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Abstract

Climate change is one of the biggest and most urgent challenges for the 21st century. Rising 

average temperatures and ocean levels, altered precipitation patterns and increased occurrence of 

extreme weather events affect not only the global landscape and ecosystem, but also human health. 

Multiple environmental factors influence the onset and severity of human diseases and changing 

climate may have a great impact on these factors. Climate shifts disrupt the quantity and quality of 

water, increase environmental pollution, change the distribution of pathogens and severely impacts 

food production – all of which are important regarding public health. This paper focuses on brain 

health and provides an overview of climate change impacts on risk factors specific to brain 

diseases and disorders. We also discuss emerging hazards in brain health due to mitigation and 

adaptation strategies in response to climate changes.
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1. Climate change as a brain health concern.

There is a consensus in the science community that climate change is a major scientific and 

medical challenge for the 21st century (WHO, 2018). Jointly with other global 

environmental changes: ozone layer depletion, soil degradation, pollution, and urbanization, 

changing climate creates an undeniable threat to our planet and human health (Paris 

Agreement, 2015). Three major components define climate change – global warming, 

changes in precipitation patterns and increased occurrence in extreme weather events. 

Global warming is a result of the increasing concentration of greenhouse gases (CO2, CH4, 

N2O). Current average concentrations of atmospheric CO2 levels – above 400 parts per 

million (ppm) (IPCC, 2018) – have climbed from 280 ppm in the pre-industrial times, and 

are predicted to reach 1000 ppm by the end of this century (Kiehl, 2011). The global mean 

surface temperature for 2018 amounts approximately 1°C above the pre-industrial levels and 

is predicted to rise 2–4°C more by 2100 (IPCC, 2018). Changes in precipitation include 

increased rainfall at higher latitudes and decreased at lower latitudes (IPCC, 2018). 

Increased frequency and greater intensity of extreme weather events, heat waves, droughts, 

hurricanes, tropical storms or floods, occur worldwide (IPCC, 2018). In consequence, sea 

levels continue to rise (3–4 mm/year with significant local variation) and the oceans are 

becoming more acidic. Wildfires and land degradation are more frequent and promote the 

release of environmental contaminants as well as alterations of the farming systems. The 

changing weather throughout the globe may severely affect biological systems, causing the 

extinction of some animal species, or promoting the expansion of others (IPCC, 2018). 

Climate change-related economic collapses, forced migrations, armed conflicts, and other 

social disruptions impose additional threat (Burrows and Kinney, 2016; Mach et al., 2019). 

Some groups are particularly vulnerable to the changing climate – primarily populations 

from low- and middle-income countries, with poor health and safety regulations, lack of 

infrastructure and environmental protection (Daoud et al., 2016; Hallegatte and Rozenberg, 

2017). Geographically, coastal and marine regions are more susceptible to damaging impacts 

of changing climate and natural disasters (Lu et al., 2018). Urban areas (Misslin et al., 2016; 

Zhang et al., 2019), and areas close to industrial plants (Azuma et al., 2014) are also more 

likely to be affected.

In light of the overwhelming evidence and broad scientific consensus of a changing climate, 

associated altered exposures to risk factors may affect human health, and thus also make it a 

public health concern (Kinney, 2018; Veenema et al., 2017). As numerous environmental 

factors are playing a role in the onset and severity of human diseases, understanding the 

modulatory effect of climate change is a priority. In this paper, we focus particularly on 

brain health. We provide an overview of the climate change impact on risk factors with 

implications for brain diseases, principally exposure to pathogens and hazardous pollutants, 

malnutrition, physical and psychological stress (Figure 1). We also discuss risks due to 

mitigation and adaptation activities in response to the changing climate.
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2. Climate change-affected risk factors in brain disease.

2.1. Infectious diseases.

2.1.1. Vector-borne and zoonotic diseases.—Good examples of risks mediated by 

ecosystem changes are shifts in infectious diseases, particularly vector-borne and zoonotic 

diseases (VBZDs). The VBZDs ecology is complex and dependent upon multiple factors, 

including location, altitude, ecosystem, host, vector, weather and the climate. The VBZDs 

outbreaks are rising worldwide (e.g. avian influenza H5N1) and there is a strong evidence 

that the changing climate contributes to it (Canavan, 2019). Climate influences the 

occurrence, incubation period, survival, distribution, and transmission of pathogens and 

vectors. Changes in temperature, humidity or precipitation affect the VBZDs through host-

vector interactions and through ecosystem changes. Climate shifts can also affect the 

epidemiological dynamics of the disease transmission indirectly, by changing social and 

cultural behaviors, as well as the economy (Caminade et al., 2019). Climate change is 

believed to promote the expansion of many tropical disease vectors in warming Europe 

(Semenza and Suk, 2018) and Northern America (Caminade et al., 2014). On the other hand, 

certain VBZDs may decrease in particular (warmer) regions, as habitats become less suitable 

for a host or vector survival and disease transmission (Cizauskas et al., 2017; Lafferty and 

Mordecai, 2016). The impact of climate change on various VBZDs transmission and 

epidemiology has been extensively studied and reviewed (Asad and Carpenter, 2018; 

Caminade et al., 2019; Campbell-Lendrum et al., 2015; Ebi and Nealon, 2016; Lafferty and 

Mordecai, 2016; Purse et al., 2017; Semenza and Suk, 2018). Herein, we focus on scenarios 

which contribute to climate-induced changes in geographic distribution and epidemiology of 

the VBZDs affecting the central nervous system (CNS). The pathogens may target the brain 

specifically, e.g. Japanese encephalitis and neuroborreliosis, or neurological outcomes may 

be secondary to the general infection, such as in malaria or yellow fever.

