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Pericytes Act as Key Players in Spinal Cord
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Spinal cord injury results in locomotor impairment attributable to the formation of an inhibitory
fibrous scar, which prevents axonal regeneration after trauma. The scarcity of knowledge about the
molecular and cellular mechanisms involved in scar formation after spinal cord lesion impede the
design of effective therapies. Recent studies, by using state-of-the-art technologies, including ge-
netic tracking and blockage of pericytes in combination with optogenetics, reveal that pericyte
blockage facilitates axonal regeneration and neuronal integration into the local neural circuitry.
Strikingly, a pericyte subset is essential during scarring after spinal cord injury, and its arrest results
in motor performance improvement. The arising knowledge from current research will contribute to
novel approaches to develop therapies for spinal cord injury. We review novel advances in our un-
derstanding of pericyte biology in the spinal cord. (Am J Pathol 2019, 189: 1327e1337; https://
doi.org/10.1016/j.ajpath.2019.03.008)
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Spinal cord injury is a serious devastating clinical condi-
tion, resulting in debilitating paralysis below the damaged
level, with serious effects on the patient’s life quality.1

There is a significant regional variation in the incidence
of spinal cord injury; the worldwide prevalence of spinal
cord lesions is between 10 and 100 individuals per
million.2 It is caused mainly by traumatic events,
including gunshots, falls, sudden hyperextension injuries,
disc prolapses, car crashes, or diving injuries, causing
dislocation or rupture of the spinal column and leading to
damage in the spinal cord.3 The spinal cord injury is
characterized by catastrophic neuronal loss and axonal
destruction, resulting in motor and sensory deficits.4 The
degree of neurologic loss and subsequent debilitating
dysfunction depend on the severity, level, and extent of
lesion and whether the cord transection is partial or
complete.5 Depending on the level of the spinal cord
lesion, it may lead to severe complications, such as
autonomic hyperreflexia, gastrointestinal and respiratory
issues, hepatocellular injury, bladder dysfunction, urinary
tract infections, sexual problems, and others. Current
stigative Pathology. Published by Elsevier Inc
treatments for spinal cord injury are insufficient, and
currently no efficient therapy is available for this condition
because of its complexity.6 Consequently, it is urgent to
clearly understand the detailed cellular and molecular
. All rights reserved.
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mechanisms underlying spinal cord injury biology for the
development of effective treatments.
Spinal Cord Injury Microenvironment

After the initial spinal cord mechanical trauma, the neuronal
axis gets destroyed. This destruction is accompanied with
bloodespinal cord barrier disruption and activation of glial
and neuronal cells that secrete a myriad of by-products,
including matrix metalloproteinases, free oxygen radicals,
chemokines, and cytokines.7 The spinal cord tissue, pri-
marily saved from the mechanical lesion, becomes vulner-
able to disturbance by the effect of these toxic molecules,
which drive damage in the regions that surround the original
lesion site.8 Subsequently, this damage promotes the intru-
sion of several cell types, which via complex multicellular
interactions may influence spinal cord injury outcomes.9

Various immune cells infiltrate into the injury site.10 Resi-
dent astrocytes surround the damaged area.11 Schwann cells
migrate via the dorsal root, enter into the lesion epicenter,
and supply the injury site milieu with growth factors.12 Fi-
broblasts and meningeal cells also are recruited to the lesion
site.13 Understanding how these cells interact may allow us
to gain control or even induce reversion of the pathologic
progression of spinal cord injury consequences.

Functional deficiency appears as a result of disconnection
in the spinal tract in patients with spinal cord injury. This
perseverates because of the disadvantageous microenviron-
ment of the injured spinal cord for neuronal regeneration,
causing inhibitory factors in the scar that develop after
trauma.14 As a result, spinal cord injury often results in
permanent autonomic, motor, and sensory functional loss.14

Our current knowledge about the mechanisms involved in
the scar tissue formation remains limited. Understanding
what cells originate the fibrotic scar in the spinal cord is of
utmost importance because gaining control of these cells
may allow us to arrest or even induce reversion of scar
formation after spinal cord damage. This has been the focus
of recent research with the aim to accelerate the design of
novel therapeutic targets for spinal cord injury recovery.

