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Abstract

Objectives: Post-imaging mathematical prediction models (MPMs) provide guidance for the 

management of solid pulmonary nodules by providing a lung cancer risk score from demographic 

and radiologists-indicated imaging characteristics. We hypothesized calibrating the MPM risk-

score threshold to a local study cohort would result in improved performance over the original 

recommended MPM-thresholds. We compared the pre- and post-calibration performance of four 

MPM models and determined if improvement in MPM prediction occurs as nodules are imaged 

longitudinally.

Materials and Methods: A common cohort of 317 individuals with computed tomography 

detected, solid nodules (80 malignant, 237 benign) were used to evaluate the MPM performance. 

We created a web-based application for this study that allows others to easily calibrate thresholds 

and analyze the performance of MPMs on their local cohort. 30 patients with repeated imaging 

was tested for improved performance longitudinally.

Results: Using calibrated thresholds, Mayo Clinic and Brock University (BU) MPMs performed 

the best (AUC= 0.63, 0.61) compared to the Veteran’s Affairs (0.51) and Peking University (0.55). 

Only the BU had consensus with the original MPM-threshold, the other calibrated thresholds 

improved MPM accuracy. No significant improvements in accuracy were found longitudinally 

between time-points.

Conclusions: Calibration to a common cohort can select the best performing MPM for your 

institution. Without calibration, BU has the most stable performance in solid nodules ≥8mm but 

has only moderate potential to refine subjects into appropriate work-up. Application of MPM is 

recommended only at initial evaluation as no increase in accuracy was achieved over time.
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Introduction

Lung cancer is the leading cause of cancer-related deaths worldwide[1]. Computed 

tomography (CT) imaging is used to characterize lung nodules. Size-based guidelines exist 

to provide clinicians with criteria to assess the potential malignancy of pulmonary nodules 

including Lung-RADs Assessment Categories, American College of Chest Physicians 

Clinical Practice Guidelines, and Fleischner Society Follow-Up Guidelines[2–4]. However, 

these have the potential to misclassify small malignant nodules and large benign nodules 

leading to suboptimal treatment plans[5–7]. This is particularly true of first encounters, or 

‘de novo’ nodules, which often fall into CT surveillance recommendations without access to 

growth information.

Pre-imaging lung cancer risk models have been produced which seek to stratify the 

individual’s benefit from screening thereby reducing unnecessary radiation exposure on 

subjects with limited benefit from CT imaging[8]. To better characterize imaging-detected 

nodules, post-imaging mathematical prediction models (MPMs) developed using 

multivariate logistic regressions of known lung cancer risk factors including family history, 
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demographics, and radiologist-defined imaging characteristics to provide a malignancy risk 

stratification after an imaging encounter[9–13]. MPMs have been utilized on an ad hoc basis 

by clinicians seeking standardized input from evidence-based models. However, recently, an 

MPM was incorporated into the British Thoracic Society’s (BTS) Guidelines for Nodule 

Follow-up following an initial size-based stratification of risk (grade C recommendation) 

indicating a growing interest in the increased use of MPMs for day-to-day management of 

pulmonary nodule subjects[14].

This study compares four previously published post-imaging MPMs: the Mayo Clinic model 

(MC)[9], the U.S. Department of Veterans Affairs model (VA)[10], the Peking University 

model (PU)[12], and the Brock University model (BU)[11], on a large cohort of trial 

subjects and a longitudinal cohort of retrospective clinical subjects. As these MPMs were 

developed using different imaging parameters (clinical chest radiographs[9,12], clinical CT 

scans[10,12], or lung cancer screening CT scans[11]), different proportions of malignant 

cases (MC: 35%; VA: 54%; PU: 61%; BU 6%), and variable size distributions (mean size 

malignant/benign; MC: 17.8mm/11.6mm; VA: 18.9mm/14.8mm; PU: 21.3mm/17.2mm; BU: 

15.7mm/4.1mm), we expected significant cohort dependence to be seen when each MPM 

was applied to an independent dataset.

