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Abstract

INTRODUCTION: Immunotherapy targeting the programmed cell death protein–1 (PD-1) axis 

elicits durable antitumor responses in multiple cancer types. However, clinical responses vary, and 

biomarkers predictive of response may help to identify patients who will derive the greatest 

therapeutic benefit. Clinically validated biomarkers predictive of response to the anti–PD-1 

monoclonal antibody pembrolizumab include PD-1 ligand 1 (PD-L1) expression in specific 
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cancers and high microsatellite instability (MSI-H) regardless of tumor type. Tumor mutational 

burden (TMB) and T cell–inflamed gene expression profile (GEP) are emerging predictive 

biomarkers for pembrolizumab. Both PD-L1 and GEP are inflammatory biomarkers indicative of a 

T cell–inflamed tumor microenvironment (TME), whereas TMB and MSI-H are indirect measures 

of tumor antigenicity generated by somatic tumor mutations. However, the relationship between 

these two categories of biomarkers is not well characterized.

RATIONALE: This study assessed the potential for TMB and a T cell–inflamed GEP to jointly 

predict clinical response to pembrolizumab in >300 patient samples with advanced solid tumors 

and melanoma across 22 tumor types from four KEYNOTE clinical trials. To assess the individual 

and joint clinical utility of TMB and GEP, patients were stratified in four biomarker–defined 

clinical response groups [GEP low and TMB low (GEPlo TMBlo), GEP low and TMB high (GEPlo 

TMBhi), GEPhi TMBlo, and GEPhi TMBhi] based on predefined cutoffs for TMB and GEP. These 

patient–defined biomarker groups were further used to guide transcriptome and exome analyses of 

tumors in a large molecular database [The Cancer Genome Atlas (TCGA)] (n = 6384 tumors) to 

identify targetable patterns of biology that may modulate response and resistance.

RESULTS: TMB and GEP exhibited only modest correlation and were independently predictive 

of response across the KEYNOTE clinical datasets. We found that objective response rates were 

strongest in patients with GEPhi TMBhi (37 to 57%), moderate in those with GEPhi TMBlo (12 to 

35%) and GEPlo TMBhi (11 to 42%), and reduced or absent in those with GEPlo TMBlo (0 to 9%) 

(see the figure). Additionally, longer progression–free survival times were seen in patients with 

higher levels of both TMB and GEP. Findings were comparable when TMB and PD-L1 expression 

were jointly assessed. Within TCGA database, GEP and TMB again had a low correlation, 

demonstrating the potential to jointly stratify transcriptomic and genomic features across cancer 

types. Specific gene expression patterns reflective of TME biology showed significant associations 

with TMB, GEP, or both. In particular, gene set enrichment analysis identified proliferative and 

stromal, myeloid, and vascular biology corresponding to specific TMB-defined subgroups within 

GEPhi tumors. In TMBhi tumors, indication-dependent somatic DNA alterations in key cancer 

driver genes showed a strong negative association with GEP.

CONCLUSION: This analysis shows that TMB and inflammatory biomarkers (T cell–inflamed 

GEP and PD-L1 expression) can jointly stratify human cancers into groups with different clinical 

responses to pembrolizumab monotherapy and identify patterns of underlying, targetable biology 

related to these groups. TMB and inflammatory biomarkers independently predict response and 

may capture distinct features of neoantigenicity and T cell activation, respectively. This approach 

may provide a precision medicine framework for rationally constructing and evaluating anti–

PD-1– and/or –PD-L1–based combination therapy regimens.

Abstract

Programmed cell death protein–1 (PD-1) and programmed cell death ligand–1 (PD-L1) checkpoint 

blockade immunotherapy elicits durable antitumor effects in multiple cancers, yet not all patients 

respond.We report the evaluation of >300 patient samples across 22 tumor types from four 

KEYNOTE clinical trials.Tumor mutational burden (TMB) and a Tcell–inflamed gene expression 

profile (GEP) exhibited joint predictive utility in identifying responders and nonresponders to the 

PD-1 antibody pembrolizumab.TMB and GEP were independently predictive of response and 

demonstrated low correlation, suggesting that they capture distinct features of neoantigenicity and 
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Tcell activation. Analysis of The Cancer Genome Atlas database showed TMB and GEP to have a 

low correlation, and analysis by joint stratification revealed biomarker-defined patterns of 

targetable-resistance biology.These biomarkers may have utility in clinical trial design by guiding 

rational selection of anti–PD-1 monotherapy and combination immunotherapy regimens.

Graphical Abstract

Biomarker-defined responses to pembrolizumab monotherapy identify targetable resistance 
biology.(A) Tumors have low TMB and low neoantigenicity and lack a T cell–inflamed TME. (B) 

Tumors can evade the immune response despite high TMB and high neoantigenicity. (C) Although 

T cells are present, stromal and/or endothelial factors in the TME, low TMB, and low 

neoantigenicity impede their activity. (D) Tumors have high TMB, high neoantigenicity, and a T 

cell–inflamed TME, typified by activated T cells and other immune cells with cytolytic roles.

Emerging immune-relevant biomarkers for checkpoint blockade immunotherapy response 

can be placed broadly into two categories: those related to tumor neoepitope burden, such as 

microsatellite instability (MSI) or high tumor mutational burden (TMB), and those 

indicative of a T cell–inflamed tumor microenvironment (TME). The latter include 

programmed cell death ligand–1 (PD-L1) protein expression on tumor and immune cells, 

which in many cases is up-regulated in response to local T cell–derived interferon-γ (IFN-

γ), and gene signatures of activated T cells (1–3). TMB is correlated with clinical response 

to cytotoxic T lymphocyte–associated antigen–4 blockade in advanced melanoma (4–6) and 

with anti–programmed cell death protein–1 (PD-1) and/or PD-L1 blockade in melanoma (7), 

non–small cell lung cancer (NSCLC) (8, 9), colorectal and gastric cancers (10,11), and 

urothelial cancer (12). Similarly, tumors with MSI that have high levels of both single-

nucleotide and frameshift mutations [high MSI (MSI-H)] are responsive to anti–PD-1 

therapy in colorectal cancer and other malignancies (10,11). Expression of genes related to 

immune cytolytic activity have also been shown to be associated with clinical response to 

checkpoint blockade in certain tumors (13,14). Recently, a T cell–inflamed gene expression 

profile (GEP) was shown to predict response to anti–PD-1–directed therapy (15). However, 
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the interplay between these two distinct categories of biomarkers has not been well 

characterized across cancer types with respect to their ability either to independently or 

jointly predict response to immunotherapy or to reveal underlying genomic and/or 

transcriptomic features of tumor antigenicity and TME.

