Skip to main content
. 2019 Apr 18;10(3):341–346. doi: 10.1016/j.shaw.2019.04.002

Table 4.

A hierarchical regression showing predictors of job stress

Step 1 B Std error β p R R2 ΔR2
(Constant) 42.738 3.163 .000 .280 .078 .078
Age 1.609 .962 .170 .096
WE .976 .725 .132 .179
WH -2.229 1.171 -.133 .058
Step 2
(Constant) 41.733 2.994 .000 .426 .182 .104
Age 1.636 .909 .172 .073
WE .437 .692 .059 .529
WH -1.244 1.122 -.074 .269
WL 1.102 .213 .333 .000
Step 3
(Constant) 42.587 3.189 .000 .429 .184 .002
Age 1.626 .910 .171 .075
WE .380 .697 .051 .586
WH -1.497 1.169 -.089 .202
WL 1.117 .214 .338 .000
CWS .076 .098 .052 .434
Step 4
(Constant) 44.768 3.075 .000 .512 .262 .078
Age 1.009 .877 .106 .251
WE .932 .675 .126 .168
WH -2.318 1.128 -.138 .041
WL 1.301 .208 .393 .000
CWS .037 .094 .025 .693
WL*CWS .129 .028 .301 .000

a. Dependent variable: Job stress.

B, unstandardized beta; std. Error, standard error; β, standardized beta; R2, R square; ΔR2, R square change; p, significance level; WE, work experience; WH, work hour; WL, workload; CWS, coworker support.