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Conventional radiographs remain the primary diagnostic 
approach to detect distal radius fractures (DRFs) (Mauffrey 
et al. 2018, Waever et al. 2018). Non-orthopedic surgeons or 
young radiologists at emergency departments, where urgent 
decision-making is often required, are usually the first doc-
tors to assess radiographs. Therefore, an accurate and efficient 
assistant technology in fracture detection is of interest.

Artificial intelligence (AI) is achieving remarkable prog-
ress in image interpretation (He et al. 2015, Russakovsky et 
al. 2015). Since 2012, deep learning, a branch of AI, has rap-
idly become a powerful method in image analysis with the 
use of convolutional neural networks (CNNs), which are well 
suited for analyzing image features (Russakovsky et al. 2015, 
Lakhani and Sundaram 2017). There are increasing numbers 
of experimental trials that apply deep learning in medical 
image analysis in certain fields, including the automated anal-
ysis of pulmonary tuberculosis (Lakhani and Sundaram 2017), 
lung nodules (Hua et al. 2015, Nishio et al. 2018), retinopa-
thy (Ting et al. 2017), gastric cancer (Wang et al. 2018), and 
dermatological diseases (Li and Shen 2018, Yap et al. 2018, 
Fujisawa et al. 2019). In the field of traumatic orthopedics, 
a few studies (Olczak et al. 2017, Chung et al. 2018, Kim 
and MacKinnon 2018, Urakawa et al. 2019) investigated the 
experimental applications of deep learning to detect fractures 
on plain radiographs; all the CNNs adopted showed excellent 
performance, and some (Chung et al. 2018, Urakawa et al. 
2019) had abilities superior to that of humans. To further vali-
date the feasibility of AI as an automatic diagnostic model, we 
first evaluated the ability of a CNN, with a fast object detec-
tion algorithm previously identifying the regions of interest, to 
detect DRFs on AP wrist radiographs. Second, the diagnostic 
performances of CNNs were compared with those of radiolo-
gists and orthopedists.

Background and purpose — Artificial intelligence has 
rapidly become a powerful method in image analysis with 
the use of convolutional neural networks (CNNs). We 
assessed the ability of a CNN, with a fast object detection 
algorithm previously identifying the regions of interest, to 
detect distal radius fractures (DRFs) on anterior–posterior 
(AP) wrist radiographs.

Patients and methods — 2,340 AP wrist radiographs 
from 2,340 patients were enrolled in this study. We trained 
the CNN to analyze wrist radiographs in the dataset. Fea-
sibility of the object detection algorithm was evaluated by 
intersection of the union (IOU). The diagnostic performance 
of the network was measured by area under the receiver 
operating characteristics curve (AUC), accuracy, sensitiv-
ity, specificity, and Youden Index; the results were compared 
with those of medical professional groups.

Results — The object detection model achieved a high 
average IOU, and none of the IOUs had a value less than 0.5. 
The AUC of the CNN for this test was 0.96. The network 
had better performance in distinguishing images with DRFs 
from normal images compared with a group of radiologists 
in terms of the accuracy, sensitivity, specificity, and Youden 
Index. The network presented a similar diagnostic perfor-
mance to that of the orthopedists in terms of these variables.

Interpretation — The network exhibited a diagnostic 
ability similar to that of the orthopedists and a performance 
superior to that of the radiologists in distinguishing AP wrist 
radiographs with DRFs from normal images under limited 
conditions. Further studies are required to determine the fea-
sibility of applying our method as an auxiliary in clinical 
practice under extended conditions.
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Materials and methods
Design of study
With the dataset, a fast object detection algorithm based on 
deep learning was first trained to identify the distal radiuses 
on AP wrist radiographs as the regions of interest (ROIs). 
Second, we adopted this fast object detection algorithm, of 
which the feasibility had been verified by a validation pro-
cess, to automatically annotate the ROIs on AP wrist radio-
graphs in the training dataset and test dataset. The ROIs 
were extracted as images, with which a diagnostic CNN 
model was then trained and tested in detecting the DRFs. 
The diagnostic performances in terms of accuracies, sensi-
tivities, specificities, and Youden Index were finally com-
pared among the diagnostic CNN model, radiologists, and 
orthopedists.