Aedes spp. mosquito is an example of a widespread tropical disease vector currently on a 

rise (Caminade et al., 2014). This is the major host for infectious arboviruses causing 

Dengue, Zika, Chikungunya, West Nile, and Yellow Fever (Kleinschmidt-DeMasters and 

Beckham, 2015). Mosquitoes reproduce and feed more frequently in higher temperatures 

(Carrington et al., 2013; Yang and Sarfaty, 2016), and with increasing global temperatures, 

the distribution of the Aedes spp. has drastically increased over the past few decades. Future 

predictions indicate further growth in Europe and North America, but local reductions in 

Southeast Asia and West Africa (Ebi and Nealon, 2016; Ryan et al., 2019). Dengue is 

currently the fastest spreading tropical infection in the world (Messina et al., 2019; Stanaway 

et al., 2016), exhibiting certain neurological outcomes in up to 20% of cases, mostly 

encephalitis and encephalopathy (Li et al., 2017). Both dengue virus and its vector (Aedes 
spp.) are sensitive to changing climate condition, as reviewed in (Ebi and Nealon, 2016; Li 

et al., 2018). Chikungunya occasionally affects the brain (Mehta et al., 2018) and its 

epidemiology is closely tied with weather patterns and climate change, as reviewed in 

(Meason and Paterson, 2014; Tjaden et al., 2017). Yellow fever can also lead to fatal 

encephalitis associated with acute inflammation and widespread neuronal damage (Almeida 

Bentes et al., 2019). West Nile virus is an important emerging neurotropic virus responsible 

for severe encephalitis outbreaks in humans and horses worldwide (Suen et al., 2014) – this 
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neuroinvasive infection is a serious threat particularly to infants, elderly and 

immunocompromised populations (Kleinschmidt-DeMasters and Beckham, 2015). Zika 

virus has attracted considerable attention recently for its potential to cause microcephaly, 

cortical thinning and blindness during early development, while meningoencephalitis and 

Guillain-Barre syndrome in adults (Araujo et al., 2016; Russo and Beltrao-Braga, 2017). 

The effect of climate changes on the dynamically changing Zika epidemiology has been 

recently recognized and discussed (Asad and Carpenter, 2018; Depoux et al., 2018). 

Japanese encephalitis virus belongs to arboviruses transmitted by Aedes spp., but its primary 

host is another mosquito type, Culex spp. inhabiting Southeast Asia and the Western Pacific. 

The virus causes a severe infection of the brain, with about 68,000 symptomatic cases and 

17,000 deaths per year (WHO). Weather conditions, particularly floods, were associated 

with an increased number of disease cases in China (Zhang et al., 2016).

Anopheles mosquitos transmit a protozoan parasite Plasmodium falciparum – the major 

cause of malaria in humans. This tropical infection kills approximately (approx.) one million 

people per year, mostly due to coma – cerebral malaria (CM). Survivors of the CM exhibit 

severe neurological deficits like epilepsy, cognitive impairment, and behavioral disorders, 

such as attencion deficit, hyperactivity and aggressive behavior, particularly common in 

young individuals (Hora et al., 2016; Postels and Birbeck, 2013). The impact of changing 

climate has been addressed in numerous recent studies and findings suggest a significant 

effect on malaria distribution and epidemiology (Boyce et al., 2016; Caminade et al., 2014; 

Dasgupta, 2018; Eikenberry and Gumel, 2018; Ivanescu et al., 2016; Leedale et al., 2016; 

Onyango et al., 2016).

In addition to mosquitos, other vectors transmitting neurological diseases are affected by 

climate and weather. Geographic distribution of Ixodes Ricinus, a species of hard tick that 

transmits several important brain diseases in Europe and North Africa is influenced by 

climate change (Alkishe et al., 2017; Jore et al., 2014; Ostfeld and Brunner, 2015). 

Transmission by the tick lyme neuroborreliosis is caused by bacteria Borrelia burgdorferi, 
and manifests as lymphocytic meningoradiculitis (Bannwarth syndrome) (Garkowski et al., 

2017). Tick-borne encephalitis (TBE) is a serious neuroinfection caused by a flavivirus. The 

disease is seasonal, dependent on the host-seeking activity of nymphs, and increased risk of 

the TBE has been linked to increasing temperatures (Daniel et al., 2018). Changing climate 

has been suggested to affect transmission and epidemiology of many other VBZDs 

exhibiting neurological outcomes: cerebrospinal bacterial meningitis (Codjoe and Nabie, 

2014), tuberculosis (Sergi et al., 2019), syphilis (Marinho de Souza et al., 2019), cerebral 

schistosomiasis (McCreesh et al., 2015; Yang and Bergquist, 2018; Zhu et al., 2017), 

leishmaniasis (Azimi et al., 2017; Mendes et al., 2016; Purse et al., 2017; Ready, 2008), 

Chagas disease (Carmona-Castro et al., 2018; Garza et al., 2014), strongyloidiasis 

(Beknazarova et al., 2016; McMahon et al., 2012), toxoplasmosis (Yan et al., 2016), 

neurocysticercosis caused by soil-transmitted helminthiases (Weaver et al., 2010), and 

neurological diseases associated with rabies (Hayes and Piaggio, 2018), or human 

immunodeficiency virus (HIV) infections (Low et al., 2019).

