with Jaccard Clip 231,324 163,784 54,557 306,668
Contigs after CDHIT clustering | 185,481 118,126 45,633 233,751

Mean length (bp) 589.1 584.72 693.59 498

N50 (bp) 862 788 1,147 602

RMBT% 95.22% 97.25% 98.68% 94.07%

GC% 42.42% 44.53% 49.02% 46.92%

Table 2. Summary statistics for Sporolithon, Porolithon, Lithothamnion, and Lithophyllum de novo
transcriptome assemblies. N50 statistic denotes the length of contigs which cover 50% of the transcriptome.
RMBT% is the percentage of reads that mapped back to the transcriptome. GC% represents the percentage or
content of guanine-cytosine within the transcriptome.

Coralline Non-coralline
BUSCO statistic Sporolithon | Porolithon Lithoth Lithophyll C. crispus G. chorda
Complete BUSCOs 278 (92%) 265 (88%) 264 (87%) 281 (93%) 234 (77%) 278 (91 %)
Complete - single-copy BUSCOs 99 (33%) 185 (61%) 222 (73%) 110 (36%) 226 (75%) 269 (88%)
Complete - duplicated BUSCOs 179 (59%) 80 (26%) 42 (14%) 171 (56%) 8(3%) 9 (3%)
Fragmented BUSCOs 15 (5%) 17 (6%) 22 (7%) 11 (4%) 25 (8%) 10 (3%)
Missing BUSCOs 10 (3%) 21 (7%) 17 (6%) 11 (4%) 44 (15%) 15 (4%)

Table 3. BUSCO results from the de novo transcriptomes of four species of CCA compared to the whole
genome data of two species of noncalcifying red algal species, C. crispus and G. chorda.

available. A number of orthogroups appear unique to CCA, and inference of the likely functions of these genes
provides insight into the evolution of these important reef-builders. This study provides a valuable framework for
understanding the molecular biology of CCA and insight into genes potentially involved in important processes
in CCA, such as calcification. Additionally, we hope this study will facilitate future research into the molecular
responses and vulnerability of CCA to future environmental change.

Results and Discussion

De novo transcriptome assembly. The current study presents novel transcriptome assemblies for four
species of crustose coralline algae (CCA): Sporolithon, Lithothamnion, Porolithon, and Lithophyllum. RNA-seq
libraries for each species were generated from pooled RNA extracted from one individual reproductive adult from
each of the different treatment conditions (n=6) (refer to Methods & Supplementary Methods 1). Sequencing of
these libraries produced between 66-87 million paired-end reads per species (n = 4). Variability was found across
species when comparing assembly statistics (Table 2). Lithothamnion contained the fewest raw reads, which
equated into the fewest assembled transcripts. Lithophyllum had a similar number of raw reads to Lithothamnion
but had significantly more assembled transcripts. Sporolithon and Porolithon were most similar in their num-
ber of raw reads and assembled transcripts in comparison to the other two species. Clustering of redundant
transcripts using CD-Hit reduced contig numbers by 16-27% (Table 2). Mean contig length was not signifi-
cantly different between species, but was variable, ranging from 498-694 base pairs (bp), and N50 values ranged
between 602-1147 bp (Table 2). These assembly statistics are comparable to those of transcriptomes from other
red algal species such as Pyropia seriata®?, Porphyra umbilicalis*®, and Porphyra purpurea®, except the assembly
of Lithophyllum which had a much lower N50 value indicating a more fragmented assembly. Read representation
within each assembly, assessed by mapping raw reads for each species against their respective de novo transcrip-
tomes (RMBT%), was high (94% or above). Variability in number of assembled transcripts and their resulting
summary statistics may be due to collection of individual crusts at different reproductive stages for each species.
Lithophyllum is reproductive year-round, and the samples taken likely possessed numerous gametangial and/or
tetrasporangial conceptacles. Sporolithon and Porolithon were just coming into their reproductive time of year and
likely had fewer reproductive structures, whereas Lithothamnion probably had the fewest number of reproductive
structures as it has been found to be primarily reproductive in summer months (pers. obs.).