We evaluated the relationship between somatic TMB and clinical response to anti–PD-1 

immunotherapy with pembrolizumab. Twenty-two cancer types were included in the 

discovery and validation cohorts and were analyzed for the independent and joint predictive 

values of TMB and T cell–inflamed GEP. Additionally, by using large molecular databases 

[e.g., The Cancer Genome Atlas (TCGA) (16)], we explored transcriptomic and genetic 

features associated with the presence or absence of either of these two markers.

Study cohorts and tumor and mutation types

The predictive values of TMB and the T cell–inflamed GEP were first assessed separately by 

rigorous stepwise testing in four cohorts of patients across the pembrolizumab clinical 

development program (one discovery, one pan-tumor validation, and two single-indication 

summary cohorts). TMB was evaluated by whole-exome sequencing (WES) of germline and 

tumor DNA, and the T cell–inflamed GEP was analyzed by targeted gene expression 

profiling of tumor RNA (with the NanoString platform) from formalin-fixed, paraffin-

embedded (FFPE) pretreatment samples. The initial discovery cohort for TMB comprised 

patients with PD-L1–positive head and neck squamous cell carcinoma (HNSCC) from a 

phase 1b clinical trial (KEYNOTE-012 B1 cohort; n = 34 patients), and the pan-tumor 

validation cohort consisted of patients with PD-L1–positive advanced solid tumors (n = 119 

patients) from two multicohort phase 1b trials across 20 cancer types [KEYNOTE-028 (17 

cohorts; n = 80 patients) and KEYNOTE-012 (A, C, and D cohorts; n = 39 patients)]. The 

HNSCC single-indication cohort (n = 107 patients) included patients in the phase 1b 

KEYNOTE-012 B1 cohort and additional patients with PD-L1-unselected HNSCC (n = 73 

patients) from the KEYNOTE-012 B2 cohort. The melanoma single-indication cohort 

included patients with advanced melanoma from the phase 1b (KEYNOTE-001; n = 30 

patients) and the phase 3 (KEYNOTE-006 pembrolizumab arm; n = 59 patients) trials. The 

clinical characteristics of each cohort are listed in table S1, and the characteristics of all 

patients included in this study are listed in table S2.

The distribution of tumor mutational signatures across the study cohorts largely reflected 

recognized cancer subtype–dependent determinants of mutagenesis (17) (table S3 and fig. 

S1). The dominant mutational signatures varied across tumor types in the pan-cancer cohort, 

with higher TMB associated with tissue-specific signatures, such as smoking in small cell 

lung cancer; apolipoprotein B mRNA editing enzyme, catalytic polypeptide–like (APOBEC) 

in genitourinary tumors; and mismatch repair (MMR) in gastrointestinal cancer. Within the 

pan-cancer validation cohort, the DNA polymerase epsilon catalytic subunit (PolE) signature 

and the Val411 mutation in POLE were observed in an endometrial carcinoma tumor that had 

the highest TMB (5464). Dominant signatures in the single-indication cohorts were more 

homogenous, with an APOBEC signature in the HNSCC cohort (61% of tumors) and an 

ultraviolet (UV) light exposure signature in melanoma (in 78% of the tumors, >30% of 

mutations were UV light induced).
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Association of TMB and T cell–inflamed GEP with clinical response

Clinical response associations were assessed on the basis of best overall response (BOR) and 

progression-free survival (PFS) by RECIST 1.1. BOR and PFS associations with TMB and 

the T cell–inflamed GEP were assessed in all patients who had WES and transcriptomic data 

available.

We first assessed the predictive value of each individual genomic biomarker separately 

across the different cohorts. In the HNSCC B1 discovery cohort, higher TMB predicted a 

greater frequency of clinical response (BOR) (P = 0.0123). This was validated by using the 

pan-tumor cohort, in which TMB was again associated with BOR (P < 0.001) (Fig. 1A). 

Higher T cell–inflamed GEP scores were also positively associated with BOR in the 

pantumor cohort (P < 0.01) (Fig. 1B), showing that a T cell–activated tumor environment 

also affects response in addition to TMB. Similarly, both TMB and T cell–inflamed GEP 

scores were positively associated with BOR in the single-indication cohorts of HNSCC (P < 

0.05 and P < 0.001, respectively) and melanoma (P < 0.05 for both) patients (Fig. 1, A and 

B). In this study, we did not evaluate the effect of human papillomavirus (HPV) antigens on 

the association of TMB with response in the HNSCC cohort; however, we have previously 

described the association of TMB with clinical outcome in a larger, overlapping group of 

HNSCC patients (KEYN0TE-012 B1 and B2 cohorts) stratified by HPV status (18). 

Although we found that TMB was more strongly associated with BOR in HPV-negative 

patients than in HPV-positive patients, those exploratory findings await validation in larger, 

independent studies.

The clinical utility of TMB in predicting BOR was generally high, and degrees of utility 

were similar across cancer types, with areas under the receiver operating characteristic 

curves (AUROCs) of 0.740, 0.617, and 0.602 in the pan-tumor, HNSCC, and melanoma 

cohorts, respectively. Similar results were observed for the T cell–inflamed GEP across the 

cohorts (AUROCs = 0.782,0.768, and 0.638, respectively) (Fig. 1C). The potential 

performance of a targeted sequencing–based TMB assay was simulated by using the genes 

in the Foundation Medicine targeted sequencing platform (19). The corresponding AUROC 

across the cohorts was comparable to that observed by using WES (0.721), suggesting 

potential translatability to a targeted panel diagnostic. Taken together, these data imply that 

both TMB and the T cell–inflamed GEP have comparable performance characteristics and 

potential diagnostic utility.

We next evaluated the joint utility of the two genomic biomarkers in predicting response. 