Dataset
2 senior orthopedists with more than 10 years of orthopedic 
professional experience retrospectively reviewed 2,359 plain 
wrist radiographs with diagnostic reports from 2,359 adult 
patients (the inclusion and exclusion criteria for this study 
are given in the Supplementary data) who underwent radio-
logical examinations at the Medical Center of Ningbo City, 
Lihuili Hospital, of the Ningbo University School of Medi-
cine, between January 2010 and September 2017 to confirm 
that each case had an accurate diagnosis (with DRFs or with-
out DRFs). A consensus was achieved in consultation with a 
third senior orthopedist with 22 years of orthopedic profes-
sional experience. For cases in which all 3 orthopedists did 
not agree, the corresponding wrist CT images were reviewed; 
CTs were available in most of these cases and a consensus on 
each case was reached after discussion. 19 controversial cases 
without CT exams were excluded from the study. 2,340 AP 
wrist radiographs (1,491 DRF cases and 849 normal wrists) 
from 2,340 adult patients were ultimately included in the final 
dataset.

Data preparation
Each plain AP wrist radiograph, originally stored as a Digi-
tal Imaging and Communications in Medicine (DICOM) 
file, was exported as a Joint Photographic Experts Group 
(JPEG) file with a matrix size of 600 x 800 pixels from the 
Picture Archiving and Communication System (PACS) by 
using eWorld Viewer (TomTaw Tech, Ningbo, China).

For further analyses, 1,491 images with DRFs and 849 
images without DRFs (randomized with the Research Ran-
domizer program, http://www. randomizer.org) were ran-
domly divided into an original training dataset of 2,040 images 
(1,341 images with DRFs and 699 images without DRFs) and 
a test dataset of 300 images (150 images with DRFs and 150 
images without DRFs).

Training the CNN models
The detailed experimental environment is described in the 
Appendix (see Supplementary data).

Training the Faster R-CNN (Region-based CNN)
Faster R-CNN (Ren et al. 2017) technology, one of the fast 
object detection algorithms based on deep learning, has excel-
lent performance in locating the regions of interest (ROIs) on 
graphics. In this study, we trained and tested Faster R-CNN 
as an auxiliary algorithm to the diagnostic CNN model. The 
detailed training procedure of the Faster R-CNN model is 
shown in the Appendix.

Validation of the Faster R-CNN
A regression analysis (Mitra et al. 2018) was used to assess 
the training process of Faster R-CNN. The mean square error 
(MSE) (Kumar et al. 2018) was calculated to measure the loss 
of Faster R-CNN in the automatic annotation of the ROI.

The test dataset of 300 images, including 150 images with 
fractures and 150 images without fractures, was used to evalu-
ate the capacity of the trained Faster R-CNN model in auto-
matic annotation of the ROI on images. First, using LabelImg 
(https://github.com/tzutalin/labelImg), 2 orthopedists with 
more than 5 years of orthopedic professional experience anno-
tated each image’s ROI as the ground truth bounds (GTBs), in 
which the whole distal radius was definitely encased. Then, 
a candidate boundary (CB) on each image with a GTB was 
annotated as the automatically detected ROI by the trained 
Faster R-CNN (Figure 1). The matrix sizes of the identified 
ROIs ranged from 207 to 223 pixels in width and from 208 
to 231 pixels in height, respectively. The Intersection of the 
Union (IOU) (Mitra et al. 2018) was calculated, as illustrated 

Figure 1. A wrist radiograph was manually annotated with a red rect-
angle as the ground truth bound and automatically annotated with a 
blue rectangle as the candidate bound. The red rectangle and blue 
rectangle represent edges of the region of interest (ROI) detected by 
the orthopedists and edges of the ROI detected by Faster R-CNN, 
respectively.
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in Figure 2, to statistically evaluate the trained Faster R-CNN, 
with a value greater than 0.5 indicating success in detecting 
the ROI on an image.