The scarring after spinal cord injury is classically referred
as glial scar formation; nevertheless, it is not exclusively
composed of glial cells.15,16 Several nonneural cells,
including meningeal cells,17 macrophages,18 and fibro-
blasts,19 may participate in the generation of extracellular
matrix proteins and in the sealing after spinal cord injury.
Furthermore, during the cicatricial process, astrocytes,
which form at the end of reactive astrogliosis, are widely
considered to be the main cause of failure of new axonal
growth and an unsatisfactory functional outcome.16 Reac-
tive astrogliosis has long been considered unidirectional and
irreversible in the pathology of spinal cord injury. However,
the neural plasticity of reactive astrogliosis can be envi-
ronment dependent, highlighting the therapeutic potential of
regulating this astrocytic alteration through environmental
1328
intervention.20e22 Interestingly, scar formation immediately
after injury is essential to tissue stabilization, and without
this process patients have poorer outcomes.15,23 Although
some works have found that astrocyte scar formation may
be proregenerative for axons,15,24 robust evidence points to
the scar as a biochemical and mechanical obstacle for
neuronal regeneration.25 Deciphering how its formation
occurs will lead to improvement in axonal outgrowth by
blocking its generation and, consequently, to better out-
comes for the patients.
Multiple factors have been identified as inhibitors of the

regenerative process after spinal cord injury, making them
important targets for recovery induction. Chondrocyte sul-
fate proteoglycans produced by glial scar induce axonal
death. Reduction of chondrocyte sulfate proteoglycans by
administering the enzyme chondroitinase ABC effectively
degrades chondrocyte sulfate proteoglycans, including
neural/glial antigen 2 (expressed in pericytes), improving
sensorimotor function in behavioral and electrophysiologic
assessments.26 NOGO and other receptors for RhoA-ROCK
pathways promote inhibition of neuronal growth in spinal
cord lesions. Blockade of NOGO-A myelin protein function
with NOGO receptor antagonists27 or antieNOGO-A anti-
bodies28 and inhibition of Rho-ROCK29 increase neurite
outgrowth and axonal regeneration in animal studies. In
addition, a transgenic mouse model that expresses human
IL-37 exhibits increased myelin, neuronal preservation, and
protection against locomotor deficits, indicating that this IL
could be protective in spinal cord lesions.30 The exact
endogenous sources of these factors remain poorly explored.
Elucidating the cellular origins of these molecules will allow
the development of more targeted therapies, avoiding
adverse effects.
After spinal cord injury, secondary complex events take

place.20 These events include a sequence of molecular and
cellular modifications that increase the severity of the
lesion.21 Among these modifications are changes in blood
flow and ischemia; edema; accumulation of intracellular
calcium and potassium in the extracellular space; phos-
pholipid hydrolysis, formation of free radicals; release of
excitatory amino acids, such as glutamate and aspartate;
migration of inflammatory cells; microglia activation; pro-
duction of inhibitory factors; and others.21 Neurons that
undergo axotomy and have the cell body located distant
from the lesion site may also atrophy or even die.24

Spinal cord pericytes have been defined based on their
perivascular anatomical location covered by the vascular
basal lamina.31 Classically, the pericytes in the blood vessel
wall are in close contact with endothelial cells.32 Pericytes
have long projections that surround the vessel along the
length. Thus, pericytes may interact with other vascular
components, both exerting physical contact and paracrine
signaling.32 Their ratio to endothelial cells is approximately
1:1,33 indicating their tremendous relevance in the central
nervous system physiopathology. In addition to blood vessel
stabilization, pericytes contribute crucially to vascular
ajp.amjpathol.org - The American Journal of Pathology

http://ajp.amjpathol.org


Pericytes in the Spinal Cord
maturation, development, remodeling, permeability, and
blood flow control.34e36 Pericytes are also essential in the
maintenance of functional integrity of the blood-spinal cord
barrier.37e42 The ability of pericytes to work as stem cells,43

generating other cell types, has been described in the past 10
years.