Quality assessment of transcriptomes. The quality of each transcriptome was assessed using the
Benchmarking Universal Single-Copy Ortholog (BUSCO) assessment tool**. CCA de novo transcriptomes were
compared against whole genome protein data from the noncalcified red algal species, Chondrus crispus and
Gracilariopsis chorda, from the orders Gigartinales and Gracilariales, respectively (Fig. 1). BUSCO analysis of the
four CCA transcriptomes showed that, out of the 303 near-universal single-copy eukaryote orthologs, between
87% and 93% complete sequences and 4% to 7% fragmented or partial sequences were detected (Table 3).
Additionally, only between 3% and 7% of near-universal genes were classified as missing in the CCA transcrip-
tomes, indicating high quality and good coverage. BUSCO analysis run on the reference genome proteins of
the two noncalcifying red algae species returned similar measures of completeness, however, as expected for a
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Figure 2. Plot visualising shared and unique orthologous protein groups across four species of crustose
coralline algae, Lithophyllum, Sporolithon, Porolithon, and Lithothamnion, and two species of noncalcified red
algae, G. chorda and C. crispus. Plot at the top shows the number of orthogroups found in the species indicated
in the schematic below. Shared orthogroups across all red algae species are highlighted in purple, across only
CCA species in red, and across only the noncalcifying red algal species in blue. Orthologous proteins were
identified with Orthofinder and plotted using the R package, UpsetR”. Any relationships with <15 orthogroups
were omitted.

curated genomic dataset, had a higher percentage of complete single-copy orthologs (73.90% to 88.80%), and
a lower percent of duplication (2.60% to 3%). A higher percentage of missing BUSCOs was found in C. cris-
pus (15.60%) when compared to the four CCA species, whereas, G. chorda had a similar percentage missing
as Lithophyllum (Table 3). Three BUSCOs, EOG09370A22 (encoding a glycosyl transferase), EOG09370KWF
(encoding a Perl-like gene), and EOG09370VTP (encoding a GPI mannosyltransferase) were found to be miss-
ing across all red algal species compared here, including the four CCA species. The absence of these genes from
the transcriptomes of the 4 CCA species and the genomes of the 2 noncalcified red algal species may indicate
that these genes were lost in the evolution of Rhodophyta. Additionally, there was one BUSCO, EOG09370JW6,
missing across all CCA species, but present in the other noncalcifying red algae species. This gene, encoding for
an elongator complex protein 4 (ELP4), is highly conserved in eukaryotes. It is part of a multi-subunit complex
that interacts with elongating RNA polymerase II and is believed to facilitate transcription®, additionally, ELP4
plays a role in transfer RNA (tRNA) modification®. The elongator complex has also been tied to development
and responses to biotic and abiotic stresses in plants*. In another study examining the elongator function in
Arabidopsis thaliana, it was suggested that the elongator complex could influence mechanisms that produce car-
bon assimilates and the importation of sucrose®’. The absence of the gene in all CCA transcriptomes generated
here may indicate that it has been lost from the Corallines lineage entirely. Although many physiological states
were sampled when collecting data for CCA it is possible that some genes may be missing from these assembled
transcriptomes. Determination of the complete gene complement of these species, and confirmation of proposed
gene losses, will require whole genome sequencing approaches.

Orthofinder analysis. Orthofinder was used to perform protein orthology analysis across red algae species
using predicted proteins from the CCA transcriptomes generated here as well as those from the publicly available
genomes of C. crispus and G. chorda. Given the high number of duplicated transcripts identified within transcrip-
tomes via the BUSCO analysis, identification of orthologous sequences was conducted using translations of the
single longest isoform of each Trinity gene from respective CCA transcriptomes. This resulted in a dataset that
was less redundant, but also less complete (5% to 11% missing BUSCOs from this dataset compared with 3% to
7% previously).
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GO Term Category Description Sporolithon | Porolithon | Lithothamnion | Lithophyllum
GO0:0032271 | Regulation of protein polymerisation 2.08E-04 1.16E-04 5.07E-07 1.59E-04
GO0:0030833 | Regulation of actin filament polymerisation 1.13E-03 7.65E-03 6.85E-07 1.06E-04
GO0:0030036 | Actin cytoskeleton organisation 4.76E-04 1.33E-06 1.42E-06 7.13E-06
GO0:0097435 | Supramolecular fibre organisation 4.76E-04 1.14E-04 1.66E-06 8.87E-06
GO0:0032956 | Regulation of actin cytoskeleton organisation 6.05E-03 1.33E-06 1.06E-04 1.92E-04
GO0:0043254 | Regulation of protein complex assembly 4.45E-03 1.04E-04 3.29E-06 9.11E-03
GO:0051493 | Regulation of cytoskeleton organisation 4.76E-04 2.71E-05 6.82E-06 3.39E-04
GO0:0051128 | Regulation of cellular component organisation 9.94E-05 2.96E-04 6.82E-06 3.25E-03
G0:0007010 | Cytoskeleton organisation 1.52E-04 1.70E-14 9.90E-06 6.59E-24
GO0:0051049 | Regulation of transport 2.08E-04 2.37E-03 5.18E-06 2.18E-09
GO0:0007155 | Adhesion 9.09E-03 1.11E-05 2.94E-05 1.51E-15
GO0:0030029 | Actin filament-based process 1.13E-03 1.81E-04 1.99E-06 1.02E-05

Table 4. GO categories enriched across all CCA-specific orthogroups. Values represent adjusted p value (<0.01).