The correlation between TMB and GEP was low in the pan-tumor and melanoma cohorts 

(Spearman correlation coefficient r = 0.221, P < 0.05, and r = 0.252, P < 0.05, respectively), 

and there was no correlation in the HNSCC cohort (r = −0.020, P = 0.841) (Fig. 2A). This 

lack of correlation, combined with the observed individual predictive values, suggested that 

TMB and the T cell–inflamed GEP are independent predictive measures of response to 

pembrolizumab. When tested in a multivariate model adjusted for each measure, both TMB 

and T cell–inflamed GEP retained significant predictive value in the pan-tumor (P = 0.0028 

and 0.0051, respectively) and HNSCC (P = 0.0013 and 0.0004) cohorts, whereas only GEP 

remained significant in the melanoma cohort (P = 0.1644 and 0.026). Although a portion of 
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the patients in this study were PD-L1 selected, these relationships were observed even in 

those cohorts of patients that were not PD-L1 selected.

We evaluated the association of the genomic biomarkers with PD-L1 immunohistochemistry 

(IHC) scores (fig. S2). TMB was significantly but moderately correlated with PD-L1 in the 

pantumor cohort [combined positive score (CPS), r = 0.330; P = 0.0038] and showed no 

association with PD-L1 in the HNSCC cohort (CPS, r = 0.020; P = 0.8084) or in the 

melanoma cohort [mela-noma (MEL) score, r = 0.049; P = 0.6473]. In contrast, GEP was 

more significantly correlated with PD-L1 in the pan-tumor, HNSCC, and melanoma cohorts 

(r = 0.49, 0.51, and 0.53, respectively; all P values < 0.001), consistent with the known 

regulation of PD-L1 gene expression by T cell–derived IFN-γ (1–3). This correlation 

suggests that a PD-L1 IHC–based assay is relevant in assessing a T cell–inflamed TME. As 

seen with high TMB (TMBhi) and high GEP scores (GEPhi), responses in patients who had 

both TMBhi and greater PD-L1 expression (PD-L1+; CPS ≥ 1) were greater than those in 

patients who had low levels of both TMB and PD-L1 expression.

We next studied the potential joint utility of TMB and GEP for patient stratification and 

treatment outcome prediction. Clinical response was evaluated on the basis of cut points 

associated with the Youden Index (derived from the AUROCs for TMB in each cohort) and a 

discovery cutoff of −0.318 for the T cell–inflamed GEP score (selected via analysis of pan-

cancer data) (15). Rates of response to pembrolizumab were greater in patients with TMBhi 

(greater than or equal to Youden Index cut points) than in those with low TMB (TMBlo) 

(less than Youden Index cut points) and were similarly greater for those with higher T cell–

inflamed GEP scores (greater than or equal to the cutoff of −0.318) than for those with lower 

scores (less than the −0.318 cutoff) (Fig. 2B). The highest objective response rate was 

observed for patients within each cohort who had both TMBhi and GEPhi. Additionally, 

among patients with both TMBlo and low T cell–inflamed GEP scores (GEPlo) no responses 

were observed in the pan-tumor and HNSCC cohorts and only one response was observed in 

the melanoma cohort, suggesting greater sensitivity for the combination of bio-markers. 

Patients who had high scores for only one of the biomarkers (TMBlo GEPhi and TMBhi 

GEPlo) had moderate responses (Fig. 2B). These data suggest the potential for greater 

positive and negative predictive value when these bio-markers are used together in the 

setting of PD-1–directed monotherapy.

Patient stratification by TMB and GEP was also differentially associated with PFS. In all 

three cohorts, hazard ratios associated with PFS were <1.0 (implying PFS benefit) among 

patients with high versus low TMB and high versus low T cell–inflamed GEP scores. The 

most pronounced PFS-associated hazard ratios were observed for TMBhi GEPhi tumors in 

the pan-tumor (Fig. 3A), HNSCC (Fig. 3B), and melanoma cohorts (Fig. 3C). The greatest 

differential was observed in each cohort for patients with TMBhi GEPhi versus patients with 

TMBlo GEPlo. Patients who had greater levels of either TMB or GEP (TMBhi or GEPhi) 

versus low levels of these biomarkers (TMBlo or GEPlo) also had longer PFS.

We also explored the feasibility and potential clinical value of identifying a pan-cancer 

threshold for TMB across our cohorts that maximizes its joint predictive utility with GEP by 

using a method similar to that of Panda et al. (20). A TMB cutoff of ≥123 mutations per 
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exome maximized the effect size of the difference in GEP distributions between tumors 

having TMB less than and greater than the cutoff. The response rates to pembrolizumab in 

the TMB-GEP–defined groups of each clinical cohort were comparable to those observed by 

using the cohort-specific cut points for TMB reported above (fig. S3). The hazard ratios 

observed for PFS were also generally similar with the use of the TMB cutoff of ≥123 

mutations per exome (fig. S4). A pan-tumor threshold may be further optimized with the 

availability of additional data beyond those in our study. For example, a pan-tumor TMB 

threshold of ≥175 mutations per exome was recently reported for response to 

pembrolizumab (21).

Association of other DNA-based measures with response

The predictive value of other DNA-based measures of mutation status in relation to response 

was also evaluated in these cohorts, including predicted neoantigen signature, smoking 

status, APOBEC-driven mutations, UV light exposure, DNA transversions, homologous 

recombination deficiency, and MSI. Aside from MSI, none of these specific measures of 

genetic alteration provided additional meaningful improvement in predictive value over 

TMB assessment alone. The predicted neoantigen load was highly correlated with TMB in 

the pan-tumor, HNSCC, and melanoma cohorts (r = 0.87, 0.83, and 0.90, respectively), as 

expected (fig. S5). In the pan-tumor cohort, most measures of mutagenic processes were 

significantly associated with BOR (e.g., predicted neoantigen load and smoking; both P 
values = 0.001), with similar relevant trends toward significant association with PFS (table 

S4). By using a WES-based method to infer MSI (22), two patients with MSI-H tumors 

(gastric and biliary tract carcinomas) were identified, and both were responders; the MSI 

status of these patients was confirmed with standard MSI polymerase chain reaction (PCR) 

methods. In the melanoma cohort, the percentage of UV light–induced mutations correlated 

with TMB (r = 0.77; P < 1 × 10−10) (fig. S1) and was significantly associated with response 

(P = 0.02). These data suggest that nonsynonymous mutations arising from a wide variety of 

mutagenic processes are capable of enhancing the antigenicity of tumors, with comparable 

effects on the response to PD-1 checkpoint blockade.