While several studies have attempted to compare the accuracy of various post-imaging 

MPMs, they have reported performance (sensitivity, specificity) based on optimized cutoff 

points for their unique study cohorts as opposed to the recommended thresholds associated 

witha given MPM[15–17]. These studies reported that independent cohort-optimized 

thresholds can vary greatly from the MPM- thresholds and adjustments to the cut-off used 

affects sensitivity and specificity values[17]. This presence a lack of clarity in the 

appropriate cutoff point for a given MPM to be applied in the clinical context[18]. Here, we 

evaluate the current clinical usefulness of MPMs using the recommended thresholds and 

compare the performance to our study-optimized cut-offs.

Materials and Methods

Study Cohorts

As mentioned previously, the MPMs investigated here have been built and tested in diverse 

datasets. For this study, two cohorts of subjects with pulmonary nodules were investigated: a 

research cohort and a longitudinal clinical cohort (Table 1).

Research Trial Cohort—The research cohort consisted of 317 subjects (80 malignant, 

237 benign) retrospectively included from two separate prospective trials collecting high-

resolution CT scans (217 COPDGene[19], 100 INHALE[20]). Data was collected with 

informed consent by the parent studies and use of the de-identified data for our study was 

approved by the University of Iowa Institutional Review Board. While neither study was 

specifically aligned with the recommendations for screening lung cancer, both had de-novo 

nodules encountered during imaging. The primary goal of the COPDGene study was to find 

underlying genetic factors of chronic obstructive pulmonary disorder (COPD), however, as 

COPD is a known co-morbidity of lung cancer, an ongoing ancillary study was established 

to track participants with malignant nodules. The primary goal of the INHALE study was to 
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evaluate lung cancer risk with measures of COPD from spirometry and imaging. 

Demographic and historical information was collected from participants in these trials and 

radiologist reports were generated to include descriptions of nodule findings. For the 

COPDGene study, diagnosis for each subject was either confirmed malignant (pathology) or 

confirmed benign (pathology, resolution, and/or 2-year stability). The INHALE study 

confirmed malignancy through histological confirmation accessed through the Detroit area 

Surveillance, Epidemiology, and End Results registry and benign cases were selected to 

match size characteristics. Further information about these studies is included in the 

Supplementary Information.

Longitudinal Clinical Cohort—The longitudinal clinical cohort was included as a proof 

of concept on MPM prediction performance improvement over time and repeated imaging. 

The cohort consisted of 30 subjects (16 malignant, 14 benign) with 92 clinical CT scans 

(Table 1). With Institutional Review Board approval, the medical records of University of 

Iowa Hospitals and Clinics patients with nodules indicated were retrospectively reviewed. 

Medical histories and radiological reports were reviewed for the following inclusion criteria: 

(1) a solid pulmonary nodule in repeated CT imaging and (2) confirmed malignant 

(pathology) or confirmed benign (pathology, resolution, and/or 2-year stability). For this 

assessment, we compared the performance of MPM predictions at (a) the initial (incidental) 

imaging encounter on which the pulmonary nodule was identified (TP_I), (b) the final 

imaging encounter before diagnosis (TP_F), and (c) across all the imaging encounters 

between detection and diagnosis.

Mathematical Prediction Models

Four MPMs were assessed: the Mayo Clinic model (MC)[9], the U.S. Department of 

Veterans Affairs model (VA)[10], the Peking University model (PU)[12], and the Brock 

University model (BU)[11]. Pertinent risk variables were manually extracted from subject 

records and a risk score was calculated for each CT scan (Table 2); detailed descriptions of 

the MPM equations and variable descriptions is provided in the Supplementary Information. 

Unless the radiological report specifically indicated the presence of calcification, 

spiculation, or the absence of a border, nodules were considered non-calcified, non-

spiculated, and smooth bordered. The MC and VA models discussed stratified risk into three 

tiers based on malignancy probability value[21,22]. The PU model specified two categories 

split by a single probability cutoff value[12]. Similarly, the BU model is incorporated into 

the British Thoracic Society (BTS) Guidelines for nodules ≥ 8mm in diameter with a single 

threshold splitting routine follow-up and additional work-up [14,23].

