
Evolving images for visual neurons using a deep generative 
network reveals coding principles and neuronal preferences

Carlos R. Ponce#1,4,*, Will Xiao#2,*, Peter F. Schade#1,*, Till S. Hartmann1, Gabriel Kreiman3, 
Margaret S. Livingstone1,5

1Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.

2Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.

3Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 
02115, USA.

4Department of Neuroscience, Washington University School of Medicine, St. Louis MO 63110, 
USA.

5Lead Contact

# These authors contributed equally to this work.

SUMMARY

What specific features should visual neurons encode, given the infinity of real-world images and 

the limited number of neurons available to represent them? We investigated neuronal selectivity in 

monkey inferotemporal cortex using the vast hypothesis space of a generative deep neural 

network, avoiding assumptions about features or semantic categories. A genetic algorithm 

searched this space for stimuli that maximized neuronal firing. This led to the evolution of rich 

synthetic images of objects with complex combinations of shapes, colors, and textures, sometimes 

resembling animals or familiar people, other times revealing novel patterns that did not map to any 

clear semantic category. These results expand our conception of the dictionary of features encoded 

in the cortex, and the approach can potentially reveal the internal representations of any system 

whose input can be captured by a generative model.

In Brief

Neurons guided the evolution of their own best stimuli with a generative deep neural network.
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INTRODUCTION

A transformative revelation in neuroscience was the realization that visual neurons respond 

preferentially to some stimuli over others (Hubel and Wiesel, 1962). Those findings opened 

the doors to investigating neural coding for myriad stimulus attributes. A central challenge in 

elucidating neuronal tuning in visual cortex is the impossibility of testing all stimuli. Even 

for a small patch of 100 × 100 pixels, there are ~103,010 possible binary images, ~1024082 

grayscale images, or ~1072247 8-bit color images. Using natural images reduces the problem, 

but it is still impossible to present a neuron with all possible natural stimuli. Investigators 

circumvent this formidable empirical challenge by using ad hoc hand-picked stimuli, 

inspired by hypotheses that particular cortical areas encode specific visual features 

(Felleman and Van Essen, 1987; Zeki, 1973, 1974). This approach has led to important 

insights through the discovery of cortical neurons that respond to stimuli with specific 

motion directions (Hubel, 1959), color (Michael, 1978), binocular disparity (Barlow et al., 

1967), curvature (Pasupathy and Connor, 1999), and even complex natural shapes such as 

hands or faces (Desimone et al., 1984; Gross et al., 1972).
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Despite the successes using hand-picked stimuli, the field may have missed stimulus 

properties that better reflect the “true” tuning of cortical neurons. A series of interesting 

alternative approaches have addressed this question. One approach is to start with hand-

picked stimuli that elicit strong activation and systematically deform those stimuli (Chang 

and Tsao, 2017; Freiwald et al., 2009; Kobatake and Tanaka, 1994); this approach has 

revealed that neurons often tend to respond even better to distorted versions of the original 

stimuli (Freiwald et al., 2009; Leopold et al., 2006). Another is spike-triggered averaging of 

noise stimuli (Gaska et al., 1994; Jones and Palmer, 1987), but this has not yielded useful 

results in higher cortical areas, because it cannot capture non-linearities. An elegant 

alternative is to use a genetic algorithm whereby the neuron under study can itself guide its 

own stimulus selection. Connor and colleagues (Carlson et al., 2011; Yamane et al., 2008) 

pioneered this approach to study selectivity in macaque V4 and IT. Our method extends and 

complements this approach in order to investigate the tuning properties of inferior temporal 

cortex (IT) neurons in macaque monkeys.

Here we use a novel combination of a pre-trained deep generative neural network 

(Dosovitskiy and Brox, 2016) and a genetic algorithm to allow neuronal responses to guide 

the evolution of synthetic images. By training on more than one million images from 

ImageNet (Russakovsky et al., 2015), the generative adversarial network learns to model the 

statistics of natural images without merely memorizing the training set (Dosovitskiy and 

Brox, 2016); Fig. S1, thus representing a vast and general image space, constrained only by 

natural image statistics. We reasoned that this would be an efficient space in which to 

perform the genetic algorithm, because the brain also learns from real-world images, so its 

preferred images are also likely to follow natural image statistics. Moreover, convolutional 

neural networks emulate aspects of computation along the primate ventral visual stream 

(Yamins et al., 2014), and this particular generative network has been used to synthesize 

images that strongly activate units in several convolutional neural networks, including ones 

not trained on ImageNet (Nguyen et al., 2016). The network takes 4096-dimensional vectors 

(image codes) as input and deterministically transforms them into 256×256 RGB images 

(STAR METHODS, Figure 1). In combination, a genetic algorithm used responses of 

neurons recorded in alert macaques to optimize image codes input to this network. 