2.1.2. Water-borne diseases.—Water-borne diseases (WBDs) are infectious diseases 

caused by a wide variety of pathogens transmitted through water and exhibiting strong 
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dependence on climate and meteorological conditions, such as heavy rainfall, flooding, and 

other extreme events promoting the pathogen transmission (Levy et al., 2018; Levy et al., 

2016; Walker, 2018). The WBDs are often related to food consumption due to a tight 

association of food and water. Infections are mostly gastrointestinal (diarrheal), although the 

pathogens may affect other systems, including the brain. Several previously mentioned 

VBZDs are also WBDs (e.g. malaria, dengue schistosomiasis, toxoplasmosis), but other 

infectious diseases associated with water exposure may lead to neurological damage.

Primary amebic meningoencephalitis (PAM) is a rare, but extremely fatal infection of the 

brain caused by Naegleria fowleri, known as the “brain-eating amoeba”, commonly found in 

warm freshwater. Infection usually occurs during recreational water activities, but exposure 

from drinking water has also been recorded (Cope et al., 2015). The clinical presentation of 

PAM is often indistinguishable from bacterial meningitis (headache, fever, nausea, and 

vomiting), thus the diagnosis is difficult and rarely on time – only 27% of cases are 

diagnosed before death due to the cerebral edema, and mortality rate is above 97% 

(Capewell et al., 2015). In the last decade, notable changes have been documented regarding 

PAM epidemiology. Secondary to increased temperatures, first PAM cases have been 

reported in the northern U.S. (Cope and Ali, 2016; Kemble et al., 2012). Increased incidence 

of hepatitis A virus (HAV) infection depends greatly on water-related extreme weather 

events (Gao et al., 2016; Gullon et al., 2017; Hu et al., 2004; Morand et al., 2013). The 

infection usually manifests as fatigue or jaundice, but sporadically the CNS impairment 

occurs (Alehan et al., 2004; Hegazi et al., 2011; Lee et al., 2011). Moreover, several 

bacterial infections producing neurological symptoms and transmitted by water have been 

affected by the changing global climate, e.g.: leptospirosis (Lau et al., 2010), shigellosis 

(Cheng et al., 2017; Liu et al., 2017; Song et al., 2018; Zhang et al., 2017), 

campylobacteriosis (Allard et al., 2011; Rosenberg et al., 2018; Soneja et al., 2016), 

salmonellosis (Lake, 2017; Wang et al., 2018; Welch et al., 2019), infections of Escherichia 
coli (Hellberg and Chu, 2016; Iqbal et al., 2019; Philipsborn et al., 2016), or Staphylococcus 
aureus (Hellberg and Chu, 2016).

2.2. Environmental neurotoxins.

Multiple environmental contaminants have a neurotoxic effect on the brain. Heavy metals 

such as mercury (Hg) (Farina and Aschner, 2017; Pletz et al., 2016), arsenic (As) (Escudero-

Lourdes, 2016; Tolins et al., 2014), manganese (Mn) (Peres et al., 2016) and lead (Pb) 

(Andrade et al., 2017; Caito and Aschner, 2015; Singh et al., 2018), pesticides (Burke et al., 

2017; Cassereau et al., 2017), persistent organic pollutants (POPs) (Costa et al., 2014; 

Winneke, 2011), endocrine disruptive chemicals (EDCs) (Ghassabian and Trasande, 2018; 

Pomara et al., 2015; Weiss, 2012), or biotoxins (Grant et al., 2010) – all have been 

associated with the development of neurological outcomes in humans. Their occurrence in 

the environment is due to natural or anthropogenic sources, and accumulation and recycling 

are subjected to climate and weather changes. How present and future climate shifts alter the 

transport, transfer, deposition, and fate of various environmental pollutants has been 

extensively reviewed elsewhere (Kallenborn et al., 2012; Macdonald et al., 2005; Noyes et 

al., 2009; Schiedek et al., 2007; Van Oostdam et al., 2005). Herein, we discuss the major 
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concepts regarding climate impact on the circulation of environmental neurotoxins in the air 

and water.

