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Abstract

A key challenge facing immunotherapy is poor infiltration of T cells into tumors, along with 

suppression of cells reaching these sites. However, macrophages make up a majority of immune 

cell infiltrates into tumors, creating natural targets for immunotherapies able to direct macrophages 

away from tumor-supportive functions and toward anti-tumor phenotypes. Recent studies 

demonstrate that toll-like receptors (TLRs) – pathways that quickly trigger early immune 

responses – play an important role in polarizing macrophages. Here we present emerging ways in 

which TLR signaling is being manipulated in macrophages to create new opportunities for cancer 

immunotherapy. In particular, we discuss approaches to deliver TLR agonists, to leverage 

biomaterials in these therapies, and to couple TLR-based approaches with other frontline 

treatments as combination cancer therapies.
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Introduction

Macrophages are key cellular players in the tumor microenvironment, making this 

population an important target for cancer immunotherapy. In particular, one of the 

challenges facing new therapies is the poor infiltration of T cells into tumors; these tissues 

also host an immunosuppressive environment that limits the activity of immune cells that do 

arrive. Macrophages, however, are a major component of the leukocyte infiltrate to tumor, 

which create some unique therapeutic opportunities to exploit macrophages relative to other 

populations such as T cells [1]. Of note, macrophages exhibit plasticity that can result in 

either favorable or detrimental outcomes with respect to tumor immunotherapy. As with 

macrophages in other tissue environments, tumor-associated macrophages (TAMs) have 

historically been segmented into M1 and M2 phenotypes, though this characterization is a 

simplification of the gradient of functions these cells can exert [2]. Generally speaking, M2-

like macrophages support tumor growth and maintenance, whereas M1-like macrophages 

facilitate inflammation and tumorcidal effects [3–5]. Unfortunately, in most established 

tumors, M2-like macrophages are the dominant phenotype, fostering tumor growth and 

evasion of the immune system, as well as metastasis [4,6]. However, the morphology, 

phenotypes, and functions of macrophages can be altered by exposure to a range of 

microenvironmental, pharmacological, and biologic cues. As a result, strategies to promote 

M1-like macrophages and deplete or inhibit M2-like macrophage are being explored as 

powerful new levers to combat cancer [3–5].

One emerging approach to manipulate macrophage function is to control signaling in innate 

immune sensing pathways. These sensors, such as inflammasomes, the cGAS–STING 

pathway, and toll-like receptors (TLRs) are ubiquitous across many cell and tissue types. 

TLRs, for example, make up a series pathways evolved to detect molecular patterns common 

in pathogens, but uncommon in humans [7]. These receptors are expressed in distinct 

cellular locations (e.g., cell surface, endosome) of macrophages, allowing sensing of specific 

types of pathogens in subcellular locations that facilitate the most-appropriate type of 

response to a given pathogen. Because agonists (TLRas) for a specific TLR are molecularly 

defined, TLRs present an attractive target for more precise manipulation of the function of 

macrophages or other immune cells. This possibility has driven substantial research and 

some clinical use of a subset of TLR agonists – TLR3, TLR4, TLR7/8 and TLR9, for 

example – as more selective human adjuvants for vaccines against infectious disease and 

cancer [8,9]. These efforts have revealed significant insight into how TLR signaling in 

dendritic cells – which is a professional antigen presenting cell, can be harnessed. However, 

less work has focused on manipulating TLR signaling in macrophages to enhance immune 
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response, but the unique role and prevalence of macrophages in the tumor microenvironment 

create exciting potential around this strategy.

Below we review efforts to direct macrophage function during cancer by manipulating TLR 

signaling, emphasizing research from the most recent 3 years (Fig. 1). The first section 

focuses on traditional strategies to deliver TLRa to bias macrophages toward anti-tumor 

phenotypes, while the subsequent section highlights approaches to harness nanotechnology 

and biomaterials to control TLR signaling. Lastly, we discuss new reports combining 

manipulation of TLR signaling in macrophages with other cancer treatments as potential 

combination therapies.