2,375 orthogroups (genes derived from a common ancestral gene) were shared across all red algal species
examined in this study (Fig. 2). 978 orthogroups were found to be CCA-specific, whereas only 223 were found to
be shared between the other red algal species, C. crispus and G. chorda, to the exclusion of CCA. The low number
of unique orthogroups found between these two species of fleshy macroalgae may relate to their phylogenetic
relationship (these two species are from different, distantly related orders, whereas the CCA species are from
closely related orders), or may reflect the use of protein sequences derived from transcriptomes vs proteins pre-
dicted from whole genome data. Lithophyllum had the most orthogroups in common with other species of CCA,
this is probably due to the larger number of transcripts in the Lithophyllum dataset, whereas Lithothamnion had
the fewest transcripts and therefore had fewer orthogroups common with the other species (Fig. 2).

Enrichment analysis. Enriched CCA-specific genes. The genes found within the CCA-specific orthogroups
are likely novel to the CCA lineage or represent expansions and diversification of ancestral algal gene families, and
potentially reflect unique aspects of CCA biology with respect to noncalcified red algae. To evaluate these fur-
ther an analysis was conducted to detect enrichment of putative functional categories within these CCA-specific
orthogroups. Gene Ontology (GO) category enrichment was assessed against the whole transcriptome anno-
tation, obtained from Trinotate v 3.1.1%. Overrepresentation of ‘biological process’ GO categories within the
CCA-specific orthogroups was assessed via the Cytoscape®® plugin BINGO*® using the complete transcriptome
annotation for each CCA species as reference. Orthogroups that were found to be significantly (p < 0.01) over-
represented were further examined by extracting sequences from these families and submitting them to BLASTP
(NCBI), using an e-value cutoff of 1e73, to identify conserved domains and to indicate possible protein function
(hypothesised via homology). GO categories such as the ‘regulation of transport, ‘adhesion, ‘supramolecular fibre
organisation; ‘regulation of actin cytoskeleton organisation, and ‘regulation of cellular component organisation’
were found to be enriched in CCA-specific orthogroups (Table 4). A number of these categories were related (e.g.,
several involve actin) and are the result of enriched genes having multiple functional annotations. Only genes
that had significant BLAST hits to other proteins were investigated further, as many of the genes within these
categories appeared to be unique to CCA. It is notable that no categories related to biomineralisation or calcifi-
cation were found to be enriched; this may reflect a different mode of biomineralisation of CCA to that of other,
better studied organisms (e.g., polysaccharide mediated mineralisation as opposed to the protein-based matrix
mediated mineralisation of vertebrates, molluscs and echinoderms). Although many of the genes that fell within
these functionally enriched categories produced no significant hits in BLAST searches against NCBI’s nr database
(and likely represent CCA-specific genes, or, possibly, contamination), a number appear to be members of larger
gene families. Phylogenetic analysis was performed on these genes to provide further insight into their evolution
and potential function.

‘Regulation of transport’ related genes. There were multiple orthogroups within the ‘regulation of transport’
category that were found to be overrepresented across the coralline species. One of these orthogroups contained
sequences that contained a zinc finger domain, a domain previously undescribed in corallines. Zinc finger-like
proteins have been found in other red algae species, such as the extremophilic unicellular species Galdieria
sulphuraria (BioProject: PRINA13023)*!, Cyanidioschyzon merolae (BioProject: PRINA28057)*?, and C. cris-
pus®. A phylogenetic tree was constructed for zinc finger type proteins, revealing that the CCA protein is most
similar to a CCHC-type zinc finger domain protein found in G. sulphuraria and that proteins of this type are
likely ancestral for red algae, but may have been lost in a number of lineages such as C. crispus and G. chorda
(Fig. 3). Zinc-finger domains bind DNA, RNA, protein and/or lipid substrates, with the CCHC-type primar-
ily acting in RNA or single-stranded DNA binding*!. Three of the four CCA zinc-finger proteins possessed a
CCHC zinc finger domain, indicating that these proteins may bind to RNA or single-stranded DNA substrates
in Porolithon, Lithothamnion, and Lithophyllum. The zinc finger domain of the Sporolithon sequence, however,
appears to have diverged from a typical CCHC, indicating a different function of this protein in Sporolithon.
CCHC domain-containing zinc fingers do not form a monophyletic clade in the tree, indicating that this domain
(and presumably its binding capability) can be readily lost (or gained) (Fig. 3).
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Figure 3. Best scoring maximum likelihood phylogenetic analysis of zinc finger domain sequences. Midpoint
rooted tree, with bootstrap values <50 removed. Scale bar indicates the branch length for 0.6 amino acid (aa)
substitutions. *Denotes full sequences that contain the CCHC-type zinc-finger like conserved domain. CCA
names are shown in bolded red and other noncalcifying red algae species are in blue.