Somatic mutation clonality and copy number variation (CNV) have previously been reported 

to positively and negatively associate, respectively, with response to PD-1 checkpoint 

blockade (23,24). In an analysis of clonal versus nonclonal tumors (clonality of 1 versus <1, 

respectively), the treatment response rates were numerically higher in clonal tumors in the 

pan-tumor cohort (18% versus 10%) but not different in the HNSCC (21% versus 23%) or 

melanoma (44% versus 41%) cohort. A low and nonsignificant overall correlation was 

observed between clonality and TMB (r = 0.05; P > 0.05) in the pooled dataset, suggesting a 

potential utility of including clonality assessment in the application of a TMB-based 

biomarker. Higher levels of CNV trended toward negative associations with response but 

approached statistical significance only in the HNSCC and melanoma cohorts (AUROCs = 

0.48, 0.35, and 0.42; P = not significant, 0.1, and 0.1 for the pan-tumor, HSNCC, and 

melanoma cohorts, respectively). Correlations between TMB and CNV load were low in the 

pan-tumor (r = −0.03), HNSCC (r = 0.16), and melanoma (r = −0.12) cohorts (P > 0.05 for 

all), suggesting a potential complementary role of CNV in biomarker-based prediction of 

responders versus nonresponders.
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TMB and Tcell–inflamed GEP relationships can be applied to a wide range 

of tumor types across genomic databases

To explore the generalizability of our findings and the utility of our stratification schema 

across tumor types, the relationship among TMB, T cell–inflamed GEP, and related genomic 

features was further explored in TCGA (n = 9963 patients with transcriptomic data, 6384 of 

which also had WES data) (16). Patients were stratified by TMB (WES score ≤ 100 

mutations per exome) and T cell–inflamed GEP score (below the top tertile of data) by using 

cutoffs equivalent in terms of prevalence to those that were used to define the clinical 

response groups in the pantumor cohort (Fig. 4A). Consistent with our clinical data, TMB 

and the T cell–inflamed GEP were found to have low but significant correlations (r = 0.30; P 
< 1 × 10−4), as did TMB and PD-L1 gene expression (r = 0.16; P < 1 × 10−4) and TMB and 

PD-L2 gene expression (r = 0.22; P < 1 × 10−4). By contrast, both PD-L1 expression and 

PD-L2 expression, which are induced by IFN-γ from activated Th1 and cytotoxic T cells (1–

3), were highly correlated with the T cell–inflamed GEP (r = 0.61 and 0.72; P < 1 × 10−10). 

MSI-H tumors made up a subset of tumors with TMBhi in both T cell–inflamed and 

noninflamed tumors. Even in these tumors, which exhibit very high mutational burdens, the 

modest correlation between GEP and TMB was preserved. The frequency of the TMBhi 

GEPhi subgroup, which was identified as the most clinically responsive population in our 

datasets, varied across cancer types (Fig. 4B), with enrichment among patients with tumors 

that are generally more responsive to pembrolizumab, such as melanoma and NSCLC (25, 

26), and underrepresentation among patients with tumors such as prostate cancer and 

glioblastoma that are typically more resistant to immunotherapy (27,28).

Rooted in the well-studied field of T cell inflammation and cytolytic process (13, 29–31), 

the T cell–inflamed GEP signature was derived by a stepwise process of discovery, 

validation, and refinement of candidate gene sets associated with patient response to 

pembrolizumab across multiple solid tumors with the use of a NanoString platform enriched 

in immune genes (15) and thus represents a universal signature. Notably, in TCGA dataset, 

we observed a strong correlation (r > 0.9) between the GEP and several other previously 

published transcriptional signatures reflective of a T cell–inflamed TME associated with 

cytolytic processes (Fig. 5A).

Stratification of additional genomic features by TMB and T cell–inflamed 

GEP

The patient groups defined by TMB and GEP status show notable differences in clinical 

response to pembrolizumab. In particular, the two groups with only one positive biomarker 

indicative of potential for pembrolizumab response (TMBhi GEPlo or TMBlo GEPhi) have 

markedly lower response rates than the TMBhi GEPhi group, suggesting that mechanisms of 

resistance to pembrolizumab may exist that are specific to each respective group. In order to 

identify potential mechanisms of resistance, we assessed molecular differences among 

tumors that belong to different TMB- and T cell–inflamed GEP–defined groups through 

analyses in TCGA molecular database.
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First, we compared the correlation of genes in the transcriptome with GEP in TMBhi and in 

TMBlo tumors separately. Both distributions of correlations diverged from a normal 

distribution because of a pattern of significant skewing toward positive correlations with the 

T cell–inflamed GEP, consistent with robust coregulation of gene expression markers of cell 

types present in a cytolytic TME. However, there were no major differences in the 

correlations of individual genes with the T cell–inflamed GEP between TMBhi (TMB > 100 

mutations per exome) and TMBlo (TMB ≤ 100 mutations per exome) tumors (r = 0.76; P < 1 

× 10−20) (Fig. 5B), suggesting a lack of qualitative difference in T cell inflammation markers 

as a function of tumor neoantigenicity. Notably, much smaller deviations from a normal 

distribution were observed in the negative range of correlations with GEP in both TMBhi and 

TMBlo tumors, suggesting the absence of major pan-cancer transcriptional signatures 

strongly associated with T cell exclusion.

To understand the origin of the skewness toward positive correlations with the T cell–

inflamed GEP, genes positively correlated with the T cell–inflamed GEP (r > 0.15) were 

classified into two sets by using cutoffs defined by deviations from a normal distribution of 

the correlation with the T cell–inflamed GEP at 83% and 98% quantiles, respectively (Fig. 

5C). Set 1 comprised genes that had a Spearman correlation r > 0.6 with the T cell–inflamed 

GEP (the lower bound for the correlation of individual genes in the signature with the 

signature as a whole), whereas set 2 genes had correlations with GEP that ranged between 

0.15 and 0.6. Additionally, genes negatively correlated with the T cell–inflamed GEP and 

divergent from a normal distribution (r < −0.15 at 14% quantile) were grouped in set 3.