TLR agonists are important cues to induce macrophages with anti-tumor 

functions

TLRs are key regulators of the innate immune system, functioning in part by triggering 

release of specific cytokines that define distinct immune cell compartments. In particular, a 

number of unique macrophage phenotypes can be generated by stimulation with TLRa in 

tandem with cytokines or other modulatory cues [10]•. One phenotype of interest for anti-

tumor response is the “classically-activated” macrophage, inducible using LPS (TLR4a) and 

IFN-γ. These and related phenotypes produce key proinflammatory cytokines and 

chemokines to combat suppressive tumor microenvironments, including IL-12, IL-23, tumor 

necrosis factor (TNF), CC chemokines, and nitric oxide synthase. Agonists for TLR7/8 have 

recently been used to re-educate TAMs from tumor-supportive phenotypes to the M1-like 

phenotypes just mentioned [11]••. A key finding from this work is that the efficiency of 

polarization driven by these TLRa is comparable to strong common induction signals. For 

example, motolimod (TLR7a), GS9620 (TLR8a) and R848 (resiquimod, dual TLR7/8a) all 

enriched M1-like phenotypes to levels similar to those achieved with standard LPS and IFN-

γ triggers.

Because TLRs recognize molecular patterns, the repertoire of available agonists is rapidly 

expanding. This is enabled by the evolutionary processes by which the TLR family has 

evolved to detect a range of classes of pathogen-associate moelcules. For example some 

TLRs – such as TLR4 – detect bacterial polyscharrides, while others – such as TLR9, detect 

bacterial DNA, while still others – such as TLR7, detect viral RNA. This diversity creates 

opportunities to engineer agonists with a range of chemistries and solution structures across 

the full range of specificity of TLR receptors. As illustration, a new synthetic TLR7a was 

recently shown to strongly activate macrophages in culture and in mice, enhancing 

phagocytosis of tumor cells in vitro, and enabling depletion of specific target cells in mice 

[12]. Taking this idea further, TLRas have been used to repolarize macrophages generally 

associated with tumor suppressive properties back to M1-like phenotypes. One recent report 

showed TLR3a skews macrophages in this manner – as indicated by upregulation of 

activation markers, suppression of co-inhibitory receptors, and release of proinflammatory 

cytokines – to significantly restrict tumor growth in a tumor-bearing mouse model of 

colorectal cancer [13]•. Another finding from this work is that IFNα mediated the 

polarization, identifying this pathway as a target for future therapies centered on 
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macrophage polarization. Likewise, other recent studies have confirmed the ability of 

additional TLRas, such as TLR1/2 (Pam3CSK4), to skew macrophages toward pro-

inflammatory functions [14].

Biomaterials offer synergistic features for manipulating TLR signaling to 

promote macrophages with anti-tumor functions

Biomaterials include degradable polymer nanoparticles (NPs), liposomes, scaffolds, and 

other other natural and synthetic materials that offer advanced capabilities for biological 

applications. For immunotherapy, some of the key features include co-delivery of multiple 

drugs or ligands, targeting to specific cell populations or tissues, and controlled release or 

protection of drugs and biologic cargo [15,16]•. Encapsulation and release of immune-active 

cargos from biomaterials can also reduce systemic side effects. For example, responsive NPs 

were recently used to target IL-12 to tumor-resident macrophages [17]. This approach 

promoted M1-like phenotypes without significant systemic toxicity, ultimately improving 

response during a melanoma xenograft model in mice. From another perspective, 

biomaterials exhibit tunable mechanical properties that can be used to direct immune cell 

migration, differentiation, and function [18]. This idea has been gaining traction as a way to 

control macrophage function in the tumor environment, where properties such as stiffness 

are variable [19]. TLR signaling in macrophages was recently linked to the mechanical 

properties of extracellular surfaces these cells encountered. In these studies, responses to 

TLRas were influenced by the stiffnesses of biomaterial surfaces that macrophages were 

cultured on [20]. These examples highlight the role of biomaterials both as delivery devices, 

and as active materials that directly influence the function and differentiation of 

macrophages. Below we discuss ways in which each of these roles are being exploited to 

direct TLR-signaling in macrophages.

NPs exhibit intrinsic features that can polarize macrophage function.