Statistical Analysis

MPMs raw prediction performance was assessed using area-under the receiver-operator 

characteristic curve (ROC-AUC) with 95% confidence intervals. Measures of sensitivity and 

specificity were calculated from Youden’s J statistic optimal threshold, a common method 

for determining the best cutoff point, which maximizes the balance of sensitivity and 

specificity [24]. The stability of the Youden thresholds was assessed using median absolute 

deviation (MAD) below 0.05 on sub-set sizes between 50 and 250 subjects using 41,000 

naïve bootstrapping trials sampling without replacement. As our research cohort contained 
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class imbalance (more benign than malignant nodules), the area-under the precision-recall 

curve (PRAUC) was also assessed to provide a more robust analysis of performance; similar 

to ROCAUC, PR-AUC is optimal at 1.0 and evaluates the distribution of separation between 

classes [25]. ROC-AUC and PR-AUC are not suitable assessment measurements when the 

predictions are discrete categories, as they are in the MPM-recommended thresholds. Instead 

we assessed the performance by recommendation-induced misclassification of nodule or 

delay in ground-truth diagnosis. MPM-recommended categories were binarized into benign-

tagged (‘low-risk’ or ‘watchful waiting’) and malignant-tagged (‘high-risk’ or recommended 

immediate additional work-up). Statistical differences between MPM classifications (inter-

MPM and intra-MPM) were analyzed using McNemar and Delong tests [26].

In conjunction with this paper, we have developed an easy to use application which allows 

independent researchers and clinicians to perform the analysis detailed in this study using 

their local population, including exploring calibrated thresholds and comparison of MPM 

performance. The application is hosted at: https://www.i-clic.uihc.uiowa.edu/resources/

sieren/mpm/.

Results

Research Cohort Comparison of MPMs

Calibrated Thresholds Equalize Performance Among MPMs—The four models 

(MC, VA, PU, BU) were applied to the research cohort (N = 317, 80 malignant, 237 benign) 

yielding four risk scores (one per MPM) per subject which were compared with the nodule’s 

known diagnosis (Figure 1, solid line). The optimal AUC-cutoff (Figure 1, dashed line) was 

derived for each of the models. The MC (AUC: 0.63) and BU (AUC: 0.61) MPMs achieved 

the best separation between classes on this cohort compared to PU (AUC: 0.55) and VA 

(AUC: 0.51) MPMs. The MC and BU MPMs were both statistically significantly better than 

the VA MPM (p = 0.02); all other pairwise comparisons of significance yielded p-values 

above the assigned alpha (0.05). No MPM significantly outperformed all others, revealing 

relative similarity in their calibrated discriminatory capability between malignant and benign 

nodules. Testing the Youden threshold stability (MAD < 0.05) at different calibration set 

sizes demonstrated stability at 100 subjects for three MPMS (MC, BU, PU) and stability at 

145 subjects for all four MPMs (see Supplemental Information, Figure A1).

Calibrated Thresholds Out-perform the Original Recommended Thresholds in 
Work-up Categorization—The impact of risk stratification based on the calibrated 

threshold (Table 3) and MPM-associated categories (Table 4) were applied to the predictions 

(Figure 1). Using the MPM-associated categories, up to 25% of the malignant lesions would 

have been assigned low-risk, while 25.3% to 97.5% of benign lesions would have been 

recommended for further work-up. The BU MPM was the only model to have agreement 

between the Youden-optimized calibrated threshold (0.10) and the MPM-associated 

guidelines (0.10) for the full cohort; however, in nodules ≥ 15mm the Youden optimized 

threshold was much higher (0.32). Furthermore, McNemar’s comparison between the 

optimal and recommended thresholds demonstrated significant difference between the 

classification accuracy of three of the MPMs (MC, VA, PU) with p <0.001, indicating that 
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calibration to the local dataset improves discriminative prowess over original MPM-

associated risk categorizations. As the BU Youden optimal threshold was nearly identical to 

the recommended, there was no statistical significance p=0.99, this stability indicates the BU 

MPM-associated thresholds were already well calibrated for this cohort.