Another orthogroup relating to the regulation of transport was found to be overrepresented in CCA when
compared to the other two noncalcified species. These genes were primarily from the protein kinase family, spe-
cifically, the family of protein kinases that phosphorylate serine/threonine, however, two incomplete sequences
possessed conserved unconventional myosin tail domains (marked with * in Fig. 4) but still returned top hits
with protein kinase sequences from BLASTP analysis. These sequences were further investigated using the Pfam
database®, and it was found that there are other proteins that have this domain that are not myosins and that pos-
sess the domain arrangement of unconventional myosin tails and protein kinases, specifically serine/threonine
protein kinases (STKs). Therefore, it is likely that if these two sequences were full, they would have the conserved
STK domain. This gene family appears to have undergone expansions in the CCA lineage, with between 3-6
genes present in each species (Fig. 4). The phylogenetic tree displays the relationship of CCA STKs to those of
other eukaryotic species, including algae, plants, and protists. The length of the branches for some of the CCA
sequences suggests that these genes are evolving rapidly in CCA, and may also explain why the CCA sequences
do not always clade together or with other red algae species. However, support values within this tree are generally
low, making reconstruction of evolutionary history difficult. CCA STK-related genes maintained the conserved
domains (200-450) that are characteristic of STKs*. STKs in plants are described to act as a “central proces-
sor unit’, accepting information from receptors that sense environmental conditions and other external factors,
and then act to convert those signals into appropriate responses or outputs, such as changes in metabolism,
cell growth and division, and gene expression*’. The number of genes within the STK family could suggest an
important role for phosphorylating serine/threonine or phosphoserine/threonine signalling in CCA. An anal-
ogous situation occurs in the unicellular green alga Chlamydomonas reinhardtii, where the high number (28) of
putative tyrosine kinases relates to the importance of phosphotyrosine signalling in this taxon*:. STKs have only
been described in two other multicellular red algal species, with G. chorda only having one protein identified as
an STK. However, the widespread red algal species C. crispus has a large number of possible STKs in its genome,
suggesting this protein family could be important for species that live in variable environments, allowing them
to have a more advanced system in responding and reacting to external factors and environmental conditions.

Six genes across the four species were found to form a supported clade exhibiting similarity to glycosyl hydro-
lase family 18-like (GH18) proteins (Fig. 5). The GH18 gene family is previously undescribed in corallines and is
generally undescribed in red algae species, although similar proteins from other red algal species contain GH18
conserved regions (PXF42839.1 G. chorda, CDF36488.1 C. crispus). In initial phylogenetic analyses the CCA
sequences formed a well-supported clade that was not sister to other red algal GH18 proteins (data not shown).
Although these noncalcifying red algae (fleshy, temperate species) are phylogenetically and physiologically dis-
tant from the CCA investigated here, meaning that, due to functional divergence, their sequences may not always
form monophyletic clades, noncalcifying red algal GH18 sequences were used as queries in BLAST searches
against the transcriptomes of the four species of CCA to determine if additional GH18 sequences were present.
Two additional GH18 sequences were identified from Sporolithon with e-values of 0.0 and were added to the
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Figure 4. Best scoring maximum likelihood phylogenetic analysis of serine/threonine protein kinase-like
sequences. Midpoint rooted tree, with bootstrap values <50 removed. Scale bar indicates the branch length for
2.0 aa substitutions. CCA names are shown in bolded red and other noncalcifying red algae species are in blue.
Incomplete sequences that were found within the enriched category but did not have serine/threonine protein
kinase-like conserved regions are marked with a*.