Previous studies have found that a pericyte subpopulation
also originates scar-producing cells after spinal cord
injury.44,45 After spinal cord lesion, pericytes detach from the
blood vessels, proliferate, and migrate to the center of the
fibrous scar that is being formed, contributing to the lesion
sealing.44e47 The authors of these studies used amousemodel
of spinal cord injury combined with genetic tracking and
depletion of a pericyte subset to study the role of pericytes
during scarring. They generated a mouse model (Glast-
CreER/Rosa26-YFP) in which a pericyte subpopulation and
all their progeny are genetically labeled with fluorescence
based on their expression of the glutamate aspartate trans-
porter (Glast). Glast-expressing pericytes contribute signifi-
cantly to the fibrotic spinal cord scar formation after injury.
On the basis of this knowledge, the group created
another mouse model (Glast-CreER/KRas floxed, named
Figure 1 The role of pericytes in scarring in the injured spinal cord. Pericytes a
now suggests a new function for pericytes after spinal cord injury. Blockage of a p
scar tissue formation, promotes axonal regeneration, and improves functional rec
tract axons were regenerated in animals with pericyte-derived scarring attenuatio
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Glast-Rasless) in which the Glast-expressing pericytes lack
KRas protein, essential for proliferation. Therefore, in these
mice, pericyte proliferation is stopped after tamoxifen
administration. After spinal cord dorsal hemisection, fibrotic
scarring in Glast-Rasless mice is reduced. Moreover, Dias
et al44 and Viana Magno et al48 examined the effect of
blockage of Glast-expressing pericytes on other cell pop-
ulations and found that, in Glast-Rasless mice, inflammation
and astrogliosis also decreased. Strikingly, by using opto-
genetic analysis,44,48 they demonstrated that reduction of
scarring in Glast-Rasless animals facilitates corticospinal
tract axon regeneration and integration into the local neural
circuitry (Figure 1). Importantly, axonal regeneration in the
spinal cord resulted in motor performance improvement in
Glast-Rasless mice. Notably, blocking pericyte scar forma-
tion after spinal cord injury resulted in modest increases in
axon regeneration comparable to the effects of multiple other
experimental treatments. Although this elegant study brings a
novel concept to the field, the problem of how to efficiently
regenerate the spinal cord after lesion remains unsolved. This
work provides a novel cellular target to avoid scarring after
spinal cord injury. Interestingly, another group demonstrated
re present surrounding the spinal cord vasculature. The study by Dias et al44

ericyte subset in the injured spinal cord microenvironment reduces fibrotic
overy. The authors used optogenetic stimulation to show that corticospinal
n.
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that pericytes are also needed for the revascularization after
spinal cord injury of the damaged area.49 We discuss novel
developments in pericyte biology in the spinal cord.
Heterogeneity of Pericytes in the Spinal Cord

Pericytes are not homogeneous in their morphology, dis-
tribution, molecular markers, origin, and function.31 A
subpopulation of pericytes (Glastþ) participates in the
scarring after spinal cord injury.44 This subset of pericytes
corresponds to approximately 10% of spinal cord peri-
cytes.44 It remains unknown whether Glast-expressing per-
icytes differ from other spinal cord pericytes in their
morphology, distribution, and origin. In the bone marrow,
two distinct pericyte subtypes are present based on their
attachment to arterioles or sinusoids.50 Future studies should
explore whether Glast-expressing pericytes are associated
with specific blood vessel type in the spinal cord. Pericytes
from different organs differ in their embryonic origin.51 In
most tissues, pericytes derive from the mesoderm.51 Lineage
tracing experiments demonstrate that pericytes in the
thymus and cephalic region derive from the neuro-
ectoderm,52 whereas in the heart, lung, liver, and gut, they
derive from the mesothelium.51,53 Interestingly, recent
studies revealed that not all pericytes from the same organ
have the same ancestry.31 For instance, in the embryonic
skin, both pericytes from ectodermal and hematopoietic
origin are found.54 Whether the spinal cord stores pericytes
with distinct embryonic origins remains unknown. More
importantly, whether Glast-expressing pericytes derive from
a different source than the other spinal cord pericytes is still
an open question.