Training the diagnostic CNN model
We used Inception-v4 (Szegedy et al. 2017) as the diagnostic 
model, which has achieved state-of-the-art results in recent 
image classification contests.

In this study, only the images’ ROIs automatically annotated 
by Faster R-CNN were used as the recognition targets; after 
the ROI was extracted, the rest region on each initial image 
was discarded as unnecessary interference factors and noises. 
Since the areas where a DRF would occur were focused on, 
the Inception-v4 model’s training process of distinguishing 
images with fractures from normal images was much faster 
and more accurate than analyzing the entire image.

First, each initial image in the original training dataset, 
including 1,341 images with DRFs and 699 images without 
DRFs, was automatically annotated by the trained Faster 
R-CNN. The result of the annotations on 2,040 images was 
reviewed by 2 orthopedists, and each distal radius region was 
then confirmed to be appropriately encased in the bounds.

The ROIs extracted from all the annotated images were 
resized to 200 x 200 pixels, and stored as JPEG files, which 
were then augmented via the same technique as that used in 
the training of Faster R-CNN (Figure 3). Finally, there were 
6,120 images in the data pool as the final training dataset for 
the Inception-v4 model, including 4,023 images with DRFs 
and 2,097 images without DRFs; 15% of the dataset was ran-
domly selected into the validation dataset. The summary of the 
training course is illustrated in Figure 4. The detailed training 
procedure of the Inception-v4 model is shown in the Appendix. 

Figure 2. The formula with which 
the Intersection of the Union 
(IOU) was calculated.

Figure 3. A typical example of the aug-
mentation on 1 image from the anno-
tated training dataset during the training 
course of Inception-v4.

Figure 4. Flow diagram of the training and test 
courses of Faster R-CNN (shown in a green) and 
Inception-v4 (shown in a red).
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Evaluation of the diagnostic performance of Inception-v4
First, each initial image in the original test dataset, including 
150 images with DRFs and 150 images without DRFs, was 
automatically annotated by the trained Faster R-CNN. The 
result of the annotations on 300 images was reviewed by 2 
orthopedists, and each distal radius region was then confirmed 
to be appropriately encased in the bounds. The ROIs extracted 
from the 300 annotated images were all resized to 200 x 200 
pixels, and stored as JPEG files, consisting of a new test dataset.

The final analysis of the trained Inception-v4 model was 
performed using the new test dataset of 300 images to inspect 
its ability to discern images with fractures from the normal 
images. Each image was analyzed using the trained Inception-
v4 model, which resulted in a score representing the likeli-
hood that the image would be classified as “with a DRF” or 
“without a DRF.” This score had a continuous value between 0 
and 1. The receiver operating characteristic (ROC) curve was 
generated using a Python script (https://www.python.org), and 
the AUC was determined.

Evaluation of the performance of the medical profes-
sionals
We set up a group of radiologists and a group of orthopedists 
to compare their results with those of the CNN to evaluate 
its diagnostic performance. The groups consisted of 3 radi-
ologists who had at least 3 years of radiological professional 
experience and had passed the intermediate certificate exams 
and 3 orthopedists (none of whom participated in the validat-
ing process of review) with more than 5 years of orthopedic 
professional experience. The detailed procedure is described 
in the Appendix. Each image in the new test dataset was diag-
nosed as either “with a DRF” or “without a DRF.” In situations 
where disagreements arose in the same group regarding the 
diagnoses, the final decisions were made by a majority vote.