analysis (denoted with e, Fig. 5). These two sequences grouped with the other red algal sequences with high
support, whereas the six CCA GH18 sequences identified in the enrichment analysis formed a separate clade.
It therefore appears that GH18 sequences have duplicated within the CCA lineage, with the duplicates perhaps
evolving different functions. Proteins within the GH18 family have been proposed to play a role in polysaccharide
processing® and can be active chitinases®. Chitin has been described among the polysaccharides of a coralline
alga species, Clathromorphum compactum, which is an arctic and subarctic species®. These chitin containing pol-
ysaccharides might be important molecules in the calcification process of this species, with the chitin providing
additional strength and protection to the calcified skeleton of C. compactum, therefore making it more resilient
to the negative effects of ocean acidification, or the decrease in ocean pH®'. GH18 proteins have also been linked
to the biomineralization process in the pearl oyster, Pinctada fucata™, raising the possibility that enriched GH18
like proteins in CCA may similarly play a role in their biomineralization process. It is noteworthy that novel gly-
cosyl hydrolases may be present in CCA whereas, from BUSCO results, highly conserved glycosyl transferases
are missing across CCA and other red algal species compared here. This indicates that polysaccharide metabolism
may be highly modified within the Rhodophyta.

Supramolecular fibre organisation’ related genes. The category ‘supramolecular fibre organisation’ was found
to be overrepresented in the CCA-specific orthogroups. When investigated further, sequences within this cate-
gory were found to be actin-related proteins (ARPs) or heat shock proteins (HSPs). A tree was constructed with
conventional actin genes (obtained from NCBI) and different families of ARPs from different species (Fig. 6),
using ARP 1, 2, 3, and 4 sequences from the evolutionary analysis of the actin family in Goodson & Hawse,
2002°. Albeit with low support, it was found that most ‘CCA-specific’ proteins from this family were most closely
related to ARP2, however, one protein from Lithothamnion was placed within the ARP3 clade. ARPs are found
in other red algae species; however, few ARP2 sequences have been found, and no ARP3. Conventional actin
in Florideophyceae has been reported to have undergone a duplication event, which is possibly linked to the
complexity of thallus organisation and modes of reproduction for this class of algae®*. Corallines belong to the
class Florideophyceae, however no conventional actins were found within their transcriptomes. It is possible that
the duplication of ARPs within this lineage created functional redundancy, leading to the loss of conventional
actins in CCA, alternatively, conventional actins may be present in CCA genomes but not expressed in the stages
sampled here.

Actins are known to play a role in biomineralisation in some unicellular calcifiers. For example, in the calci-
fying coccolithophore Coccolithus braarudii it was found that disruption of the actin network inhibits elements
of secretion and biomineralization®. More recently, Tyszka, et al. (2019) found that F-actin (filamentous actin)
is involved in the formation of the calcified chamber/shell of the foraminifera species Amphistegina lessonii, ulti-
mately controlling mineralisation®. Therefore, it is possible that the expansion of ARP genes found in CCA is
associated with the evolution of calcification in this lineage. CCA ARPs do not group with those of calcifying
foraminifera in the phylogenetic tree, however given that CCA calcification evolved independently from that of
coccolithophores and foraminiferans it is not expected that orthologous actin genes would necessarily be involved
in the calcification process of these taxa.

Heat shock protein 90 (HSP90) was also found within the overrepresented category ‘supramolecular fibre
organisation. Phylogenetic analysis reveals that the CCA HSP90 gene family appears to have undergone sig-
nificant gene duplication events in comparison to other red algae (Fig. 7), and that some duplications likely
occurred after the divergence of the four CCA lineages (for example, in Lithothamnion and Sporolithon, the two
earliest-diverging coralline lineages investigated). HSP90 family members have gone through multiple duplica-
tion events throughout their evolution and subsequent losses, and can be found throughout different components
of a cell””. In initial phylogenetic analyses all CCA HSP90 sequences fell within a well-supported clade of cytosolic
HSP90 sequences, whereas noncalcified red algae also possessed chloroplastic and endoplasmic reticulum HSP90
genes (data not shown). To determine whether additional HSP90 sequences were present in CCA transcrip-
tomes, the chloroplast HSP90-5 sequence from G. chorda (PXF42095.1) was used as a query in a BLAST search
against the transcriptomes from the four species of CCA. With an e-value cutoff of 1e7%, 3-12 additional HSP90
genes per CCA species were identified, including three from Lithophyllum and one from Porolithon that grouped
with chloroplastic HSP90s, and two from Lithophyllum and one from Porolithon that grouped with endoplasmic
reticulum HSP90s in the phylogenetic analysis (Fig. 7). Only 2 sequences were found both within the enriched
category of ‘supramolecular fibre organisation’ sequences, and by protein BLAST on the CCA transcriptomes.
Overall, there has been extensive duplication of cytosolic HSP90 genes in the CCA species investigated here,
most of which likely occurred prior to the diversification of these lineages. These duplications could be linked
to the evolutionary history of these algae, having persisted during times of previous elevated temperature®’. It is
also possible that some of the duplications, particularly more recent ones, could be associated with adaptation to
particular habitat types (i.e. reef flats or intertidal zones).