As expected, a strong enrichment of genes related to T cell–inflamed cytolytic processes was 

observed in set 1 (table S5). By contrast, set 2 showed enrichment in genes specific to other 

cell types in the TME, including vascular endothelium and myeloid infiltrate, but did not 

show enrichment of genes for T cell–inflamed cytolytic processes or tumor cell–intrinsic 

pathways. Genes in set 1 and set 2 were further grouped as modules of gene coexpression by 

K-means clustering (K = 10 for set 2, and K = 4 for set 1). Modules in set 1 did not show a 

strong association with TMB, consistent with the weak associations between TMB and the T 

cell–inflamed GEP described above. However, several modules in set 2 (table S6) displayed 

distinct patterns of correlation or anticorrelation with TMB. Annotation of the genes in the 

modules that were most strongly correlated and anticorrelated with TMB (modules 4 and 5, 

respectively), revealed enrichment in biology related to cell proliferation (module 4) and 

vasculature (module 5). These data suggest that distinct patterns of underlying biology can 

be identified by using TMB and the T cell–inflamed GEP to categorize tumors (Fig. 5D). 

The association of the average expression of these gene modules (modules 4 and 5) with 

TMB and T cell–inflamed GEP is represented in Fig. 5D in the upper left and lower right 

panels, respectively, by using the cytolytic module 1 from set 1 in the upper right panel as a 

reference.

The group of genes in set 3 that were anti-correlated with the T cell–inflamed GEP (r < 

−0.15) was also investigated; however, the biological annotation of the resulting 

coexpression modules was less informative than that for genes positively correlated with the 

T cell–inflamed GEP. However, some modules in this group were anticorrelated with TMB 

as well as with T cell–inflamed GEP. In particular, a module enriched in stromal and Wnt 
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signaling elements was identified in tumors with both TMBlo and T cell–inflamed GEPlo 

(Fig. 5D, lower left panel).

An additional analysis was performed by interrogating the entire transcriptome for genes 

associated with TMB in T cell–inflamed tumors, independently of the GEP-based clustering 

approach described above. Similar to the analysis of modules, this analysis showed that 

genes that positively correlated with TMB were enriched for proliferation whereas those that 

were anticorrelated with TMB were related to vascular and stromal biology (table S7). 

Consistent with these analyses, the distribution of previously identified signatures of stromal 

biology, proliferation, cytolytic activity, and Wnt signaling (13, 32–34) also showed similar 

patterns of association with TMB and the T cell–inflamed GEP (fig. S6). However, in this 

analysis, we were not able to identify a gene expression signature of TMBhi that was as 

predictive as TMB itself for response to pembrolizumab.

A complementary approach was used to identify genomic determinants of low cytolytic 

transcriptomic activity (absence of a T cell–inflamed GEP) in tumors with TMBhi as 

potential drivers of immune evasion in a mutagen-rich context. As described above, the 

transcriptomic correlation of the T cell–inflamed GEP in TMBhi tumors (Fig. 5B) showed a 

distribution that skewed toward positive correlation with GEP, suggesting the absence of a 

robust transcriptome signal in tumors with TMBhi and GEPlo. Therefore, DNA alterations in 

TCGA were explored to reveal potential negative associations of somatic mutations with 

GEP by using a previously reported approach (13) but focusing specifically on tumors with 

TMBhi. Among known cancer drivers, serine-threonine kinase 11 (STK11) [also known as 

liver kinase B1 (LKB1)] mutation in lung adenocarcinoma, Kelch-like ECH-associated 

protein 1 (KEAP1) mutation in lung adenocarcinoma and lung squamous cell carcinoma, 

and adenomatous polyposis coli (APC) mutation in colorectal cancer showed highly 

significant negative associations with the T cell–inflamed GEP (Fig. 6). Notably, none of 

these associations passed the nominal significance level (P < 0.01) in the pan-cancer 

analysis, suggesting a potential cancer type–specific role for these somatic alterations. Other 

genes demonstrating negative associations with the T cell–inflamed GEP were either of low 

frequency or were not known cancer drivers (Fig. 6B).

Discussion

Several studies have shown that either TMBhi or cytolytic elements of the TME are 

associated with clinical response to checkpoint blockade immunotherapy in some tumor 

types (4–9,11–13,15). However, the relationship between these two central aspects of tumor 

immunobiology and their combined association with clinical response to checkpoint 

blockade immunotherapy has not been well-studied across multiple cancer types. Here, we 

show that TMB and a T cell–inflamed GEP are tissue-agnostic measures of distinct aspects 

of tumor immunobiology and independently predict response to anti–PD-1 therapy in 

multiple tumors. In particular, limited clinical responses to pembrolizumab occurred in 

patients with low levels of both TMB and T cell–inflamed GEP, whereas the greatest 

response rates were seen in patients with high levels of both biomarkers. Similarly, improved 

responses were seen in patients who had high levels of both PD-L1IHC expression and 

TMB, reflective of the relationship of PD-L1 and GEP to a T cell–inflamed TME. These 
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observations suggest that using inflammatory biomarkers such as the T cell–inflamed GEP 

or PD-L1 jointly with TMB may help to identify patients who are responsive to anti–PD-1 

therapies. Additional IHC assays have been developed that measure protein markers of a 

cytolytic T cell environment, and evaluating their performance characteristics in conjunction 

with TMB in future studies may be useful (14,35). More broadly, our study demonstrates the 

orthogonal relationship between universal measures of tumor antigenicity and tumor 

infiltration that can occur by activated T cells (14, 36–38). Although these are upstream and 

downstream components, respectively, of a robust antitumor T cell response, there is 

sufficient intervening biology such that biomarkers for each process can provide 

complementary information.

As an increasing number of PD-1– and PD-L1– based combination regimens show clinical 

benefit, it will become challenging to determine the relative utility of each regimen for an 

individual patient. A refined set of biomarker tools that can stratify underlying patterns of 

tumor immunobiology may enable rational and biology-driven personalization of these 

various treatment regimens, such as selection of patients with tumors typically less 

responsive to immunotherapy. Our data demonstrate that TMB and a T cell–inflamed GEP 

can be used to categorize tumors into discrete subgroups that exhibit distinct patterns of 

potentially targetable biology to enhance clinical response. These patterns include tumor 

type–agnostic signatures of proliferative, vascular, myeloid, and stromal biology, as well as 

tumor type–specific dysregulation of tumor cell–intrinsic signaling pathways. Although the 

utility of TMB, T cell–inflamed GEP, and PD-L1, as well as other emerging tumor-agnostic 

biomarkers, will need to be prospectively validated for use in predicting response to various 

immunotherapy regimens, including combination therapies, the findings reported here 

suggest a rationale for further exploring the utility of these biomarkers as guides for 

precision cancer immunotherapy.