Many biomaterials – even some of those already used in the clinic – are now known to 

exhibit intrinsic physicochemical features that can directly alter innate immune signaling, 

including TLR activity [21]. While this discovery can complicate rational design because of 

the immunogenic features of these materials, these interactions also create new opportunities 

to design carriers that help tune immune function [22]. With respect to macrophages, for 

example, graphene oxide-based NPs have recently been shown to promote TLR2 signaling 

and activate macrophages [23]. Recent studies with degradable polymers such as poly(β-

amino esters) also demonstrate activation of macrophages. However, these polymers did not 

activate TLR3, TLR7, or TLR9, or involve NF-κβ, suggesting there may be multiple innate 

pathways to leverage in directing macrophage phenotype [24,25].

As just alluded to, the mechanisms involving NP-induced macrophage polarization have not 

been fully elucidated, but a number of materials clearly trigger TLR involvement. Alginate, 

a natural polysaccharide, promotes macrophage phagocytosis by upregulating TLR4 

expression, ultimately stimulating the Akt/NF-κB and p38 MAPK pathways [26]. Thus, the 

intrinsic immunogenic effects of alginate may result in part from the ability of alginate to 

trigger increased uptake after smaller amounts are initially internalized to trigger TLR4. 
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Interestingly, other recent studies demonstrate that different subclasses of macrophages 

preferentially internalized NPs at different rates, lending additional credence to the link 

between uptake, TLR signaling, and macrophage phenotype [27]•. Using single walled 

carbon nanotubes (SWCNTs) and a variety of transciptomic, cellular, and computational 

tools, another research team elucidated a potential mechanism by which these nanomaterials 

activate primary human monocyte derived macrophages (HMDM) [28]••. In these studies, 

SWCNTs were found to directly stimulate TLR signaling, resulting in signal transduction 

through a master regulator of TLR signaling, MyD88. This cascade activated NF-κβ and led 

to secretion of inflammatory chemokines that drive chemotaxis and recruitment of immune 

cells (Fig. 2a). For example, using TLR reporter cells, the team demonstrated SWCNTs 

triggered both TLR2 and TLR4 in both the presence and absence of serum-contianing media 

(Fig. 2b).

As the illustrations discussed thus far reveal, an emerging theme is that different materials – 

and most likely, different fundamental properties (e.g., shape, size, chemical functionality) – 

are able to drive distinct mechanisms by which TLRs and other innate sensing pathways 

impact macrophage polarization [29]. The size of particles formed from titanium dioxide, 

for example, preferentially polarizes macrophages toward different phenotypes [30]. 

Understanding the link between a range of biomaterial properties and macrophage 

polarization is important if these technologies are to be effectively exploited in the clinic. As 

one clinically-relevant example focused on cancer, Zanganeh et al. demonstrated that 

Ferumoxytol - a Food and Drug Administration (FDA) approved iron supplement NPs – 

inhibits adenocarcinoma and reduces liver metastasis in the absence of any other “treatment” 

[31]. Interestingly, these effects were associated with an increase in TAMs displaying M1-

like functions. Although TLR signaling was not directly assessed in these studies, many of 

the cytokines and pathways TLRs help direct were altered during this repolarization, 

suggesting a possible direction for follow-on studies.

NPs offer features to enhance delivery of TLRas.

One important way in which NPs are being used to direct the function of immune cells is as 

carriers to deliver one or more TLRas [32–35]. Incorporating these ligands in NPs can 

improve targeting, reduce side effects, and increase potency compared to delivery of free 

TLRas. This idea is now receiving increasing attention specifically to polarize macrophages 

during cancer immunotherapy [11,36,37]. For example, R848 (TLR7/8) loaded in 

cyclodextrin NPs (CDNPs-R848) were recently used to target TAMs in several mouse 

models of cancer, including MC38 colon adenocarcinoma. (Fig. 3a) [11]••. These NPs 

conferred an M1-like bias to TAMs that was unmatched using systemic delivery of free 

ligand (R848). Importantly, this treatment controlled established tumors and protected mice 

against rechallenge (Fig. 3b-d). As with efforts to understand the immunological 

mechanisms behind the intrinsic immune activity of biomaterials, significant effort is also 

being exerted to understand how biomaterials enhance the response to TLRas. For example, 

manipulating the size and hydrophobicity of silica NPs changes the amount of IL-1β – an 

important innate cytokine – generated in response to TLR3a and TLR4a, ultimately altering 

the downstream cytokines that are generated [38]. This role of NP size in modulating the 

response to TLRas has also been observed with other biomaterials, and also specifically in 
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macrophages [39]. Thus using biomaterials as carriers could also help reduce side effects 

through dose sparing during administration of TLRas with potential toxicity.