Adhesion’ related genes. 'The ‘adhesion’ GO term was enriched across CCA-specific orthogroups, potentially
relating to their habit as encrusting organisms where cell-cell adhesion and extracellular matrix are essential for
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Figure 5. Best scoring maximum likelihood phylogenetic analysis of GH18 like sequences. The clade
containing homologous chitinase related proteins from the bacterium Serratia marcescens was used as the
outgroup. Bootstrap values <50 removed. Scale bar indicates the branch length for 0.9 aa substitutions. CCA
names are shown in bolded red and other noncalcifying red algae species are in blue. *Denotes additional CCA
GH18 sequences that were not found within the ‘enriched’ category.

maintenance of the structural and functional integrity of the crust. The majority of the proteins within this cate-
gory returned only hypothetical protein matches or no matches within the Pfam*® database, indicating these genes
are likely to be unique to CCA. However, across the CCA species, 10 genes contained conserved regions similar
to von Willebrand factor type A (VWA) domains found in other eukaryotes (Fig. 8). Intracellular VWA domain
proteins common to all eukaryotes are involved in fundamental cellular functions (e.g. transcription ribosomal
transport, DNA repair, and protein degradation)®®. VWA domain proteins in plants and fungi are intracellular,
whereas an expansion event in other eukaryotes resulted in large numbers of extracellular VWA domain pro-
teins®®. The functions of these extracellular VWA domain proteins include cell adhesion and protein-protein
interactions, however in molluscs extracellular VWA proteins have been implicated in the formation of calcium
carbonate shells’>*. VWA domain proteins from CCA appear to form their own, well supported clade away from
other intracellular sequences used in this tree (Fig. 8). Most CCA sequences were found to be partial or incom-
plete, however, one CCA sequence was found to be full-length and is predicted to be secreted, through signal
peptide analysis (denoted with * in Fig. 8). Although the majority of CCA sequences were found to be incomplete,
the sequences grouped together with the predicted extracellular CCA sequence, therefore it is likely that these
enriched sequences are all extracellular (Fig. 8). Therefore, it is possible, that extracellular VWA domain proteins
in CCA may have evolved independently in corallines and play a similar role to that of extracellular VWA pro-
teins in other marine calcifiers.

Conclusions

The ability for coralline algae to deposit high Mg calcite in their cell walls is unique within red algae, as are the
intricate calcium carbonate skeletons that allow them to play crucial roles across tropical coral reefs worldwide.
From the investigation into the transcriptomes generated in this study, we provide insight into what sets CCA
apart from other red algal species, that is, the large number of genes relating to regulation of transport, supra-
molecular fibre organisation, adhesion, and potentially calcification (e.g. actin related genes and GH18). Our
study also offers insights not only into the evolution of coralline algae but more broadly of the red algae (e.g. by
confirming the loss of genes in the group). The role of CCA on tropical reefs is integral to reef survival, yet prior
to this study, there was limited molecular information for corallines and no complete molecular information
for any species of CCA. CCA may be crucial when it comes to the longevity of coral reefs in the face of future
environmental change due to their ability to cement and support the carbonate framework of reefs, and for the
settlement of important coral reef larvae. This study provides a foundation for future studies of gene expression
and function in CCA.

Methods

Algae collection. Fragments of CCA ranging in size from 4 cm? to 6 cm? were collected from sites within
the lagoon of Lizard Island (Great Barrier Reef, Australia) on SCUBA using a hammer and chisel. Care was
taken when collecting to minimise any impact on the reef, and collection was spread out across reefs. Species
from low light environments, Sporolithon cf. durum and Lithothamnion cf. proliferum, were collected at around
7 m depth from reefs between Bird Islet and Lizard Head. Porolithon cf. onkodes and Lithophyllum cf. insipidum
were collected from the reef crest, >3 m depth, between South Island and Palfrey Island. A total of 18 individuals
from each species were collected over three days, avoiding collection of highly visibly epiphytised fragments. All
fragments were thoroughly cleaned, by using a scrubbing brush and razor underneath a microscope, of epiphytes
directly after collection and twice more before sampling for molecular analysis.