The most used molecular markers that have been identified
to label the pericyte population as a whole are nerve/glial
antigen 2 (NG2) proteoglycan55 and platelet-derived growth
factor receptor b (PDGFRb).56 Unfortunately, however, there
is no single marker that can be used to unequivocally label
exclusively the whole population of pericytes. Pericyte het-
erogeneity is also observed based on their marker expression
profiles. ATP-sensitive potassium inwardly rectifying chan-
nel Kir6.1 is highly expressed in cerebral pericytes but
undetectable in pericytes from other tissues.57 Leptin
receptoreexpressing pericytes are distinct from the ones that
do not express this receptor.53,58,59 Pericytes also vary on
their expression of a-smooth muscle actin protein and
aminopeptidase N (CD13).60 Several other markers have
been recently found to label pericyte subpopulations, such as
Myh11, regulator of G protein signaling 5, desmin, vimentin,
ATP-binding cassette, subfamily C, member 9, CD133,
alkaline phosphatase, endosialin, Tbx18, CD146, vitronectin,
interferon-induced transmembrane protein 1, and
others.61e66 Nevertheless, it remains unknown whether spi-
nal cord pericytes express those markers and what level of
overlap is betweenGlast-expressing the pericytes, and any of
these pericyte subpopulations. Two pericyte subpopulations
1330
were also described in the spinal cord based on NG2-DsRed
and Nestin-GFP expression. Type 1 (NG2-DsRedþ/Nestin-
GFP�) and type 2 (NG2-DsRedþ/Nestin-GFPþ) subsets were
reported surrounding blood vessels in the spinal cord of
transgenic NG2-DsRed/Nestin-GFP mice.47 Importantly,
only type 1 pericytes are recruited to the center of the fibrous
scar formed after spinal cord injury, suggesting that these
correspond to Glast-expressing pericytes.47 Future studies
should reveal a specific membrane marker to allow the
isolation of cells equivalent to Glast-expressing pericytes
from the human spinal cord.
Notably, although pericytes are defined based on their

anatomical position and surrounding blood vessels, not all
cells in this perivascular location are necessarily pericytes.67

In addition to pericytes, other cells have been described in
this location around the vascular bed, including fibro-
blasts,19 macrophages,68,69 microglia,70 adventitial cells,71

and vascular smooth muscle cells.72 Altogether this brings
the possibility that other Glast-expressing, nonpericytic cells
may be involved in spinal cord scarring described by Dias
et al.44 Therefore, it will be interesting to verify whether all
Glast-expressing cells are located beneath the basal lamina
that covers endothelial cells, which is a pericytic charac-
teristic. The discovery of molecular markers specific to the
other pericyte subpopulations possibly present in the spinal
cord will help to reveal in the future their roles in the
physiology and pathology of this organ.
The Role of Pericytes after Spinal Cord Injury

Blocking Glast-expressing pericytes after spinal cord injury
improves axonal regeneration, and motor function.44 None-
theless, the exact mechanistic reason why this happens re-
mains unknown. The authors suggest that this is because of
the reduction in lesion scarring, dependent of pericytes.
Interestingly, another recent study suggests that blockage of
pericytes after spinal cord injury may improve motor func-
tions in the animal because of a decrease in local hypoxia.73 Li
et al73 used a rat model of spinal cord lesion combined with
in vivo microscopy to show that pericytes regulate the capil-
lary tone and blood flow in the spinal cord below the site of
lesion after injury. This occurs as a consequence of aromatic
L-amino acid decarboxylase enzyme overexpression within
pericytes, which forms trace amines (tryptamine and tyra-
mine), which in turn act via receptors on the pericytes
themselves. These trace amines activate pericytes to locally
constrict the vasculature, reducing blood flow and leading to
spinal cord ischemia. Importantly, blocking these mecha-
nisms in pericytes after spinal cord lesion decreases hypoxia,
and ameliorates motor function and locomotion of injured
animals. Nevertheless, it remains unknown whether the
vasoconstriction that occurs after spinal cord injury is caused
by a subgroup of pericytes and whether these include Glast-
expressing pericytes. Li et al73 consider spinal cord pericytes
as a homogeneous cell population in their study. Although
ajp.amjpathol.org - The American Journal of Pathology
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most of spinal cord pericytes express the well-established
markers NG2, PDGFRb, and CD13,45 the expression of
multiple other molecular markers is heterogeneous; and
different pericyte subpopulations were characterized in the
spinal cord. For instance, the presence of two pericyte sub-
types [type 1 (Nestin-GFP�/NG2-DsRedþ) and type 2 (Nes-
tin-GFPþ/NG2-DsRedþ)] was reported surrounding blood
vessels in the spinal cord of bigenic Nestin-GFP/NG2-DsRed
mice.47 Li et al73 usedNG2 andCD31 to identify the pericytes
in the spinal cord, what does not distinguish pericyte subsets.
Thus, whether only a fraction of pericytes promotes blood
vessel constriction after spinal cord injury remains unknown.
Future studies should explore whether this vasoconstriction
inhibition also happens in Glast-Rasless mice. This explora-
tion will reveal whether Glast-expressing pericytes are also
essential for the hypoxia after spinal cord trauma and whether
the improvement of motor functions in Glast-Raslessmice is
exclusively because of blockage in fibrous scar production.