Coupling TLR-driven polarization of macrophages with other treatments 

could create new combination therapies

While breakthrough treatments such as adoptive cell therapy have provided remarkable gains 

for a subset of patients, these treatments are not yet widely applicable because of the 

heterogeneity of cancer across tissue type and across patients. This challenge means most 

patients will require combination therapies. In the last few years, several combination 

strategies have explored polarization of macrophage function by directing TLR signaling. As 

one example, antibody-mediated inhibition of the programmed cell death PD-1 receptor – a 

checkpoint that tumors exploit to suppress immune cells – has developed as an important 

component of human combination therapies [40]. This checkpoint blockade strategy was 

recently coupled with intra-tumoral injection of TLR7a and TLR9a in several mouse cancer 

models [41]. This treatment enhanced efficacy compared to PD-1 checkpoint inhibitors 

alone or to TLRas alone. Importantly, the therapeutic effects were correlated with activation 

of TAMs and an increase in the ratio of M1-like:M2-like function. Along similar lines, an 

important macrophage checkpoint – signal regulatory protein-α (SIRPα) – is a myeloid-

specific immune checkpoint that tumor cells engage on macrophages to stop phagocytosis. 

Several recent studies have demonstrated that blocking SIRPα polarizes macrophages to 

M1-like functions and promotes anti-tumor activity [42–44]. Coupling this idea with TLRas 

might create combination therapies that specifically leverage distinct functions of 

macrophages to combat cancer, including increased phagocytic activity and increased 

activation.

Nanoparticles are also being explored to deliver TLRas as part of combination therapies. For 

example, the CDNPs-R848 discussed earlier have been combined with anti-PD-1 therapy to 

improve the success of immunotherapy in mouse models [11]••. Of note, this combination 

therapy improved outcomes in a tumor model that was resistant to anti-PD-1 therapy alone. 

Another developing area is coupling TLRas with therapeutic cytokines. A combinatorial in 
vitro study recently revealed complementary roles for polarization of macrophages using co-

administration of TLRas and IFN-γ, for example [45]. Many studies confirm an important 

role for oxidative processes in inflammation, and one recent study linked oxidant-induced 

macrophage activation to activation of TLR signaling [46]. Building on these ideas, other 

recent studies leveraged engineered polymer particles loaded with TLRas (polyI:C) and zinc 

protoporphyrin IX (ZnPP), a molecule that increases reactive oxygen species (ROS) (Fig. 

4a) [47]•. This combination therapy repolarized TAMs to M1-like macrophages in mice, 

leading to reduced tumor burden in the B16 melanoma tumor-bearing mice model that was 

not achieved with monotherapies (Fig. 4b,4c). The examples in this section underscore the 

potential of combination therapies integrating TLR signaling in macrophages, as well as the 

synergies that can be achieved by integrating nanotechnologies into these approaches.
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Conclusions

Compared to T cells underpinning many existing immunotherapies, macrophages comprise a 

much larger fraction of the immune infiltrate in the tumor microenvironment; this distinction 

provides new and unique opportunities for exploiting macrophages in immunotherapy. 

While a gradient of functions and subclasses exist, polarizing TAMs to classically-activated 

(i.e. M1-like functions) has generally been the focus of cancer therapies, and the discussion 

above illustrates the multi-dimensional role that TLRas could play in this polarization. 

Promoting these therapeutic macrophages also reduces the frequency of TAMs with tumor-

protective or immune-suppressive properties. Unsurprisingly, then, strategies to promote 

tumorcidal macrophages by directing TLR signaling are emerging in several strategies. 

These include delivery of TLRas as both monotherapies and combination therapies. 