To ensure the most comprehensive transcriptomes possible and the utility of this dataset for future investiga-
tion of CCA response to environmental change, samples were either taken directly after collection from the field,
after maintenance for 2.5 weeks under altered pH and temperature conditions, or after maintenance for 3 weeks
under common-garden conditions (see Supplementary Methods 1 and Supplementary Table 1). Treatments were
conducted at Lizard Island Research Station (LIRS) on Lizard Island from September 2017 to October 2017. The
experiment ran for 2.5 weeks, from September to October 2017. All four species of CCA were used within the
treatments.

Molecular sampling. Prior to sampling, each fragment of algae was thoroughly rinsed with filtered sea-
water and blotted with a kimwipe to remove bacterial film®, and then scraped using new, sterile razors into a
pre-labelled 1.5 mL microcentrifuge tube containing 1 mL of RNAlater. Care was taken to only remove the top,
pigmented, living layer of the CCA, avoiding epiphytes, endolithic algae (which do not penetrate the pigmented
layer of the algae and rather sit within the unpigmented CaCO; skeleton), and to eliminate cross contamination
between species and treatments. Tubes containing CCA material in RNAlater were then kept at —20°C at LIRS
until being transported on ice to a —20 °C freezer at Griffith University where they were stored until further anal-
ysis. CCA host an array of epibionts, and although care was taken in sampling, it is possible that there was some
residual contamination.
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Figure 6. Best scoring maximum likelihood phylogenetic analysis of actin related protein sequences. Tree
was rooted at actin related protein (ARP) from C. crispus (CDF37250.1). Bootstrap values < 50 removed. Scale
bar indicates the branch length for 0.8 aa substitutions. Brackets group proteins that are conventional actin
sequences or ARPs. CCA names are shown in bolded red and other noncalcifying red algae species are in blue.

RNA extraction. RNA was extracted from CCA samples using a modified TRIzol® RNA extraction protocol
from Invitrogen. CCA samples were removed from RNAlater and then homogenised in Trizol (1 mL) at room
temperature for 6 mins at 30 Hz using a QIAgen TissueLyser. After the initial 3 mins of homogenisation, samples
were removed, placed on ice for 5mins, and then homogenised for the remaining 3 mins. Further processing
followed the manufacturer’s protocol, using bromochloropropane for phase separation, and high-salt solution
for precipitation. RNA pellets were resuspended in DNase/RNase-free distilled water (20 ul). Total RNA quantity
was determined spectrophotometrically using Invitrogen Qubit® Broad Range RNA kit. RNA yield ranged from
5.36 ng RNA/ul to 800 ng RNA/pl. Presence of contaminating DNA was checked randomly in samples using an
Invitrogen Qubit® DNA High Sensitivity kit and returned readings “too low for detection”.

Library construction and sequencing. RNA samples from all conditions (treatments, field, common gar-
den) were pooled for each species (n =4) prior to sequencing library construction. When pooling samples, simi-
lar quantities from each sample was added to the pool (i.e. samples that resulted in high yields were diluted down
to match lower yielding samples). Total RNA quantity of pooled samples was checked using the Qubit® to ensure
a value of at least 20 RNA/ul; final concentrations for Sporolithon, Porolithon, Lithothamnion, and Lithophyllum
were 25.4 RNA/pl, 38.6 RNA/ul, 24.4 RNA/ul, and 35.6 RNA/ul, respectively. Quality of pooled RNA was tested
using the 4200 TapeStation System. Once RNA was checked, pooled RNA samples (60 ul) were then precipitated
and sent to Macrogen, Inc (Seoul, South Korea) for cDNA library preparation using a TruSeq Stranded mRNA
LT Sample Prep Kit. The kit used to prepare libraries uses oligo-dT beads to capture RNA species containing
polyadenylated tails, therefore minimal bacterial sequences should be present in the resulting transcriptomes.
Individually barcoded libraries were sequenced using 100 bp paired-end reads on an Illumina HiSeq 2500 to
generate between 87 M and 66 M raw reads per library, with GC content ranging from 45-48%.