Spinal cord lesion also leads to neuropathic pain, which
develops in approximately four-fifths of the injured patients,
characterized by spontaneous pain, allodynia, and hyper-
algesia.74 Despite advances in our understanding of the
molecular and cellular changes involved in the neuropathic
pain after spinal cord injury, the knowledge on the role of
pericytes in this condition remains limited. Importantly,
injury-induced neuropathic pain is accompanied by a peri-
cyte loss.75 How and whether Glast-expressing pericytes are
involved in the neuropathic pain remains to be discovered.

Pericytes have been suggested to also play important
roles during inflammation.76 For instance, pericytes regulate
Figure 2 Pericytes contribute to the scar formation that inhibits neuronal re
formation, facilitating serotonergic and corticospinal axonal regeneration and im
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lymphocyte activation77; overexpress essential adhesion
molecules, such as vascular cell adhesion molecule 1 and
intercellular adhesion molecule 1, involved in the control of
immune cell trafficking across the vasculature78; secrete a
big repertoire of chemokines50; attract innate leukocytes that
exit through the sprouting vessels79; contribute to the
clearance of toxic cellular byproducts; and have direct
phagocytic activity.80 Because neuroinflammation is impli-
cated in the spinal cord lesioneinduced neuropathic pain as
an underlying mechanism,81 the better understanding of the
crosstalk between pericytes and immune cell populations
involved in the neuropathic pain will foster the development
of novel treatments to maintain spinal cord homeostasis
after trauma.

Spinal cord regeneration after injury needs either neurons
to survive in the damaged cord and initiate new axonal
growth, establishing new synaptic contacts, or neuro-
genesis.82,83 The main obstacles for spinal cord repair are
the diminished capacity to regrow the adult neurons and the
presence of the fibrous scar at the lesion.84 An ideal therapy
for spinal cord lesion would be to eliminate the two obsta-
cles. Dias et al44 describe that Glast-expressing pericytes
contribute to the scar formation (Figure 2). Thus, in
blocking those we are removing one of the obstacles.
Importantly, pericytes have the capacity to behave as pro-
genitors,62 forming neural cells in vitro.61,85,86 Whether
pericytes have this capacity also in vivo after spinal cord
injury remains completely unknown and should be explored
in future studies. Importantly, neurogenesis in the adult
central nervous system produce interneurons that improve
generation. The reduction of pericytic activation attenuates fibrotic tissue
proving sensorimotor functionality.
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local connectivity.43 Whether neurogenesis can replace long
mature neurons to restore function after spinal cord injury
remains unanswered. In addition, whether pericytes could
be used as a source for local interneurons to try to reconnect
unaffected neurons should be explored in future works.
Interestingly, the neurogenic pericytes in vitro are the ones
that do not participate in the scar formation after spinal cord
injury,47,61 whereas the ones that form fibrous
tissueeproducing cells do not form neural cells in vitro.

After spinal cord injury, severe demyelination, destruction
of myelin-supporting cells, also happens, disrupting signal
propagation.87 Myelin formation is delayed during remyeli-
nation in the central nervous system of pericytes-deficient
mice,88 suggesting that pericytes are important for remyeli-
nation. Future studies should examine the association be-
tween the pericyte population important for remyelination
andGlast-expressing pericytes. If by blocking scar formation
remyelination is blocked, a selective way to block scar for-
mation without affecting remyelination after spinal cord
injury needs to be identified.