Comparison of the results of Inception-v4 and those 
of the medical professionals
After the ROC curve of Inception-v4 had been generated, the 
diagnostic cut-off at a threshold designed to maximize the 
Youden Index was set, and sensitivity, specificity, and accu-
racy of the Inception-v4 model were then calculated and sta-
tistically compared with these of the human groups.

Statistics
The SPSS software (version 22.0, IBM Corp, Armonk, NY, 
USA) was used to perform all statistical analyses. The demo-
graphic characteristics of all patients enrolled in this study are 
presented as mean (95% confidence intervals (CIs)) for age 
and count (percentage) for sex. P-values were derived from 
1-way analysis of variance for age and chi-square tests for sex. 
The significance level was set at p < 0.05.

The IOU of Faster R-CNN and AUC of Inception-v4 were 
calculated and described in terms of the means and CIs. CIs 
of the distributions for the 4 kinds of outcomes and for the 

differences in the outcomes between the CNN model and each 
human group were computed via bootstrapping with 10,000 
bootstraps. Comparisons between the CNN model and each 
human group were performed using a 1-way analysis of vari-
ance, followed by Dunnett’s test for multiple comparison with 
the significance level set at p < 0.05.

Ethics, funding, and potential conflicts of interest
The Ningbo Lihuili Hospital Ethics Committee approved the 
study (LH2018-039). Financial support for the study was from 
the Ningbo Natural Science Fund (No.2018A610164). All 
authors declare no conflicts of interest.

Results	
Demographic data of the included patients
All of the patient radiographs (1,366 men and 974 women) 
were kept anonymous throughout this study. The patients’ 
mean age at the time they took the radiographs was 48 years 
(20–88). No statistically significant difference was found in 
age (p = 0.4) between the group of patients with fractures and 
group of patients without fractures, but there was significant 
difference in sex between the 2 groups (p < 0.01) (Table 1).

Performance of Faster R-CNN
The learning courses of Faster R-CNN in the final training 
and validation datasets are shown in the Appendix. In the test 
dataset, the average IOU value of Faster R-CNN was 0.87 (CI 
0.86–0.87), and none of the IOU values was less than 0.5. 2 
orthopedists reviewed each annotated CB, which was con-
firmed by encasing the whole distal radius on each image.

Performance of the Inception-v4 model
The learning courses of Inception-v4 in the final training and 
validation datasets are shown in the Appendix.

The ROC curve for the test output of Inception-v4 is plotted 
in Figure 5, and the AUC was 0.96 (CI 0.94–0.99). At the opti-
mal cut-off point, the value of the threshold was 0.64.

Table 1. Demographic data of the whole dataset with 2,340 patients 
enrolled in this study

	 Patients	 Patients
	 with DRFs 	 without DRFs	 Total	 Comparison
Factor	  (n = 1,491)	  (n = 849)	 (n = 2,340)	 (p-value)

Age, mean (CI)	 48 (48–49)	 48 (47–49)	 48 (48–49)	 0.4
Sex, n (%)				  
 Male	 833 (56)	 533 (63)	 1,366 (58)	 < 0.01
 Female	 658 (44)	 316 (37)	 974 (42)	

DRFs = distal radius fractures.
CI = 95% confidence interval.
P-values were derived from 1-way analysis of variance for age and 
chi-square tests for sex.
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Comparison between the Inception-v4 model and 
human performance
The model showed a superior capacity compared with the 
radiologists’ group to distinguish images with DRFs from 
normal images in terms of accuracy, sensitivity, specificity, 
and Youden Index. The CNN model presented a similar diag-
nostic capability to that of the orthopedists in terms of the out-
comes (Tables 2 and 3).

Discussion

In our study, both deep learning models demonstrated an 
excellent ability to recognize image traits in wrist radiographs. 
The trained Faster R-CNN, which had a 100% success rate 
in automatically annotating the ROIs on images from the test 
dataset, acted as a valid auxiliary algorithm to the Inception-
v4 model, which was trained to distinguish images with DRFs 
from normal images. The Inception-v4 model exhibited a 
similar diagnostic capability to that of the orthopedists and 
superior performance to that of the radiologists.