Biomaterials also offer significant potential in this arena, both as carriers of TLRas and 

because of the intrinsic features these materials exhibit to directly trigger TLR signaling. 

Despite the potential of TLR signaling as a lever to enhance macrophage function in cancer 

therapy, there are some important considerations arising. First, TLRs are expressed on a 

broad range of cells, not just macrophages. Any translatable strategy much assess this risk, 

or perhaps mitigate it with targeting strategies (e.g., using biomaterials). Second, many 

TLRs play a dual role in balancing pro-inflammatory and regulatory immune functions 

[48,49]. As a result, the durability of any induced macrophage polarization must be tunable 

to ensure long-term disruption of regulatory/tolerogenic pathways are avoided. Dose sparing 

achieved through biomaterials or synergies of combination therapies might help address this 

concern [50]. Last, although biomaterials offer exciting potential, the link between the 

material properties and activation of specific pathways remains unclear. Elucidating these 

connections may enable more rational design of materials that directly polarize macrophages 

toward specific functions. Despite the points just outlined, the progress in controlling 

macrophage function through TLR signaling in the last few years has been significant, 

foreshadowing therapies that leverage multiple dimensions of the immune system and 

interdisciplinary technologies to maximize therapeutic response.
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Highlights

• Macrophages are unique targets because they naturally infiltrate tumors

• Macrophages can exhibit tumor-supportive or anti-tumor phenotypes

• TLR signaling plays a significant role in polarizing macrophage phenotype

• Biomaterials polarize macrophages with intrinsic properties and by delivery 

of TLRa

• Combining TLR-based therapies with existing approaches creates synergies
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Figure 1. 
Approaches to manipulate toll-like receptor (TLR) signaling in macrophages to enhance 

cancer immunotherapy. Delivery of free TLR agonists (left) or TLR agonists loaded in 

biomaterials (center) can polarize macrophages away from tumor-supportive phenotypes and 

toward antitumor phenotypes. Some biomaterials also provide a second route to bias TLR 

signaling through intrinsic material properties that directly trigger TLR signaling (center). 

Combining existing therapies – such as check-point blockade or adoptive T cell therapy – 

with TLR-mediated polarization of macrophages (right) can create synergistic therapeutic 

outcomes.
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Figure 2. 
SWCNT (single walled carbon nanotubes) as materials to trigger TLR signaling in 

macrophages. (a) Proposed mechanism by which macrophages may sense nanomaterials 

such as SWCNT. The mechanism was generated based on aggregation of cellular data, 

trascriptomics studies, and computational models. (b) SWCNT activate TLR2 and TLR4 

independently of the presence of serum in the culture medium. Reporter HEK 293 cells co-

transfected with human TLR2 (HEK-Blue™ hTLR2) or TLR4 (HEK-Blue™ hTLR4 cells) 

and an NF-κB/AP-1-secreted embryonic alkaline phosphatase (SEAP) reporter gene were 

exposed to SWCNT or a positive control (LPS). The cells that only express the SEAP 

reporter gene without TLR2/4 genes were included as a negative control (null). The relative 

TLR signaling is proportional to the % increase in SEAP activation. Adapted with 

permission from [28].
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Figure 3. 
Delivery of TLR7/8a (R848) in cyclodextrin NPs (CDNPs) enhances tumor therapy in the 

MC38 colon adenocarcinoma mouse model. (a) Scheme to assemble R848 in CDNPs 

(CDNP-R848). Treatment of mice with CDNP-R848 (b) reduces tumor area, (c) improves 

survival, and (d) reduces overall tumor burden relative to free R848. Adapted with 

permission from [11].
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Figure 4. 
Combination therapy using NPs to deliver TLRas and ZnPP in the B16 melanoma tumor-

bearing mice model. (a) Scheme for assembling particles integrating polyI:C (PIC) and 

ZnPP. Treatment with NPs integrating both ZnPP and polyIC (ZnPP PM/PIC) drives the 

greatest reduction in tumor burden (b) visually and (c) quantitatively. These effects are 

unmatched by monotherapies of PIC alone, or ZnPP without PIC (ZnPP PM). Adapted with 

permission from [47].
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