The roles of pericyte subpopulations in the spinal cord
microenvironment still remain largely unexplored. Recently,
it was demonstrated that pericytes interact actively with
distinct immune cells and display multiple immune proper-
ties.76 For instance, pericytes secrete a big repertoire of che-
mokines essential for immune cell functions50,89 and express
adhesion molecules involved in the control of immune cell
trafficking via the vascular bed, such as vascular cell adhesion
molecule 1and intercellular adhesion molecule 1.78 Overall,
pericyte functions are complex, and our knowledge about the
crosstalk between pericytes and immune cells in the spinal
cord microenvironment are still limited. Thus, the cross-talk
between distinct immune cell subpopulations present in the
spinal cord after injury with the different pericytes subsets
remains to be examined. Further studies are required to
evaluate the importance of pericytes’ interactions with im-
mune cells during spinal cord repair.
Cross-Talk between Astrocytes and Pericytes
after Spinal Cord Injury

Spinal cord lesion triggers the activation and recruitment of
various cell types, including immune cells and astrocytes.
The astrocytic component in the scar has been the subject of
intensive research, and only recently the focus changed to
pericytes. In the first weeks after spinal cord injury, astro-
cytes proliferate, migrate, intertwine their processes, and
assemble around the edges of the damaged region.90 The
association between astrocytes and pericytes during spinal
cord healing remains poorly understood. Importantly, the
exact contribution of astrocytes and pericytes to the scar
remains unknown. The use of a Glast promoterebased
tracking mouse model to label and trace pericytes leaves
several open questions because Glast is also expressed in
other cellular populations, especially in astrocytes.91 To
1332
assess unequivocally the contribution of pericytes versus
astrocytes to the scar, future studies should perform tracking
and fate mapping experiments using novel genetic mouse
models specific to pericytes or astrocytes.

Pericytes as the Origin of Fibrous Tissue

Deposition of extracellular matrix proteins after injury is
beneficial for repair in the short term.92 Nevertheless, during a
prolonged period, fibrous tissue formation, characterized by
excessive connective tissue, becomes detrimental, leading to
loss of tissue architecture and organ failure.93 Fibrous tissue
deposition can be triggered in response to various insults,
such as injury, chronic inflammation, and autoimmune re-
actions. It occurs in a wide range of tissues, becoming irre-
versible over time and leading to organ failure.47,94 Although
a decrease in fibrous tissue formation may probably protect
organs, therapies available are still very limited.
Comprehending which cells generate the fibrous tissue

may allow us to gain control or even reverse fibrous tissue
deposition in pathologic conditions, and recent studies in
several organs will accelerate the design of targeted anti-
fibrotic therapies. So far, multiple cell populations have
been implicated as the origin of fibrous tissueeproducing
cells, including epithelial cells,95 endothelial cells,96 circu-
lating progenitor cells,97 and resident fibroblasts98

(Figure 3). During the last few years, a number of studies
have improved our knowledge of the participation of peri-
cytes in the fibrotic tissue formation in several organs.99e101

Dias et al44 reveal the participation of Glast-expressing
pericytes in fibrous tissue deposition after spinal cord injury.
Future studies should examine whether Glast-expressing
pericytes are present in other organs and whether they are
the main source for fibrous tissueeproducing cells.
Recently, Gli1-expressing perivascular cells have been
implicated as essential for injury-induced fibrosis in several
organs.102 It remains unknown what is the overlap between
Glast-expressing and Gli1-expressing pericytes. Are Gli1-
expressing pericytes present in the spinal cord? If yes, what
is their role?

Clinical Relevance

Dias et al44 report that complete blockage of fibrotic scar
formation by high recombination efficiency in Glast-Rasless
mice leads to failure in the axonal regeneration, suggesting
that pericytes should not be completely arrested. This
finding may be attributable to the necessity of the lesion
closure for nerve repair. Future studies should reveal the
mechanistic details of this phenomenon. In addition, when
translating their findings into humans, this should be taken
into consideration. Therefore, approaches to target Glast-
expressing pericytes without interception in the injury site
closing should be developed. Potential molecular targets
expressed by pericytes have been proposed, for instance,
ajp.amjpathol.org - The American Journal of Pathology
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Figure 3 Multiple cell populations have been implicated as the origin of fibrous tissueeproducing cells. Deposition of extracellular matrix proteins occurs,
after injury, during a prolonged period. The fibrous tissue formation, characterized by excessive connective tissue, becomes detrimental, leading to the loss of
tissue architecture and organ failure. Multiple cell populations have been implicated as the origin of fibrous tissueeproducing cells, including pericytes,
endothelial cells, epithelial cells, and resident fibroblasts.