The weather has a strong influence on the distribution and concentrations of air 

contaminants, and the changing climate likely accelerates air pollution, especially in 

urbanized areas. Extreme weather conditions, as well as increased temperature and humidity, 

promote the formation of particulate matter (PM) and changes in ozone (O3) levels (Doherty 

et al., 2017; Kinney, 2018). On the other hand, increased temperatures and locally decreased 

precipitation are projected to increase the frequency and expansion of wildfires during which 

the PM and other pollutants (Hg, As, Pb) are released into the environment (Cascio, 2018; 

Kinney, 2018; Liu et al., 2016). A growing body of epidemiological and modeling evidence 

suggests that global warming coupled with O3 and PM exposures will exacerbate the 

prevalence and severity of human disease and mortality (Noyes et al., 2009). While positive 

association between air pollution exposure and prevalence of neurological diseases is well 

established (Block and Calderon-Garciduenas, 2009; Costa et al., 2017; Lee et al., 2017; 

Myhre et al., 2018; Sram et al., 2017; Sunyer and Dadvand, 2019), the potentiating effect of 

climate change is still poorly studied. Lee et al. (2018) showed that increased air levels of 

PM, NO2, O3, and CO, enhanced the risk of migraine in Korean population (Seoul) and 

particles’ effects were significantly stronger on high-temperature days (Lee et al., 2018).

Intensified precipitation and extreme weather events may cause an overflow of contaminated 

land, which can lead to remobilization of contaminants from sediments and pollution of 

freshwater. Additionally, the increased temperature may enhance the volatility of 

contaminants from soils and water. Rising sea and ocean levels have been shown to intensify 

As release from contaminated coastal soils (LeMonte et al., 2017). Snow and ice melt 

release and remobilize sequestered pollutants – in Antarctic soil and permafrost are 

considered a sink for environmental contaminants, especially heavy metals and POPs, which 

once released, may disturb their ecological balance (Potapowicz et al., 2019). Climate 

change-driven oxygen limitation (hypoxia) may also alter neurotoxin deposition – hypoxic 

episodes reduced solid-phase manganese dioxide (MnO2) accumulated in the marine 

sediments causing a substantial increase of bioavailable Mn2+ concentrations in the water 

(Schiedek et al., 2007). Climate change may also influence how environmental contaminants 

accumulate in the aquatic organisms, enhancing toxicity in them and in humans who depend 

on seafood in diet. As discussed in (Kennedy and Walsh, 1997; Noyes et al., 2009; Schiedek 

et al., 2007; Van Oostdam et al., 2005), higher temperatures facilitate the bioavailability, 

uptake, biomagnifications, transport, degradation, volatilization, remobilization and 

metabolism of toxic chemicals. For instance, ocean warming intensifies methylation of 

mercury and subsequent uptake of methylmercury (MeHg) in fish and marine mammals by 

3–5% for each 10°C rise in water temperature (Booth and Zeller, 2005). In turn, the 

amplification of food web bioaccumulation of MeHg and other emerging pollutants under 

climate change has been proposed (Alava et al., 2018; Taylor et al., 2019). Higher 

temperatures also facilitate the metabolism of aquatic species. In the light of reduced O2 

concentration, the higher rate of water inflow into the body is needed to extract enough O2 – 

this may also increase the exposure to the dissolved pollutants. Bioavailability of 

contaminants is affected by salinity (McLusky et al., 1986) and acidification (low pH) (Riba 

et al., 2004), and climate-dependent changes in acidification may enhance bioaccumulation 
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of some toxic metals, as found with clams (Lopez et al., 2010). Moreover, higher 

temperatures and lower salinity alter the aquatic species’ ability to cope with toxic stress 

(Heugens et al., 2001; Velasco et al., 2018).

The rise of precipitation, surface water temperature and nutrient loading accelerate growth of 

harmful algal blooms (e.g. Pseudonitzschia spp., blue-green cyanobacteria and 

dinoflagellates), which are increasing in frequency, intensity, and duration globally (Chapra 

et al., 2017; Goldstein et al., 2008; Huisman et al., 2018; Paerl, 2018). They produce 

neurotoxins – microcystin, saxitoxin, brevetoxin or domoic acid (Chernoff et al., 2017; 

Grant et al., 2010; Porojan et al., 2016), which accumulate in fish and other seafood 

increasing the risk of adverse shellfish poisonings, affecting the brain and other organs in 

humans (Grant et al., 2010; Watkins et al., 2008). The neurological effects include amnesia, 

epilepsy, parkinsonian- and dementia-like symptoms which may be severe, chronic, and 

even lethal (Ramsdell and Gulland, 2014; Wang, 2008); some biotoxins may cross the 

mammalian placenta and accumulate in the amniotic fluid disturbing neurodevelopment 

(Costa et al., 2010; Ramsdell and Zabka, 2008). Although the most frequent human 

exposure is via consumption of contaminated seafood, the poisoning also occurs through 

drinking water, consumption of plants irrigated with biotoxin-contaminated water, or 

swimming in polluted recreational waters.