Comparison to Fleischner Size-based Clinical Management 
Recommendations—The Fleischner Guidelines for Management of Incidental 

Pulmonary Nodules Detected on CT indicates that solid pulmonary nodules have a 

differential follow-up using three size-based thresholds (<6mm; 6–8mm; >8mm). Table A.4 

in the Supplemental Materials shows the breakdown for these categories and the clinical 

consequences of the follow-up recommendations. To compare the Fleischner to the 

calibrated MPMs, the size-threshold of ≥8mm was used for ‘high-risk’ prediction and <8mm 

for ‘low-risk’ prediction. McNemar’s analysis demonstrated that the Youden calibrated 

predictions for all four MPMs was statistically superior (p < 0.01) than the Fleischner 

predictions.

Calibrated Thresholds Improve Specificity in Nodules ≥8mm—Size is a common 

variable among the MPMs and is prominent in current management guidelines. An accurate 

MPM risk assessment would be most clinically interesting and powerful on the nodules 

≥8mm to <15mm at baseline with 5–15% probability of malignancy in Lung-RADS – in this 

study, 119 nodules (27 malignant, 92 benign). The best compromising MPM at this size 

category was the PU model, which using MPM-associated thresholds achieved 97% 

sensitivity but only 36% specificity; applying Youden optimal threshold achieved 67% 

sensitivity and improved specificity to 61% (Tables 3–4). Using the MPM-associated 

threshold, VA model would have only missed one malignant nodule, but at the cost of 79 

benign nodules undergoing biopsy (75 cases) or surgery (4 cases); the optimized threshold 

improved VA MPM specificity for the nodules between 8–15mm to 82%. The MC model 

was the only MPM to completely reduce wait-time on malignant lesions sending 26 to 

biopsy and 1 to surgery; however, all benign lesions would have also been assigned to 

biopsy (91 cases) or surgery (1 case); here, applying optimized thresholds significantly 

improves specificity to 70% with sensitivity of 70%. In considering nodules between 8 and 

15 mm in diameter, the MPM-associated recommendation thresholds for work-up have little 

benefit in tradeoff between sensitivity and specificity. Applying optimized thresholds 

improves specificity at the cost of some sensitivity.

Size-Exclusion Prior to MPM in BTS Guidelines Appropriate—The BU model is 

unique as it has been incorporated into the BTS guidelines for management of nodules; per 

BTS decision flowchart, only nodules ≥ 8mm are to be assessed with the BU MPM[27]. 

Tables 3–4 demonstrates the BU accuracy for that size-based subset. On our cohort, 

following the BTS exclusion of nodules < 8mm in diameter would have meant 11 malignant 

and 115 benign nodules would not be assessed with the BU due to size-exclusion. Applying 

the BU to the size-excluded, no malignant and 9 benign nodules are labeled ‘high risk’ by 

the BU MPM. Of the11 malignant size-excluded nodules, one is recommended to be 

‘discharged’, four are recommended for a 1-year follow-up CT, and six are recommended 

for a 3-month CT -indicating the need for more sophisticated discrimination techniques 
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geared towards small nodules. The BTS recommendation to not include BU prediction on 

small nodules is appropriate, and as the BU threshold did not change with calibration, the 

recommended decision of 10% risk (0.1 prediction value) is well founded.

Longitudinal Cohort

We investigated the improvement in MPM performance over repeated imaging time-point on 

a clinical, longitudinal dataset of nodules imaged up to 6 times (average 3.1±1.1) prior to 

diagnosis (Figure 2). The average number of days between sequential patient imaging 

encounters was 214 days (±338 days) with malignant nodules tending to have a slightly 

longer time between scans (218 days ±368) compared to benign nodules (197 days±305).