Previous studies investigating the feasibility of applying 
CNNs to detect fractures on radiographs showed promising 
results, consistent with those of our study. Kim and MacKin-
non (2018) trained Inception-v3 to recognize wrist fractures 
on lateral wrist radiographs; their results showed that the value 
of AUC was 0.954 and the maximized values of the sensitivity 
and specificity were 0.9 and 0.88, respectively. Olczak et al. 
(2017) performed a study in which a Visual Geometry Group 
16-layer (VGG_16) network was trained to detect fractures on 
hand, wrist, and ankle radiographs with an accuracy of 83%, 
similar to the performance of the radiologists (who had an 
accuracy of 82%). Chung et al. (2018) evaluated the ability 
of the Residual Network (ResNet) model to detect and clas-
sify proximal humerus fractures using shoulder radiographs. 
The CNN showed superior top-1 accuracy, an accuracy of 
96%, which was greater than that of the orthopedists (93%). 
Urakawa et al. (2019) conducted a study in which they com-
pared the capacities of the VGG_16 network and orthopedic 
surgeons in detecting intertrochanteric fractures on radio-
graphs, revealing the diagnostic performance of the CNN; the 
CNN had an accuracy of 96%, which exceeded that of ortho-

Figure 5. The receiver operating characteristic (ROC) curve for the test 
output of the Inception-v4 model. The dots on the plot represent the 
sensitivity and 1-specificity of the human groups (the blue dot repre-
sents the orthopedists’ group; the red dot represents the radiologists’ 
group). The sensitivity/1-specificity dot of the radiologists’ group lies 
below the ROC curve of the Inception-v4 model, and the sensitivity/1-
specificity dot of the orthopedists’ group lies above the ROC curve of 
the Inception-v4 model.

Table 2. Diagnostic performance of the model and human groups

Factor	 Inception-v4	 Orthopedists	 Radiologists	 F-value	 p-value

Accuracy (%) [CI]	 279/300 (93) [90–96]	 281/300 (94) [91–96]	 252/300 (84) [80–88] a	 10.19	 < 0.001
Sensitivity (%) [CI]	 135/150 (90) [85–95]	 139/150 (93) [89–97]	 122/150 (81) [75–87] a	 5.07	 0.007
Specificity (%) [CI]	 144/150 (96) [93–99]	 142/150 (95) [91–98]	 130/150 (87) [81–92] a	 4.82	 0.009
Youden Index (CI)	 0.86 (0.80–0.91)	 0.87 (0.82–0.93)	 0.68 (0.61–0.75) a	 11.62	 < 0.001
 	
CI = 95% confidence interval.
a Statistically significant in a comparison of Inception-v4 and each human group (results from Dunnett’s test).

Table 3. Performance differences in the outcomes between Incep-
tion-v4 and each human group

	 Differences between Inception-v4 and 
	 orthopedists	 radiologists
Factor	 Difference a (CI)	 Difference b (CI)

Accuracy (%)	 –1 (–5 to 3)	 9 (3–15)
Sensitivity (%)	 –3 (–9 to 4)	 9 (1–16)
Specificity (%)	 1 (–5 to 7)	 9 (3–16)
Youden Index	 –0.01 (–0.09 to 0.06)	 0.18 (8–27)