2.3. Food contamination and malnutrition.

The quantity and nutritional quality of agricultural production depend on soil quality, 

sunlight, CO2, temperature, and water availability. Thus, due to increasing temperatures and 

water-dependent extreme weather events, changing climate will likely affect seasonal food 

availability, food contamination, or increased consumption of toxin in the diet (Myers et al., 

2017). Increasing temperatures enhance soil erosion which facilitates pesticide run-off and 

pollution, and endorses the need for artificial fertilizers. Changing climate will likely 

promote weeds growth, the survival of some pests and diseases affecting plant and livestock, 

thus more herbicides, pesticides, insecticides, and other chemicals will be required, 

contributing to the even greater contamination of the environment, and subsequently the 

food (Boxall et al., 2009; Myers et al., 2017). Food is also an important vector of some 

infectious diseases affecting the brain, like previously mentioned toxoplasmosis (see 2.1.1.), 

shigellosis, campylobacteriosis, infections caused by Escherichia coli, Staphylococcus 
aureus or HAV (see 2.1.2.). The hot and humid climate is favorable for the growth of 

mycotoxin-producing fungal molds, thus weather and climate shifts may enhance 

contamination of food and environment (Paterson and Lima, 2011). Some mycotoxins 

exhibit severe neurotoxic effects, e.g. fumonisin B1 (Domijan, 2012), lolitrems, paspalitrems 

(Kozak et al., 2019; Plumlee and Galey, 1994), and several brain diseases have been linked 

to mycotoxins exposure (Bonnet et al., 2012; French et al., 2019; Ratnaseelan et al., 2018; 

Terciolo et al., 2018).

Future prognosis indicates that crop production will change and shift geographically, leaving 

some regions unsuitable for conventional farming. Climate change is likely to increase the 

area, frequency, and duration of extreme droughts. This will lead to changes in crop yield, 

higher food prices and consequently lower affordability, reduced calorie availability, and 
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growing malnutrition in vulnerable populations from developing countries (Myers et al., 

2017; Squire and Ryan, 2017). Malnutrition, particularly in early life, profoundly influences 

neurodevelopment, alters neurocognitive performances and cause severe neurological 

disorders, as reviewed in (Mattei and Pietrobelli, 2019). Moreover, it has been shown that 

the burden of conventional neurodevelopmental toxins (e.g. Pb) is exacerbated by 

malnutrition (Guerrant et al., 2008).

2.4. Brain (patho)physiology.

The brain is at the forefront of animals’ interactions with the environment, thus changing 

climate may have a direct effect on the CNS development and performance, thereby 

affecting behavior. From animal studies emerges that temperature modulates brain 

development – changing temperature can alter gene expression (Pallotta et al., 2017), 

neuronal structure, brain organization (Amiel et al., 2017; Groh et al., 2004), and learning 

ability (Dayananda and Webb, 2017; Wang et al., 2007). The thermal environment can 

influence neurogenesis in adult brain (Ramirez et al., 1997). Other abiotic conditions are 

shown to impair neural function in animals – lowering barometric pressure aggravates 

depression-like behaviors in rats (Kanekar et al., 2015; Mizoguchi et al., 2011) and induces 

neuronal activation in the superior vestibular nucleus in mice, linked to the generation of 

meteoropathy (Sato et al., 2019).

Climate change-related atmospheric conditions have been also associated with neurological 

issues in humans. Both increases and decreases in temperature lead to a significant (approx. 

20% for 5°C change) increase in the number of migraine reports in German population in 

2011–2012 (smartphone app and web form study) (Scheidt et al., 2013). Heat stroke is a 

life-threatening condition – severe increase in body temperature with central nervous system 

dysfunction that often includes combativeness, delirium, seizures, and coma. It primarily 

occurs in immunocompromised individuals during annual heat waves, but exertional heat 

stroke is observed in young fit individuals performing strenuous physical activity in hot 

environments (Leon and Bouchama, 2015). When the influence of weather on the incidence 

of primary spontaneous intracerebral hemorrhage was analyzed, changes in barometric 

pressure (Garg et al., 2019), the PM and O3 concentrations (Han et al., 2016), but not 

temperature, primarily affected the incidence of the condition. The impact of thermal 

conditions on intracerebral hemorrhage seems to be complex (Luo et al., 2018; Ma et al., 

2018). Overall, the topic is little explored, moreover, it is still not clear how environmental 

conditions affect the core body and brain temperature (Cramer and Jay, 2016; Kiyatkin, 

2018; Smith and Johnson, 2016; Szekely and Garai, 2018).

Although direct indications on the effect of climate change on brain (patho)physiology are 

limited, general understanding of the underlying mechanisms arise from in vivo and in vitro 
studies of the impact of heat stress and hyperthermia on brain metabolism. Given the 

exogenous cause of hyperthermia during current climate change, in this section we 

intentionally avoided discussion of the observations dealing with endogenous hyperthermia 

due to impaired brain thermoregulation (Kiyatkin, 2005).

Despite the observation of heat-induced increase in basal metabolic rate in certain brain 

regions, a significant decrease was observed in human caudate, putamen, insula, and 
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posterior cingulum neuron metabolism (Nunneley et al., 2002). It is also notable that, even at 

a relatively stable global cerebral blood flow in environmental hyperthermia, regional 

(prefrontal cortex, somatosensory areas and limbic system) blood flow tended to decrease, 

being associated with mood state and cognitive changes (Qian et al., 2014). Heat-induced 

reduction in cerebral blood flow was also associated with reduced orthostatic tolerance 

(Crandall and Gonzalez-Alonso, 2010). Certain cerebrovascular effects of endogenous 

hyperthermia may be also mediated by heat-induced hyperventilation and hypocapnia (Ross 

et al., 2012) with subsequent respiratory-induced alkalosis (Bain et al., 2015). The latter 

were shown to reduce cerebral blood flow during passive hyperthermia (Bain et al., 2013). 