The VA model was the only MPM to also decrease the percentage of benign nodules at 

TP_F that were categorized as high risk. The TP_I AUCs (MC: 0.62–0.96; VA: 0.65–0.96; 

BU: 0.51–0.90; PU: 0.70–0.98) were consistently higher than the TP_F AUCs in three of the 

MPMs (MC: 0.56–0.94; VA: 0.34–0.78; BU: 0.53–0.92; PU: 0.44–0.88). McNemar’s p-

value between TP_I and TP_F showed no statistical significance between MPM predictions 

at TP_I and TP_F (MC: 0.76, VA: 0.08, BU: 0.91, PU: 0.18), indicating no improvement to 

MPM risk assessment closer to diagnosis. This data suggests that MPM risk should not be 

incorporated into longitudinal evaluation of detected pulmonary nodules.

Discussion

We have applied four post-imaging MPMs to a large cohort of trial subjects and to a 

longitudinal cohort of clinical subjects. To our knowledge, this is the first study to compare 

MPMs by both the MPM-associated categories and AUC-derived (calibrated) classifications 

and to observe of MPM stability over longitudinal scans.

Recent alignment of size-based recommendations indicates that nodules ≥ 8mm in 

maximum diameter are at a heightened risk of malignancy[2,3,14]. Hammer et al. 

investigated eight risk calculators on a cohort of 86 nodules (59 malignant), showing a 

consistent under-estimation of malignancy risk. Here, we have a smaller proportion (25%) of 

malignancies in our cohort, yet our results concur with the assessment that care needs to be 

taken when assessing larger nodules (≥8mm) with these MPMs [15]. The applied BU model 

on the ≥8mm sub-cohort also demonstrated an under-estimation of true malignancy risk with 

an over-estimation of risk on benign nodules. Given average nodule size in the MPM 

development cohorts was larger than 8mm, it would be likely that the development-cohorts 

size bias would lead to more large benign nodules being tagged as suspicious.

Chung et al. recently validated the BU model on two large clinical cohorts showing that 

while the full model achieved AUCs of 0.901–0.911, the AUC-derived optimal threshold 

was 1.8–4% lower than the recommended BTS guidelines; this is a difference of 4–9% in 

sensitivity[23]. However, that study contained a significant size-bias between benign and 

malignant cases. While nodule diameter is not a variable in the BU model, the BTS flow-

diagram applies the BU model only to nodules ≥8mm diameter (≥300mm3 volume). Here 

we have applied the BU model in the manner recommended by BTS and demonstrated than 

all 11 below the size-stratified malignant nodules had a BU less than the threshold 10%. In 
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practice, these malignant lesions would have remained untreated for at least 3 months before 

additional imaging.

While the BTS closely followed the original BU model study for this risk threshold, many 

independent surveys of MPMs have relied solely on the threshold derived from their cohort’s 

AUC optimum[15–17]. Here we have displayed both the AUC-derived threshold from our 

cohort as well as the MPM-derived thresholds. When using our cohort-derived optimal 

cutoff point, MPM specificity was higher (65.0–83.0%) than through using the MPM-

derived assigned categories (2.5%−74.7%), but MPM sensitivity was lower (58.0–78%) 

compared to MPM assigned categories (75.0%−100%). Based on MPM assigned categories, 

only the MC model would have detected 100% of malignancies at the imaging time point, 

but this is at the cost of requiring biopsy/surgery for all benign lesions. It is important to note 

that some studies have reported high AUCs of MPMs in their independent cohorts, but these 

studies have looked solely at the AUC-derived thresholds to assess MPM 

performance[16,18].