Transcriptome assembly and optimisation. All bioinformatic analyses were performed on Griffith
University’s High Performance Computer Cluster “Gowonda”. Quality control was performed on the raw
sequence data using FastQC (v 0.11.3, Babraham Bioinformatics). Raw sequences were aligned to assembled
transcripts using bowtie®! (v 2-2.0.2) and assembled with Trinity®? (v 2.4.0) using the default parameters and ena-
bling trimmomatic®, to quality trim reads, jaccard clip (which is used for compact genomes), and without nor-
malisation of the reads. To remove redundant transcripts, highly similar sequences were clustered using CD-Hit®*
(v 4.6.6) using a nucleotide identity threshold of 0.95. To assess assembly completeness, BUSCO (Benchmarking
Universal Single-Copy Orthologs)** (v 3.6.1) and the eukaryota_odb9 dataset were used to compare transcrip-
tomes against highly conserved eukaryote orthologs selected from OrthoDB® (v 9.1). Results from BUSCO were
compared against whole genome data from the noncalcifying red algae Chondrus crispus (PRJNA193762)* and
Gracilariopsis chorda (PRINA361418)%°.
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Figure 7. Best scoring maximum likelihood phylogenetic analysis of heat shock protein 90 sequences. Clade
containing Mus musculus and Homo sapiens endoplasmic reticulum (ER) HSP90 was used as the outgroup.
Bootstrap values <50 removed. Scale bar indicates the branch length for 0.3 aa substitutions. CCA names are
shown in bolded red and other noncalcifying red algae species are in blue. *“Denotes HSP90 genes found in CCA
that were highly similar to G. chorda (PXF42095) chloroplastic HSP90 sequence from BLASTP transcriptome
analysis. Adenotes HSP90 sequences that were within the enriched category of ‘supramolecular fibre
organisation. *ADenotes sequences that were returned from both analyses.

Annotation of the transcriptomes was conducted using Trinotate v 3.1.1%, which performed sequence homol-
ogy searching against the SwissProt database®” by BLAST®, Pfam database*® by hmmscan®, and association with
Gene Ontology (GO) terms’.

Gene ontology and enrichment analysis.  All four transcriptomes contained a large number of redun-
dant transcripts. To reduce this, Transdecoder was first used to identify the single best copy of each transcript, as
determined by Transdecoder (http://transdecoder.github.io) using the -single_best_orf command. The dataset
containing the single best copy of each transcript was then further filtered to obtain the single longest isoform per
Trinity gene. Orthofinder”" (v 2.2.3) was then used with this dataset to identify orthologous genes/proteins across
CCA species and the whole genome protein data from two other noncalcifying red algae species C. crispus and
G. chorda. Unique and shared orthogroups were identified using the micropan’? (v 1.2), dplyr”® (v 0.8.0.1), and
tibble™ (v 2.1.1) packages within RStudio (v 1.1.456) and visualised using the R package UpSetR”.

Enrichment analysis of CCA-specific orthogroups identified from the orthology analysis was conducted using
the Cytoscape® (v 3.7.1) plugin BINGO®. This was carried out using a hypergeometric statistical test on GO
categories from ‘biological processes, set with a p value of 0.01. The annotation files for each species of CCA were
used, and only groups that were found to be enriched across all CCA species were investigated further.

Phylogenetic analysis. Proteins within enriched categories were analysed via BLASTP® and homology
searching within the HMM database®. For sequences returning eukaryotic BLAST hits with significant e-values
(le*) on NCBI’s nonredundant database, once conserved protein regions and associated potential functions
were identified, related genes from other species were downloaded from NCBI, focusing predominately on top
BLAST hits and supplemented with other algal or plant groups. In some instances (phylogenetic analysis of GH18
and HSP90) sequences from other red algae that maintained similar conserved regions were blasted against the
transcriptomes of the four species of CCA and sequences that had e-values close to 0.0 were also used in the
phylogenetic trees. Sequences were aligned in AliView”® (v 1.23) and phylogenetic analysis was performed using
RAXML" (v 8.2.11) with automatic model selection and 100 nonparametric bootstrap replicates. Protein trees
were visualised using FigTree” (v 1.4.4).
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Figure 8. Best scoring maximum likelihood phylogenetic analysis of von Willebrand A domain sequences.
The clade containing the sushi domain sequence of G. chorda was used as the outgroup. Bootstrap values <50
removed. Scale bar indicates the branch length for 0.7 aa substitutions. *Denotes full protein sequences that are
likely to be secreted, and therefore extracellular. “Denotes incomplete or partial sequences. All other sequences
in the tree are predicted to be intracellular and/or not secreted. CCA names are shown in bolded red and other
noncalcifying red algae species are in blue.

Data Availability

Raw data has been deposited in NCBI under BioProject PRJNA518156. The Transcriptome Shotgun Assem-
bly Fasta files have been deposited at DDBJ/EMBL/GenBank under the accession numbers GHIN00000000,
GHIO00000000, GHIP00000000, and GHIV00000000 for Sporolithon cf. durum, Porolithon cf. onkodes,
Lithothamnion cf. proliferum, and Lithophyllum cf. insipidum, respectively.
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