The patterns of cerebral blood flow under environmental hyperthermia also correspond to 

the observed functional heterogeneity of brain regions (Qian et al., 2013). Particularly, 

environmental hyperthermia (50 °C) was shown to impair functional connectivity of brain 

that may underlie alteration of cognitive performance and work behavior (Sun et al., 2013), 

as well as visual short-term memory (Jiang et al., 2013). Whole body hyperthermia induced 

long-term learning and memory deficits in rats with mild traumatic brain injury (Titus et al., 

2015). Heat stress was also shown to impair blood-brain barrier and blood-cerebrospinal 

fluid barrier structure leading to an increase in their permeability and brain edema in rats 

(Sharma et al., 2010). These effects were found to be aggravated by diabetes (Muresanu et 

al., 2010a) and hypertension (Muresanu et al., 2010b).

Seizures are considered as the most common complications of hyperthermia and heat stroke 

(Leon and Bouchama, 2015), being at least partially associated with heat-induced activation 

of transient receptor potential cation channels (TRPV4) and N-methyl-D-aspartate receptors 

(NMDAR) signaling, as demonstrated in a zebrafish model (Hunt et al., 2012). High 

temperature exposure was shown to induce hyperthermic seizures along with inflammatory 

response in rats, that was aggravated by lipopolysaccharides treatment (Eun et al., 2015). 

Environmental hyperthermia was shown to aggravate adverse effects of brain trauma 

(Hermstad and Adams, 2010) even in the case of mild brain injury (Sakurai et al., 2012). 

Body hyperthermia (39°C) had a significant interactive effect with epileptic seizures in 

inducing neuronal injury in the amygdala and hippocampus (Suchomelova et al., 2015). 

Hyperthermia (39–40°C) was shown to induce epileptiform discharges in cortical neurons in 
vitro through interference with gamma-aminobutyric acid (GABA) receptor signaling (Wang 

et al., 2011). Structural changes due to heat-exposure (37–40°C) were observed in neurons 

and their axons, glia, as well as cerebral vascular endothelium (Sharma and Hoopes, 2003).

The intimate mechanisms of the observed effects of hyperthermia are still to be estimated, 

although some common pathways have been revealed (Figure 2). Heat stress is considered as 

an environmental prooxidant factor (Slimen et al., 2014). Heat exposure (44 °C) was shown 

to induce oxidative stress in brain and Tau pathology in laboratory rodents (Chauderlier et 

al., 2017), providing an additional link between hyperthermia and neurodegeneration. 

Correspondingly, high temperature exposure was shown to decrease antioxidant superoxide 

dismutase (SOD) expression and activity in neuronal HT-22 cells with subsequent cell death 

(El-Orabi et al., 2011). In addition to oxidative stress, exposure of primary cortical neurons 

to heat stress resulted in endoplasmic reticulum (ER) stress, inhibiting protective heat shock 

responses (Liu et al., 2012). These observations are generally in agreement with the 

indications of tight interplay between ER and oxidative stress in brain pathology (Thornton 
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et al., 2017). Heat-induced mitochondrial dysfunction (irreversible mitochondrial membrane 

potential ΔѰm depolarization) with subsequent caspase-3 activation and apoptotic signaling 

was proposed as the potential mechanisms of hyperthermia-induced death of cultured rat 

neurons (White et al., 2012). Earlier studies revealed increased infarct volume and increased 

mortality in heat-exposed animals with ischemic stroke (Noor et al., 2003), that may be 

associated with heat-induced increase in matrix metalloproteinase (MMP-2) activity as well 

as basal membrane protein degradation and loss (Alam et al., 2011; Meng et al., 2012). 

Increased excitability of brain seems to play a significant role in heat-induced brain damage. 

For example, heat stress (38°C) significantly increased brain glutamate and aspartate levels 

in rats, whereas GABA and glycine concentrations were reduced, thus providing a shift to 

excitatory neurotransmitters (Sharma, 2006). These findings are in agreement with 

decreased hippocampal GABAergic synaptic transmission (Qu et al., 2007). Systemic 

glutamate levels were reduced in rats exposed to mild hyperthermia (37–39°C), whereas 

further heating (42°C) significantly elevated circulating glutamate concentrations (Zlotnik et 

al., 2010). Correspondingly, increased NMDAR signaling was also shown to contribute to 

heat-induced seizures (Morimoto et al., 1995), whereas NMDAR down-regulation had a 

protective effect in acclimation (Ely et al., 2015). Hyperthermia was shown to cause 

depolarization and reduced input resistance in parallel with increased synaptic activity of 

hippocampal pyramidal cells and inhibitory interneurons, being also indicative of higher 

excitability of the brain (Kim and Connors, 2012). It is expected that impaired calcium Ca2+ 

homeostasis may also contribute to neuronal damage under heat exposure, although the 

existing data are limited (White et al., 2012). Hyperthemic-dependent Ca2+ dysregulation 

has been shown in pathomechanisms of other systems, like smooth muscles (Burke and 

Hanani, 2012) and endothelial cells (Li et al., 2015). The latter may be involved in impaired 

cerebrovascular reactivity at heat stress exposure..