Materials and methods

Clinical tumor samples

Associations of TMB and the T cell–inflamed GEP with BOR and PFS were evaluated by 

using tumor samples from subgroups of patients treated with pembrolizumab in clinical 

trials who had WES data available. These included a discovery cohort of patients with 

HNSCC (KEYNOTE-012 B1), a pan-tumor validation cohort (KEYNOTE-012/028), and 

single-indication cohorts of patients with HNSCC (KEYNOTE-012 B1+B2) and melanoma 

(KN001 and 006). The discovery cohort included 34 of 297 total enrolled patients with PD-

L1–selected (≥1%, modified proportion score or interface pattern, QualTek IHC) (39) 

HNSCC (B1 cohort). The pan-tumor cohort comprised patients with PD-L1-positive (≥1%, 

modified proportion score or interface pattern, QualTek IHC) (39) advanced solid tumors 

pooled from two multi-cohort trials, including 39 of 297 total enrolled patients in 

KEYNOTE-012 (cohorts A, C, and D: triple-negative breast cancer, urothelial cancer, and 

gastric cancer, respectively) and 80 of 450 total enrolled patients in KEYNOTE-028 (17 of 

20 cohorts with anal, biliary, carcinoid, cervical, colorectal, endometrial, esophageal, 

estrogen receptor–positive human epidermal growth factor receptor-2–negative breast, 

pancreatic, salivary gland, prostate, small cell lung, thyroid, and vulvar cancers and 
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neuroendocrine tumors, mesothelioma, and leiomyosarcoma). Single-indication cohorts 

included 107 HNSCC patients from the KEYNOTE-012 PD-L1–positive (≥1%, modified 

proportion score or interface pattern, QualTek IHC) (39) B1 (n = 34) and PD-L1–unselected 

B2 (n = 73) cohorts (40,41) and patients with advanced melanoma from the pembrolizumab 

arms of the KEYNOTE-001 (n = 30 of 668 total enrolled patients) and KEYNOTE-0006 (n 
= 59 of 834 total enrolled patients) studies (26, 42). Tissue specimens were obtained with 

the approval of the institutional review boards, and patients provided informed consent 

[clinical trial registration: KEYN0TE-012 (NCT01848834); KEYN0TE-028 

(NCT02054806); KEYN0TE-001 (NCT01295827); KEYN0TE-006 (NCT01866319)].

Clinical end points

BOR was assessed in the discovery HNSCC, pantumor, and HNSCC cohorts by central 

radiology review and in the melanoma cohort by integrated radiology and oncologist 

assessment. For BOR, a responder was defined as a patient with a partial response (PR) or 

complete response (CR), and PFS was defined as the time from the start of treatment to 

documented evidence of progressive disease or death. BOR and PFS were both assessed in 

the all-patients-as-treated populations, defined as those who had received ≥1 dose of study 

drug, in each cohort.

Processing of tissue samples

DNA sequencing (WES) and RNA analysis (gene expression profiling) were performed by 

using FFPE sections of pretreatment tumor samples from the above-listed studies. WES was 

performed on both germline and tumor samples, and gene expression profiling was 

performed on tumor samples. With a fresh scalpel, the tissue was either macrodissected from 

the marked tumor area (tissue containing <20% tumor) or scraped from the entire section 

and transferred to a 1.5-ml tube containing 200 μl of 100% ethanol.

Gene expression (RNA) profiling: NanoString methodology

The previously described T cell–inflamed GEP was derived by using a stepwise derivation 

process of discovery, validation, and refinement of candidate gene sets across a wide variety 

of solid tumors (15). The GEP was composed of 18 inflammatory genes related to antigen 

presentation, chemokine expression, cytolytic activity, and adaptive immune resistance, 

including CCL5, CD27, CD274 (PD-L1), CD276 (B7-H3), CD8A, CMKLR1, CXCL9, 
CXCR6, HLA-DQA1, HLA-DRB1, HLA-E, IDO1, LAG3, NKG7, PDCD1LG2 (PDL2), 
PSMB10, STAT1, and TIGTT. For GEP analysis, total RNA was isolated from 5-μm-thick 

FFPE sections of tumor tissue fixed on positively charged slides (Ambion RecoverAll total 

nucleic acid isolation kit for FFPE; catalog no. AM1975) at ALMAC, United Kingdom. 

Total RNA concentrations were measured using the NanoDrop ND1000 (Thermo Fisher 

Scientific) in 1.5 μl of test sample.

Gene expression analysis was conducted on the NanoString nCounter gene expression 

platform (NanoString Technologies, Seattle, WA) as described previously (15). Per sample, 

50 ng of total RNA was mixed in a final volume of 5 to 7 μl with a 3′-biotinylated capture 

probe and 5′-reporter probe tagged with a fluorescent barcode, from the desired custom 

gene expression codeset (HUIMR680_V2_C2406+PLS_SPI-KE80_C2765 for Batch 1 and 
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HUIMR800_C3176 for Batch 2), containing probes designed to function as positive and 

negative hybridization controls. Probes and target transcripts were hybridized overnight at 

65°C for 14 to 18 hours as per manufacturers’ recommendations. Hybridized samples were 

run on the NanoString nCounter preparation station by using a high-sensitivity protocol 

where excess capture and reporter probes were removed and transcript-specific ternary 

complexes were immobilized on a streptavidin-coated cartridge. The cartridge samples were 

scanned at maximum resolution by using the nCounter digital analyzer. GEP scores were 

calculated as a weighted sum of normalized expression values for the 18 genes. Quality 

control of the gene expression data followed an approach similar to that of the NanoString 

clinical-grade assay, with the use of joint criteria that assessed the relationships between 

housekeeping genes and the negative control probes plus a weighted score evaluating the 

GEP gene counts versus background-subtracted counts. For housekeeping normalization, 

raw counts for the individual genes were log10 transformed and then normalized by 

subtracting the arithmetric mean of the log10 counts for a set of 11 housekeeping genes.