CI = 95% confidence interval.
a Difference = (mean of the outcome of Inception-v4) – (mean of the  
   outcome of orthopedists).
b Difference = (mean of the outcome of Inception-v4) – (mean of the 
   outcome of radiologists).
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pedic surgeons, who had an accuracy of 92%. All the previous 
studies mentioned prepared the images that were used in the 
training datasets and test datasets by manually cropping them 
into certain matrix sizes before the images were input into the 
CNNs. Since the images were uniform and had concentrated 
matrix sizes, the ROIs on the images were recognized faster 
and more accurately by the deep learning models, thereby 
remarkably improving the efficiency of the CNNs in the learn-
ing and test procedures. We employed and trained the Faster 
R-CNN model to automatically annotate the ROIs on images 
as a reliable substitution for manual cropping, which resulted 
in a low processing time and decreased bias (Urakawa et al. 
2019). There is a great potential for the Inception-v4 model to 
be combined with Faster R-CNN to detect DRFs in clinical 
practice, where wrist radiographs with both ROIs and irrel-
evant regions are presented.

We plotted the ROC curve for the test output; at the opti-
mal cut-off point, Inception-v4 showed a sensitivity of 90% 
(135/150), which is much lower than the specificity (96%). 
In such conditions, some wrist AP radiographs with DRFs 
appeared to be misdiagnosed as normal images by the model, 
resulting in a delay in essential treatment for injured patients. 
After reviewing the 15 images with fractures, whose predicted 
values by the Inception-v4 model were less than the thresh-
old (0.64), we found that 5 of them displayed an absence of 
apparent fracture traits (e.g., fracture lines or fracture frag-
ment displacement). However, such traits were visible on the 
lateral radiographs corresponding to the AP images, as shown 
in Figure 6. The ensemble of model analyses using AP and 
lateral radiographs has the potential to enhance the sensitivity 
in fracture detection.

In the total enrolled dataset, there was a statistically signifi-
cant difference between the group of patients with DRFs and 
the group of patients without DRFs in sex (Table 1). This dif-
ference may affect the results of training and testing the CNN 
models due to difference in anatomical traits in distal radius 
between the male and the female (Oppermann et al. 2015). But 

Figure 6.	 The same wrist with a DRF in the anterior–posterior view 
radiograph (a) and in the lateral view radiograph (b). The hidden DRF 
in the anterior–posterior view was apparent in the lateral view (the frac-
ture is shown by the red arrow).

we cannot declare to what extent the effect of gender differ-
ence would be on the results in this study.

There are several limitations in our study. First, the original 
sample size in our dataset was small. However, we did not 
increase the original sample size by obtaining new wrist radio-
graphs from other medical centers to maintain uniformity in 
the image quality. This small sample size might restrict the 
improvement of the CNN’s performance in the training and 
test procedures. Data augmentation was used to address the 
sample size issue, since it can reduce over-fitting and improve 
performance (Wong et al. 2016). Second, the assessment of 
the diagnostic performance of the deep learning models was 
based on anterior–posterior wrist radiographs, so the proce-
dure may not represent a practical scenario. Typically, at least 
2 wrist radiographs (an anterior–posterior image and a lateral 
image) are obtained by the reader to review. We will inves-
tigate whether the performance of the CNN would improve 
when the dataset consists of anterior–posterior wrist radio-
graphs and matched lateral radiographs in our next planned 
project. Finally, we trained Inception-v4 to simply distinguish 
images with DRFs from normal images. The deep learning 
algorithm could accurately classify proximal humerus frac-
tures based on Neer’s classification on shoulder radiographs 
(Chung et al. 2018), so as part of our next project we will train 
the CNN model to classify DRFs based on 1 particular frac-
ture classification system.

In summary, the network exhibited a similar diagnostic 
capability to that of the orthopedists and a superior perfor-
mance to that of the radiologists in distinguishing AP wrist 
radiographs with DRFs from normal radiographs under lim-
ited conditions. Further studies are required to determine the 
feasibility of applying the diagnostic network with the object 
detection algorithm as an auxiliary in clinical practice under 
extended conditions.

Supplementary data
The inclusion and exclusion criteria for this study and the 
Appendix are available as supplementary data in the online 
version of this article, http://dx.doi.org/10.1080/17453674. 
2019.1600125
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