Table 6.
Model | SEN | SPE | MCC | BA | #AD | %AD | |
---|---|---|---|---|---|---|---|
nT | BRF | 0.830 | 0.848 | 0.674 | 0.839 | 2100 | 0.728 |
aiQSAR | 0.723 | 0.829 | 0.556 | 0.776 | 2567 | 0.890 | |
SARpy | 0.772 | 0.724 | 0.492 | 0.748 | 2488 | 0.863 | |
GLM | 0.779 | 0.650 | 0.425 | 0.714 | 2884 | 1.000 | |
vT | BRF | 0.856 | 0.903 | 0.585 | 0.880 | 2103 | 0.728 |
aiQSAR | 0.682 | 0.963 | 0.619 | 0.822 | 2572 | 0.891 | |
SARpy | 0.710 | 0.896 | 0.467 | 0.803 | 2613 | 0.905 | |
EPA | BRF | 0.614 | 0.851 | 0.405 | 0.733 | 2301 | 0.805 |
aiQSAR | 0.603 | 0.857 | 0.450 | 0.730 | 2547 | 0.891 | |
HPT-RF | 0.616 | 0.860 | 0.462 | 0.738 | 2180 | 0.763 | |
GHS | BRF | 0.539 | 0.872 | 0.342 | 0.705 | 1410 | 0.490 |
aiQSAR | 0.568 | 0.895 | 0.469 | 0.731 | 1475 | 0.512 | |
HPT-RF | 0.569 | 0.897 | 0.476 | 0.733 | 1291 | 0.448 |
For each model, the sensitivity (SEN), the specificity (SPE), the balanced accuracy (BA), the Matthew’s correlation coefficient (MCC), the number (#AD) and the percentage (%AD) of predictions in AD are reported. For multi-category endpoints (EPA and GHS), SEN and SPE are the average of values computed separately for each class, while BA is the arithmetic mean of the average SEN and SPE. The best values for each metric are italicized