WES pipeline

Somatic single-nucleotide variant (SNV) calling—Whole-exome sequence reads 

were aligned to reference human genome GRCh37 by using bwa mem (43) followed by 

preprocessing steps including duplicate marking, indel realignment, and base recalibration 

with Picard (v1.114) and GATK (Genome Analysis Toolkit, v2) (44) to generate analysis-

ready BAM files. MuTect was used to generate somatic SNV calls using default parameters 

by comparing BAM files from tumor and matched normal samples (45). MuTect-called 

SNVs present in the Single Nucleotide Polymorphism Database (dbSNP, v141) (46) but not 

in the Catalogue of Somatic Mutations in Cancer (COSMIC, v68) (47) were filtered out. The 

SNVs with mutant reads of <4 in tumor samples were also eliminated. TMB for a subject 

was defined as the sum of somatic nonsynonymous SNVs that passed all the filters 

described.

HLA class I typing—HLA-I major loci, A, B and C, were typed at four-digit resolution by 

using OptiType (v1.0) (48).

For output typed alleles not found in the NetMHC (v3.4) (49) input list, the corresponding 

supertype was identified for each allele (50, 51) and the supertype-representative allele was 

used for NetMHC.

SNV annotation and neoantigen detection—Somatic mutations were annotated with 

VEP (Variant Effect Predictor) (52), and nonsynonymous mutations in protein coding 

regions were counted for TMB. All possible 9-mer peptide sequences with mutated amino 

acid inside for each nonsynonymous mutation locus were extracted, and binding affinities 

for patient HLA-A and HLA-B alleles were computed by using NetMHC (v3.4). The 9-mer 

peptide with the highest binding affinity with the HLA alleles from a nonsynonymous 

mutation locus was selected as the representative antigen for the mutation. Representative 

antigens with HLA-A or -B binding affinity of <50 nM were considered neoantigens.
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Microsatellite instability (MSI) calling—MSI phenotype was detected by applying 

mSINGS on WES data from tumor samples (22). The stability of each mononucleotide 

microsatellite locus was evaluated, and the proportion of unstable microsatellite loci was 

determined as the MSI score. Samples with an MSI score of more than 20% were classified 

as MSI-high (MSI-H) positive. MSI was confirmed by PCR by using the Promega MSI 

analysis system, version 1.2.

Mutation signature analysis—Mutational signature analysis was performed by using 

the deconstructSigs package (v1.6.0) in R that selects the combination of known mutational 

signatures that can account for the observed mutational profile in each sample (53). Exome 

regions were defined by Agilent Sureselect V5 target region. Only somatic mutations in 

exome regions were considered, and trinucleotide counts were normalized by the number of 

times each trinucleotide context was observed in the exome region. Mutational signatures as 

defined by Alexandrov et al. (54) and named as signatures. nature 2013 were the target 

signature set to be screened. The relationships of these various mutational signatures, 

including specific nucleotide changes, DNA repair, smoking, neoantigen, TP53, and 

APOBEC, with BOR and PFS were evaluated in patient samples in the pan-tumor cohort.

Allele-specific copy number and purity estimation—VarScan2 (55) output copy 

number ratio and SNP were input to Sequenza (56) to provide a maximum a posteriori 

estimation for cellularity and segmented allele-specific copy number for each sample.

Clonality—For each sample, MuTect-called somatic SNVs with variant allele frequency 

information, combined with Sequenza output allele-specific copy number and cellularity 

estimation, were input to PyClone to estimate cellular prevalence for all somatic SNVs. 

Mutational clonality was also inferred through the clustering process of PyClone (57).

PD-L1 expression

PD-L1 expression levels were evaluated in pretreatment samples by IHC staining by using 

the PD-L1 IHC 22C3 pharmDx kit (Agilent Technologies) in the pan-tumor and HNSCC 

cohorts (39); expression levels were reported as the CPS, defined as the number of PD-L1–

positive cells (tumor cells, lymphocytes, macrophages) divided by the total number of tumor 

cells × 100. CPS was previously reported as a percentage and is now reported as an 

equivalent unitless measure. This assay differs from the one used to determine PD-L1 

positivity (≥1%, modified proportion score or interface pattern, QualTek IHC) for 

enrollment eligibility as described above for the pan-tumor and HNSCC clinical cohorts 

(58). For the mela-noma cohort, PD-L1 levels were assessed by IHC by using the MEL 

score, and positivity was defined as a score of ≥2 membranous PD-L1 staining in at least 1% 

of tumor and tumor immune cells (59).

TCGA molecular data

Gene expression data for 9963 tumors and somatic alterations data for 6384 tumors were 

obtained through TCGA portal (16) as of September 2015.
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Statistical methods

The retrospective, statistical analysis of clinical samples in this study was prespecified and 

performed in a blinded fashion, with genomic end points generated without access to clinical 

out-comes. Associations with BOR were tested by using logistic regression, and associations 

with PFS were examined by using Cox proportional hazards models. All models (logistic 

regression and Cox models) were adjusted for baseline Eastern Cooperative Oncology 

Group (ECOG) score performance. One-sided nominal P values were reported. Associations 

between continuous variables were assessed by using Spearman correlation, and associations 

between continuous variables and binary variables (e.g., BOR) were further assessed by 

using AUROC and rank sum P values. Statistical analyses and visualizations were performed 

with Matlab R2010 or with R3.4.1. TMB cutoffs for the pan-tumor and single-indication 

clinical cohorts were the Youden Index values derived in AUROC analysis. An additional, 

exploratory, pan-tumor TMB threshold was derived by using TMB and GEP data across 

each cohort, similar to a previously described method (20).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Individual association of TMB or T cell–inflamed GEP with anti–PD-1 response across 
multiple patient cohorts.
(A and B) The association of (A) TMB, defined as the sum of somatic nonsynonymous 

mutations, and (B) T cell–inflamed GEP with BOR was assessed in pan-tumor, HNSCC, and 

melanoma cohorts by central radiology review for all-patients-as-treated populations in all 

cohorts. A responder is defined as having a partial response (PR) or a complete response 

(CR); a nonresponder is defined as having no PR or CR. Nonresponders and responders for 

TMB, respectively, were n = 103 and n = 16 for pan-tumor, n = 86 and n = 21 for HNSCC, 
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and n = 51 and n = 38 for melanoma cohorts. For GEP score analysis, nonresponders and 

responders were n = 97 and n = 16 for pan-tumor, n = 84 and n = 21 for HNSCC, and n = 48 

and n = 38 for melanoma cohorts. For both (A) and (B), raw data are displayed in standard 

box plots with medians and interquartile ranges. (C) AUROCs for TMB and T cell–inflamed 