Our study has several limitations. First, the mean nodule size of the cohorts was smaller than 

those used to develop the MPMs. As nodule size was a common variable among the MC, 

VA, and PU MPMs, this could have affected the prediction results. Second, the MPMs 

investigated here use subject-provided demographic/historical information and radiologist-

described image characteristics, both of which can suffer from subjective variability and 

completeness. Radiologist variability is more easily investigated and has been shown to be 

different between radiologists as well as within a radiologist on so-called “coffee-break” 

reads in which a period of time is placed between repeated analysis[28,29]. While to a 

certain extent, the variability is built into the risk models in the development dataset, the 

modeling of noisy data is likely different between the development cohort and the user-end 

radiologist. Maiga et al. compared the MC model with clinician assigned risk from 

qualitative statements of cancer risk, showing that the current trend of qualitative risk 

statements for malignancy are highly variable and recommend a standardized scale for 

clinicians to follow[30]. Recent advances in CT including dose reduction techniques and 

reconstruction algorithms, have the potential to affect signal-to-noise ratio within the scan, 

thereby a potential source of variation that could affect both radiologist/reader efficiency and 

consistency. We do believe some of this variation is already contained within the 

development of the MPMs given the diverse (often clinical) datasets on which they were 

developed. Interesting to this point, the Mayo Clinic model (chest radiographs) performs on 

par with the Brock University model (low dose CT). Our cohort included only solid nodules, 

further studies are required to determine if MPM performance is affected when used on 

cohort of sub-solid tumors. Our research cohort consisted of 25.2% malignant cases and 

longitudinal clinical cohort 53.3% malignant cases; the MPMs compared here were 

developed on cohorts of subjects with difference malignancy rates (MC: 35%; VA: 54%; BU 

6%; PU: 61%). We have included the PR-AUC measure to further describe the 

discrimination ability of MPMs in cohorts with disproportionate numbers of malignant and 

benign cases.

With the move towards digitized healthcare reporting and standardization of care, computer-

based risk models have a natural place in the decision pipeline. There is a benefit to adding 
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fully-automated, non-subjective systems with high performance to supplement radiologist 

reads with additional risk assessments. Efforts to develop tools which do not incur user 

subjectivity have been previously described; Mehta et al. compared the MC MPM with three 

multi-variate models developed with volumetric features extracted from semi-automatic 

(single click) segmentation of the nodule[17]. Machine learning for the assessment of lung 

cancer risk have been further developed to reduce extraction variability[31–37].

The number of lung nodules detected is set to increase with increased access to screening 

and clinical CT scanning. To make the screening and detection power of CT efficient and 

safe in practice, there is a great need for better informed decision making. Given proper 

assessment and application, post-imaging risk models have the potential to improve decision 

making processes. While standardization and wide-spread usage of these automated 

techniques has yet to happen, MPMs are being utilized in clinics today. This paper has 

demonstrated the need for clarification in malignancy thresholds reported and demonstrated 

the cohort dependence built into these MPMs. We thereby recommend if an MPM is to be 

utilized for newly detected pulmonary nodules, that it is first calibrated with a 

retrospectively collected dataset (≥100 subjects) from the utilizing intuition to ensure a 

locally optimal threshold value. We have developed an easy to use web-based application to 

assist institutions in performing MPM calibration and comparison of performance metrics 

between models. The application allows MPM discriminative power to be assessed using 

either ROC-AUC (balanced cohort) or PR-AUC (unbalanced cohort) measures and provides 

sensitivity and specificity. The lack of improvement in risk prediction from these MPMs 

over time suggests caution in the utility of these tools during surveillance stage of clinical 

management.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key points:

• Post-imaging lung cancer risk mathematical predication models (MPMs) 

perform poorly on local populations without calibration

• An application is provided to facilitate calibration to new study cohorts: the 

Mayo Clinic model, the U.S. Department of Veteran’s Affairs model, the 

Brock University model, and the Peking University model

• No significant improvement in risk prediction occurred in nodules with 

repeated imaging sessions, indicating potential value of risk prediction 

application is limited to the initial evaluation

Uthoff et al. Page 13

Eur Radiol. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1 –. 
Histograms of MPM predictions split based on true nodule classification. Solid lines indicate 

MPM-derived thresholds with MPM-assigned categories of watchful-waiting (W), biopsy 

(B), surgery (S), low-risk (L), or high-risk (H). The dashed line indicates cohort AUC-

derived threshold for optimal separation of classes, with cases to the left of the line assigned 

‘benign-tagged’ and cases to the right of the line assigned ‘malignant-tagged’.
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Figure 2 –. 
MPM prediction value over CT number on longitudinal cohort. The range in prediction 

values for malignant (red) and benign (blue) are shown with minimum and maximum values 

indicated by dashed colored lines. The average prediction value for the two classes is shown 

with the solid colored lines. Black dashed lines indicate MPM-derived thresholds.
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Table 1:

Subject and nodule demographics of study cohorts.