Prolonged heat exposure in mice resulted in a proinflammatory milieu being characterized 

by increased nuclear factor NF-κβ signaling and increased expression of interleukin IL-1β, 

tumor necrosis factor (TNF-α), cyclooxygenase-2, and inducible nitric oxide synthase 

(iNOS) in hippocampus with subsequent decrease in neuronal and synaptic density, and 

gliosis (Lee et al., 2015). Neuroinflammation was also associated with altered hypothalamic 

monoamine content and glutamate levels in heat-stressed (42°C) animals (Chauhan et al., 

2017). Systemic inflammatory response syndrome is considered as an important pathway in 

heat stroke (Leon and Helwig, 2010).

Taken together, heat exposure induces complex metabolic changes in brain, resulting in 

formation of pathogenetic cascades including heat-induced oxidative stress, ER stress, 

mitochondrial dysfunction, apoptosis, excitotoxicity, neuroinflammation, and impaired brain 

microcirculation, being all implicated in neurodegeneration and other brain diseases.

2.5. Mental health.

Climate-related environmental changes may profoundly impact psychological well-being 

and mental health, particularly among those with pre-existing vulnerabilities or living in 

ecologically sensitive areas. Climate change may affect physical health (heat stress, injury, 

disease, disruption to food supply), or endorse mental health issues directly, by exposing 
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people to the psychological trauma. Such trauma can be induced by multiple factors, 

particularly those related to extreme weather events and natural disasters: personal loss; 

destroyed environment, landscapes, infrastructure, and communities; decreased food access; 

depressed economy and impaired financial security; forced migration or social conflicts. 

Moreover, psychological distress may result from acknowledging climate change as a global 

environmental threat (Fritze et al., 2008). Depression and anxiety (Mamun et al., 2019), 

post-traumatic stress disorder (PTSD) (Hanigan et al., 2018; LaJoie et al., 2010; Pietrzak et 

al., 2012; Schwartz et al., 2017), increased substance use (Rohrbach et al., 2009), and 

suicide rates (Carleton, 2017; Fountoulakis et al., 2016a; Fountoulakis et al., 2016b; 

Hanigan et al., 2012) are increasing with changes in climate conditions. For instance, 

depression symptoms were eight times higher among people in flooded homes (Azuma et 

al., 2014). Short-term exposure to extreme weather, climate warming, or tropical cyclone 

was associated with worsened mental health, as concluded from data drawn from nearly 2 

million U.S. residents between 2002 and 2012 (Obradovich et al., 2018): shifting from 

monthly temperatures between 25 °C and 30 °C to >30 °C increased the probability of 

mental health issues by 0.5% points, 1°C of 5-year warming was associated with a 2% 

increase in the prevalence of mental health issues, and exposure to Hurricane Katrina was 

associated with a 4% increase in this metric (Obradovich et al., 2018). PTSD and 

psychological distress have been observed years after a hurricane, particularly among 

vulnerable populations (LaJoie et al., 2010; Paxson et al., 2012). For a more comprehensive 

reading on the climate change impact on human mental health, we recommend recent 

reviews (Berry et al., 2018; Bourque and Willox, 2014; Burke et al., 2018; Dyregrov et al., 

2018; Hayes et al., 2018; Torres and Casey, 2017; Trombley et al., 2017).

3. Mitigation and adaptation to climate change produce additional risk 

factors for brain diseases.

Emerging health risks related to changing climate can be minimized and avoided via 
effective mitigation and adaptation pathways. One of the major targets of the Paris 

Agreement is to limit global warming to no more than 2°C above the pre-industrial levels by 

2100 (Paris Agreement, 2015). There are many potential paths to reach this goal, although 

no current strategy can prevent the change in climate that has already occurred (Portier et al., 

2010). The major strategy of climate change mitigation aims to reduce global greenhouse 

emissions, through reduction of energy consumption and the use of fossil fuels, development 

and expansion of alternative energy sources and energy conservation technologies. 

Moreover, carbon capture and storage, changes in land use (reforestation) and actions aiming 

to preserve ecosystems and conserve biodiversity are introduced, as reviewed in (Tong and 

Ebi, 2019; Woodward, 2019). Climate change is very complex and difficult to predict – it 

occurs fast and manifests differently in different places. Analogously, the indirect impact 

and health risks associated with human responses and undertaken actions, due to the scale 

and speed, are also uncertain and challenging (Carney, 2016). Mitigation and adaptation 

responses to changing climate will likely disturb the environment and consequently human 

health – numerous strategies may have both positive and negative effects, most of which are 

poorly recognized or understood.
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For instance, reduction in the use of fossil fuels will likely reduce the release of 

neurotoxicants such as As, Hg, and other contaminants into the environment (Gustin and 

Ladwig, 2004; Hu and Cheng, 2016; Ito et al., 2006). But it may also open new routes of 

human exposure, e.g. due to improper disposal of energy-saving fluorescent light bulbs 

containing Hg, or heavy metals release associated with manufacturing and disposal of 

batteries used in electric vehicles (Bronstein et al., 2009; Noyes et al., 2009). Nuclear power 

plants are potential sources of contamination and they have strong environmental impacts on 

water availability and quality. Increased reliance on hydroelectric power, which typically 

requires the construction of dams, may change local VBZDs ecologies and alter diseases 

transmission (Zhou et al., 2016). Mitigation focused on the preservation of forests and 

wetlands are also likely to impact VBZDs ecology and transmission.