GEP in the three patient cohorts. Youden Index–associated cutoffs for TMB in each cohort 

are shown.
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Fig. 2. Joint relationship of TMB or T cell–inflamed GEP with anti–PD-1 response across 
multiple patient cohorts.
(A) Relationships of both TMB and T cell–inflamed GEP signatures with BOR. A responder 

is defined as having a PR or CR (filled circles); a nonresponder has no PR or CR (open 

circles). Dashed horizontal lines represent the Youden Index–associated cutoffs for TMB in 

each cohort as derived from AUROCs in Fig. 1C. Dashed vertical lines represent a discovery 

cutoff for the T cell–inflamed GEP selected via analysis of pan-cancer data. (B) Response 

(PR or CR) rates [expressed as a percentage calculated as the number of responders divided 

by the number in the cutoff-defined group, with 95% confidence intervals (CI)] per TMB 

cutoff status and Tcell–inflamed GEP cutoff status as designated in (A). TMBhi and TMBlo 

response groups are defined by values greater than or equal to and less than Youden Index–

associated cut points (102.5, 86, and 191.5 for pan-cancer, HNSCC, and mela-noma cohorts, 

respectively); GEPhi and GEPlo groups are defined by cutoffs greater than or equal to and 

less than −0.318, respectively.
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Fig. 3. Relationship between TMB and T cell–inflamed GEP signatures and PFS after anti-PD-1 
treatment across multiple patient cohorts.
Relationships of TMB and T cell–inflamed GEP with PFS in all patients as treated per TMB 

cutoff and GEP cutoff as described in the legend to Fig. 2. Median PFS times in days for (A) 

pan-tumor, (B) HNSCC, and (C) melanoma cohorts for TMBhi versus TMBlo were 115 

versus 59 (hazard ratio, 0.48; 95% CI, 0.30 to 0.76), 64 versus 64 (0.70; 0.46 to 1.07), and 

502 versus 85 (0.48; 0.28 to 0.84); those for GEPhi versus GEPlo were 96 versus 57 (0.54; 

0.35 to 0.81), 103 versus 57 (0.45; 0.28 to 0.72), and 418 versus 90 (0.73; 0.40 to 1.31); 

those for TMBhi GEPhi versus TMBlo GEPlo or TMBlo GEPlo were 189 versus 59 (0.43; 

0.26 to 0.71), 110 versus 62 (0.51; 0.32 to 0.82), and 504 versus 123 (0.63; 0.36 to 1.09). 

Kaplan-Meier plots are shown, and median survival was estimated on the basis of Kaplan-

Meier estimates. Hazard ratios with 95% CI were derived from a Cox proportional model fit, 

with adjustment for baseline ECOG score and protocol where relevant.
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Fig. 4. Relationships of TMB, GEP, and other key biomarkers with gene expression across tumor 
types in TCGA.
(A) Data are stratified by TMB and GEP cutoffs, which are equivalent in terms of prevalence 

to those that define the clinical response groups in the pan-tumor cohort of patients treated 

with pembrolizumab from the KEYNOTE studies. The WES cutoff of >100 mutations per 

exome for TMB was chosen to match the Youden Index–associated TMB cutoff defined for 

the pan-tumor cohort. The GEP cutoff was chosen as the top pan-cancer tertile value. 

Columns represent individual tumors, and rows represent genomic features. Red and green 
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represent elevated and decreased expression, respectively (versus the median, in black), for 

continuous variables, and red and white represent true and false for Boolean (binary) 

variables. In the absence of MSI evaluation across cancer types, MSI-H status was 

determined by loss of MLH1 gene expression by using cutoffs determined by the bimodality 

in the distribution of expression. (B) Percentages of tumors in each cancer type in 

biomarker-defined response groups as defined in (A) in TCGA database. SCC, squamous 

cell carcinoma; MSS, microsatellite stable; TNBC, triple-negative breast cancer.
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Fig. 5. Transcriptomic and genomic features defined by the GEP and TMB biomarker–based 
stratification in TCGA database.
(A) Association of T cell–inflamed GEP (15) with other key markers and expression 

signatures representative of T cell inflammation and a cytolytic environment, including 

chemokine signature (29), Immunoscore (30), and cytolytic activity (CYT) (13). (B) 

Association between T cell–inflamed GEP and expression of each gene in TCGA for tumors 

with a TMB of >100 mutations per exome (x axis) and in tumors with a TMB of ≤100 

mutations per exome (y axis). (C) Each gene in the transcriptome is assigned to one of four 
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clusters determined by cutoffs obtained from the distribution of correlation with the T cell-

inflamed GEP. The cutoffs used were the inflection point where the distribution deviates 

from normal on the positive side (0.15; 83rd quantile), the cut point that selects T cell–

inflamed GEP genes (0.6; 98% quantile), and the inflection point where the distribution 

deviates from normal on the negative side (−0.15; 15th quantile). Vertical lines represent 

cutoffs for gene sets 1, 2, and 3 (r > 0.6, r = 0.15 to 0.6, and r < −0.15, respectively); gene 

sets are color coded on the regression line. (D) Gene set annotation in each cluster suggested 

enrichment for biological patterns with distinct relevance for the individual biomarker-based 

groups. Contour plots illustrate the association with TMB and GEP of selected patterns of 

TME and cellular biology represented by gene expression modules formed by genes 

coexpressed in TCGA database. Blue and red represent under- and overexpression, 

respectively.
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Fig. 6. Cancer driver genes associated with immune evasion in selected tumor types.
(A) Volcano plots of AUROC and rank sum P values illustrating the association of somatic 

SNV mutations with GEP in lung squamous cell carcinoma, lung adenocarcinoma, and 

colorectal adenocarcinoma in TCGA database. Analysis was restricted to cancer types 

having >20% of tumors with TMBhi (>100 mutations per exome). For each cancer type, the 

negative logi0-transformed rank sum P value between GEP and mutations was calculated for 

each gene. (B) Rank sum P values of association between GEP and mutations in selected 

genes. The selection was made on the basis of a nominal P value of <0.01 for negative 

association with GEP in any cancer type and an alteration frequency of ≥10% in that cancer 

type. Negative and positive associations are represented in blue and red, respectively. 

Negative associations for known cancer driver genes are shown in boxes.
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