Cohort Demographics Malignant Benign

Research

Number of Subjects 80 237

Age (years)
(Mean, Range)

64.0
(41–87)

62.1
(40–86)

Sex 54F : 26M 113F : 124M

Pack-years
(Mean, Range)

40.7
(0–80)

15.8
(0–50)

Nodule Size
(Mean, Range)

16.3mm
(4–30mm)

9.2mm
(4–30mm)

< 6mm 5 59

≥ 6mm to < 8mm 6 56

≥ 8mm to < 15mm 27 92

≥ 15 mm 42 30

LDCT screening eligible
(Yes: No) 48:32 85:152

Longitudinal Clinical

Subjects 16 14

Age (years)
(Mean, Range)

46.5
(23–64)

61.1
(40–74)

Sex 9F : 7M 10F : 4M

Pack-years
(Mean, Range)

21.2
(0–50)

14.2
(0–25)

Nodule Size
(Mean, Range)

18.9mm
(3–48mm)

13.3mm
(3–29mm)

Definition of abbreviations: F = female, M = male, LDCT = low-dose computed tomography

a
: LDCT screening eligibility criteria based on age between 55 and 80, and ≥ 30 pack years who currently smoke or have quit within the past 15 

years.
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Table 2:

Tabular form of mathematical prediction model’s (MPMs) base equations. Risk variables are categorized into 

demographical (subject reported) and radiological (clinician reported) factors. Units are coded in clinical 

terms; for use in the equation(s), sex (F=1,M=0) and presence (Y=1,N=0) are numerically coded. To obtain a 

prediction value for a given MPM, multiply each coeffiecnt by the subject’s risk variable value and take the 

summation with the base intercept/offset. The resulting number is the x in the logistic equation: êx/((1 + êx)) = 

risk prediction. For example, performing the VA MPM prediction for a 62-year-old, never-smoker, with a 

10mm nodule would yield x = (62*0.0779 + 0*2.061 + 0*0.0567 + 10*0.112 – 8.404) = −2.454; plugging into 

the logistic equation would yield a risk prediction = 0.079.

Risk variable Units
MPM Coefficient

MC VA PU BU

Demographical

Age Years 0.0391 0.0779 0.07 0.0287

Sex F/M 0.6011

Ever Smoker Y/N 0.7917 2.061

Time of smoking cessation Years 0.0567

Cancer history Y/N 1.3388

Family history of cancer Y/N 1.267

Family history of lung cancer Y/N 0.2961

Radiological

Emphysema Y/N 0.2953

Upper lobe Y/N 0.7838 0.6581

Diameter
a MM 0.1274 0.1 12 0.0676 −5.3854

a

Spiculation Y/N 1.0407 0.736 0.7729

Smooth Border Y/N −1.408

Calcification Y/N −1.615

Nodule type

Solid : Y/N 0

Part Solid: Y/N 0.377

Non-Solid: Y/N −0.1276

Nodule count Count −0.0824

Base Intercept/Offset −6.872 −8.404 −4.496 0.2761

Definition of abbreviations: MPM – mathematical prediction model; MC – Mayo Clinic; VA – Veteran’s Affairs; BU – Brock University; PU – 
Peking University; F – Female; M – Male; Y – Presence; N – Absence.

a
In the BU model, nodule size is defined by (diameter in millimeters/10)^−0.5
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Table 3:

Performance measures using cohort-derived optimized Youden thresholds (Figure 1, dashed lines). Refer to 

Supplemental Table A.1 for complete size-based breakdown.