Adaptation efforts may increase environmental contamination and human exposure to 

neurotoxic compounds, due to e.g. the increased use of insecticides to cope with 

transmission of VBZDs vectors or application of (new) pesticides and herbicides in response 

to changed requirements for food production (Noyes et al., 2009). Interestingly, the indirect 

consequences of climate change, e.g. shifts in agriculture and resource exploitation may 

have a more pronounced impact on contaminants presence in the environment, than direct 

climate change, as shown on the example of POPs (Kallenborn et al., 2012). Capture and 

storage of water runoff to adapt to drought may provide more suitable breeding habitat for 

mosquitoes, thereby increasing incidence of VBZDs. Moreover, increased application of 

biofuels as alternative energy sources or genetically modified organisms, may have a 

questionable effect on food-borne diseases and human nutrition. Climate change-related, 

drought-triggered famines may lead to increased consumption of resilient plants such as 

grass pea, cassava or cycad seeds, containing neurotoxicants which are associated with a 

high-burden of neurological diseases. Unbalanced grass pea (Lathyrus sativus) consumption 

due to substantial amount of neurotoxic β-N-oxalyl-L-α,β-diaminopropionic acid (ODAP) 

has been associated with neurolathyrism, a neurodegenerative disease that causes paralysis 

of the lower body. In normal socio-economic and environmental situations, in which grass 

pea is part of a balanced diet, neurolathyrism is virtually non-existent (Lambein et al., 2019). 

Cassava (Manihot esculenta, also known as mandioca, yuca) is a root vegetable resistant to 

poor soil and drought, which is an important staple, particularly among people who live in 

poverty and remote tropical areas (Gleadow et al., 2016). Unprocessed cassava contains high 

amounts of neurotoxic cyanogenic glucosides (linamarin and lotaustralin), associated with 

development of myeloneuropathy and konzo (Kashala-Abotnes et al., 2019). Edible cycads 

seeds contain multiple neurotoxins (methylazoxymethanol, β-methylamino-l-alanine, β-

alanine-l-oxalylamino and cycasin) and their consumption has been associated with the 

development of neurodegenerative diseases with motor impairment, such as amyotrophic 

lateral sclerosis or Parkinson’s disease (Rivadeneyra-Dominguez and Rodriguez-Landa, 

2014). Thus, in the light of such complex climate-environment-human interactions, 

scrutinized examination of the neurological health risks associated with mitigation and 

adaptation strategies is needed.
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4. Conclusions.

Climate change rapidly and extensively disrupts global ecosystems with yet unknown 

consequences for human. Rising average temperatures and sea levels, and intensification of 

extreme weather events impact environmental factors which directly or indirectly affect 

human health. Moreover, the impact of human responsive actions associated with mitigation 

and adaptation strategies poses additional hazard through intensification of some health risk 

factors. Many of them, separate or jointly contribute to increased occurrence of brain 

diseases. Changing climate conditions promote transmitting of pathogens infecting the brain; 

intensify environmental pollution increasing risk of exposure to the harmful neurotoxicants; 

create food contamination and shortage potentially leading to brain-affecting malnutrition 

and poisoning. Climate-driven natural disasters and their socio-economic consequences have 

a strong and persistent impact on the mental health of affected populations. Moreover, 

drastically changing weather conditions may directly disturb brain physiology. Yet scientific 

evidence is sparse, and more research is needed to recognize and effectively address all these 

emerging and complex challenges associated with climate change-driven environmental risk 

factors of neurological diseases.
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Figure 1. 
Direct and indirect consequences of global climate change contribute to increased 

occurrence of risk factors in brain disease.
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Figure 2. 
Hypothetical mechanisms of the impact of heat exposure on brain (patho)physiology. Heat 

exposure results in mitochondrial dysfunction decreased mitochondrial membrane potential 

(↓Δѱm) causing increased electron leakage. The latter is associated with increased 

superoxide (O2
·−) generation and further increase in reactive oxygen species (ROS) 

production resulting in oxidative stress together with decreased antioxidant enzymes activity. 

Both oxidative stress and heat exposure impair endoplasmic reticulum (ER) functioning 

ultimately leading to ER stress. Increased cytochrome c (Cyt c) release due to mitochondrial 

dysfunction induces caspase-3 activation and apoptotic signaling. The latter is aggravated by 

oxidative and ER stress. Hypothetically, a tight interplay between mitochondrial 

dysfunction, apoptosis, oxidative stress and ER stress may underlie heat-induced 

neurodegeneration. The overall effect of heat exposure is also associated with increased 

brain glutamate levels, although the particular mechanisms are unclear. Elevated glutamate 

levels induce NMDA receptor signaling causing intracellular Ca2+ flux. Taken together with 

Ca2+ release from ER, glutamate-induced Ca2+ uptake results in increasing intracellural 

calcium levels ([Ca2+]i) levels, leading to excitotoxicity and seizures. Moreover, increased 

[Ca2+]i levels aggravate apoptotic signaling through caspase-3 activation.
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