Pericytes in the Spinal Cord
PDGFRb. Receptor tyrosine kinase inhibitors that target
PDGFRb, up-regulated in pericytes, such as sunitinib and
imatinib, have been tested,103 and clinical trials using drugs
that target pericytes are under way for multiple conditions,
such as cancer treatment.104 Because the experimental data
do not always predict success in humans, gene expression
analysis of human pericytes from different stages after spi-
nal cord injury will reveal new potential molecular targets.

Interestingly, moderate inhibition of pericyte generation
provided the best results in spinal cord injury recovery.
Importantly, after complete inhibition, the animals had
worse outcomes.44 Previous studies44,45 used two groups of
mice, vehicle treated and tamoxifen treated, to induce
recombination of the labeled subset of Glast-
positive pericytes. Nevertheless, the tamoxifen-treated
group was split into two groups: one in which the animals
exhibited high recombination efficiency and failure to seal
off the injury site, defined as Tam-def animals, and the other
in which animals had intermediate levels of recombination
and the lesion site was able to close, defined as Tam ani-
mals. By stratifying the experimental animals into medium-
and high-recombination subgroups, the study outlined the
beneficial effects in the medium recombination group. It is
only in the Tam animal group that corticospinal tract axonal
regeneration is observed. Strikingly, the total inhibition of
pericytes did not improve the recovery after lesion. This
reveals that pericyte participation in spinal cord healing is
The American Journal of Pathology - ajp.amjpathol.org
more complex than previously thought. It also opens the
possibility that subsets within the population of Glast-
positive pericytes may exist. Future studies are required to
confirm these findings and to translate this into therapeutic
use.

The technique to induce spinal cord injury may influence
and trigger different biological processes in the animals.
There is appreciable diversity in the approaches used to
create the dorsal column lesion, such as contusion, crush,
and transection. Moreover, there is variability within each
method, depending on the depth of the lesion, anatomical
level, type of instruments used, force applied, species, and
age of animals. Therefore, the severity of the functional
defect will depend on the exact lesion technique and the
extent of the final lesion. Dias et al44 performed the hemi-
section at the midthoracic level at the dorsal funiculus to a
depth of 0.8 mm. Although specific hemisection of the
dorsal column is rarely seen in human spinal cord injury,
these lesions enable us to explore the mechanistic details
regarding the remodeling, sprouting, and die back at the
axonal level.105 Spinal cord studies using rodent models,
although trying to recreate features of human spinal cord
lesion as closely as possible, may not be translatable to
humans.106 No one model can encompass all aspects of the
spinal cord trauma. Therefore, the precise knowledge of
human spinal cord injury biology will come from the
combination of distinct models. Humans are large compared
1333
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with mice, with a spinal cord that is longer by more than an
order of magnitude. Consequently, clinical improvement,
including motor recovery, which needs long distance axonal
regeneration for humans, cannot be directly analyzed in the
mouse models. Accordingly, experimental findings from
rodent models that report improvement in locomotion and
axonal regrowth may misinform us because the volumes of
gray matter that require reinnervation are much larger in
humans than in mice. Furthermore, human recovery after
spinal cord lesion is slower than in mice. It will be important
to recognize whether cells equivalent to Glast-expressing
pericytes are also present in the human spinal cord and
whether their role is the same as in mice after spinal cord
injury. The degree of pericyte-dependent scarring in patients
with spinal cord lesion also might vary, depending on the
severity and level of the injury. It will be interesting to
explore whether pericytes play a distinct role in paraplegics
versus tetraplegics.
Conclusion

Recent studies reveal Glast-expressing pericytes as an
important novel target in the spinal cord microenvironment
after trauma. However, our understanding of pericytes
biology in the spinal cord microenvironment still remains
limited. The exact role of noneGlast-expressing pericytes
after spinal cord injury is yet completely unknown. Future
studies should shed light on the complexity and interactions
between pericytes and other cellular components of the
spinal cord microenvironment after injury. A great challenge
for the future will be to translate experimental data into
humans. Improving the availability of human spinal cord
samples will be essential to reach this goal.
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