MPM Nodule Size Optimized threshold performance and recommendation for treatment/ nodule evaluation

MC

All

< 21% Low Risk ≥ 21% High Risk

19M: 180B 61M: 57B

24% malignant wait 24% benign immediate work-up

≥ 8mm to < 15mm
8M: 67B 19M: 25B

30% malignant wait 30% benign immediate work-up

≥ 15mm
2M: 2B 40M: 28B

5% malignant wait 93% benign immediate work-up

VA

All

< 50% Low Risk ≥ 50% High Risk

34M: 197B 46M: 40B

43% malignant wait 17% benign immediate work-up

≥ 8mm to < 15mm
16M: 75B 11M: 17B

59% malignant wait 18% benign immediate work-up

≥ 15mm
7M: 8B 35M: 22B

17% malignant wait 73% benign immediate work-up

BU

All

< 10% Low Risk ≥ 10% High Risk

19M: 178B 61M: 59B

24% malignant wait 25% benign extra procedures

≥ 8mm to < 15mm
9M: 61B 18M: 31B

33% malignant wait 34% benign immediate work-up

≥ 15mm
0M: 1B 42M: 29B

0% malignant wait 97% benign immediate work-up

PU

All

< 70% Low Risk ≥ 70% High Risk

18M: 154B 62M: 83B

22% malignant wait 35% benign immediate work-up

≥ 8mm to < 15
9M: 56B 18M: 36B

33% malignant wait 39% benign immediate work-up

≥ 15mm
6M: 18B 36M: 12B

14% malignant wait 39% benign immediate work-up

Definition of abbreviations: MPM – mathematical prediction model; MC – Mayo Clinic; VA – Veteran’s Affairs; BU – Brock University; PU – 
Peking University; M – malignant; B - benign
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Table 4:

MPM assigned categories breakdown of nodule risk prediction. Refer to Supplemental Table A.2 for complete 

size-based breakdown.

MPM Nodule Size Malignancy probability and associated clinical guidelines for treatment/ nodule evaluation

MC

< 3% Watchful waiting 3–68% Needle biopsy > 68% Surgery

All
0M: 6B 61M: 225B 19M: 6B

0% malignant wait 98% benign immediate work-up

≥ 8mm to < 15mm
0M: 0B 26M: 91B 1M: 1B

0% malignant wait 100% benign immediate work-up

≥ 15mm
0M: 0B 24M: 24B 18M: 6B

0% malignant wait 100% benign immediate work-up

VA

< 20% Watchful waiting 20–69% Needle biopsy > 69%Surgery

All
7M: 58B 51M: 163B 22M: 16B

9% malignant wait 76% benign immediate work-up

≥ 8mm to < 15mm
1M: 13B 25M: 75B 1M: 4B

4% malignant wait 86% benign immediate work-up

≥ 15mm
3M: 0B 18M: 18B 21M: 12B

7% malignant waits 100% benign immediate work-up

BU

< 10% Low risk ≥ 10% Higher Risk

All
20M: 177B 60M: 60B

25% malignant wait 25% benign extra procedures

≥ 8mm to < 15mm
9M: 61B 18M: 31B

33% malignant wait 34% benign immediate work-up

≥ 15mm
0M: 1B 42M: 29B

0% malignant wait 97% benign immediate work-up

PU

< 46.3%
Nodule considered benign

≥ 46.3%
Nodule considered malignant

All
8M: 87B 72M: 150B

10% malignant wait 63% benign immediate work-up

≥ 8mm to < 15mm
3M: 33B 24M: 59B

7% malignant wait 64% benign immediate work-up

> 15mm
3M: 4B 39M: 26B

7% malignant wait 87% benign immediate work-up

Definition of abbreviations: MPM – mathematical prediction model; MC – Mayo Clinic; VA – Veteran’s Affairs; BU – Brock University; PU – 
Peking University; M – malignant; B - benign
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