Specifically, each experiment started from an initial population of 40 images created from 

random achromatic textures (Portilla and Simoncelli, 2000) (Figure 1B). We recorded 

responses of IT neurons (spike counts 70–200 ms after stimulus onset minus background) 

while monkeys engaged in a passive fixation task. Images subtended 3°×3° and covered the 

unit’s receptive field (Figure 1C). Neuronal responses to each synthetic image were used to 

score the image codes. In each generation, images were generated from the top 10 image 

codes from the previous generation, unchanged, plus 30 new image codes generated by 

mutation and recombination of all the codes from the preceding generation selected based on 

firing rate (Figure 1D). This process was repeated for up to 250 generations over 1–3 hours; 

session duration depended on the monkey’s willingness to maintain fixation. To monitor 

changes in firing rate due to adaptation and to compare synthetic-image responses to natural-

image responses, we interleaved reference images that included faces, body parts, places and 

simple line drawings.
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We term the overall approach XDREAM (EXtending DeepDream with Real-time Evolution 

for Activity Maximization in real neurons; Figure 1D). We conducted evolution experiments 

on IT neurons in six monkeys: two with chronic microelectrode arrays in posterior IT (PIT, 

monkeys Ri and Gu), two with chronic arrays in central IT (CIT, monkeys Jo and Y1), one 

monkey, Ge, with chronic arrays in both CIT and PIT, and one with a recording chamber 

over CIT (monkey B3). Lastly we validated the approach in a seventh monkey with a 

chronic array in primary visual cortex (V1, monkey Vi).

RESULTS

Evolution of preferred stimuli for units in CaffeNet

We first validated XDREAM on units in an artificial neural network, as models of biological 

neurons. Our method generated super stimuli for units across layers in CaffeNet, a variant of 

AlexNet (Figure 2) (Krizhevsky et al., 2012). The evolved images were frequently better 

stimuli than all of >1.4 million images, including the training set for CaffeNet, for all 4 

layers that we tested (Figure 2C). For units in the first and last layers, the method produced 

stimuli that matched the ground-truth best stimuli in the first layer and category labels in the 

last layer. XDREAM is also able to recover the preferred stimuli of units constructed to have 

a single preferred image (Fig. S1). Importantly, well-known methods for feature 

visualization in artificial neural networks, such as DeepDream, rely on knowledge of 

network weights (Erhan et al., 2009; Mordvintsev et al., 2015; Nguyen et al., 2016), whereas 

our approach does not, making it uniquely applicable to neuronal recordings.

Evolution of preferred stimuli by one biological neuron

We first show an example of an evolution experiment for one PIT single unit (Ri-10) in 

chronic-array monkey Ri. The synthetic images changed with each generation as the genetic 

algorithm optimized the images according to the neuron’s responses (Figure 3; Video S1). 

At the beginning of the experiment, this unit responded more strongly to the reference 

images than to the synthetic images, but over generations, the synthetic images evolved to 

become more effective stimuli (Figure 4A). To quantify the change in responses over time, 

we fit an exponential function to the cell’s mean firing rate per generation, separately for the 

synthetic and for the reference images (solid thick lines in Figure 4A). This neuron showed 

an increase of 51.5±5.0 (95% CI) spikes/s/generation in response to the synthetic images and 

a decrease of −15.5±3.5 spikes/s/generation to the reference images — thus the synthetic 

images became gradually more effective, despite the neuron’s slight reduction in firing rate 

to the reference images, presumably due to adaptation.

We conducted independent evolution experiments with the same single unit on different 

days, and all final-generation synthetic images featured a brown object against a uniform 

background, topped by a smaller round pink/brown region containing several small dark 

spots; the object was centered toward the left half of the image, consistent with the recording 

site being in the right hemisphere (Figure 4B). The synthetic images generated on different 

days were similar by eye, but not identical, potentially due to invariance of the neuron, 

response variability, and/or stochastic paths explored by the algorithm in the neuron’s 

response landscape. Regardless, given that this unit was located in PIT, just anterior to the 
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tip of the inferior occipital sulcus and thus early in the visual hierarchy, it was impressive 

that it repeatedly directed the evolution of images that contained such complex motifs and 

that evoked such high firing rates. Two days following the evolution experiment in Figure 3 

this unit was screened with 2,550 natural images, including animals, bodies, food, faces and 

line drawings, plus the top synthetic images from each generation. Among the natural 

images this neuron responded best to monkey torsos and monkey faces. Of the 10 natural 

images in this set giving the largest responses, five were of the head and torso of a monkey 

(Figure 4C). The worst natural images were inanimate or rectilinear objects (Figure 4D, E).

Evolution of preferred stimuli in other neurons

We conducted 46 independent evolution experiments on single- and multi-unit sites in IT in 

six different monkeys. During almost all the evolutions, the synthetic images evolved 

gradually to become increasingly effective stimuli. To quantify the change in stimulus 

effectiveness over each experiment we fit an exponential function to the mean firing rate per 

generation, separately for synthetic and reference images (as in Figure 3A). Synthetic-image 

firing rate change over the course of each experiment was on average between 25 to 84 

spikes/s for the different animals (Figure 5A); synthetic image changes were significantly 

different from zero in 45 out of 46 individual experiments (95% CI of amplitude estimate 

not including zero per bootstrap test). In contrast, responses to reference images were stable 

or decreased slightly across generations (reference firing rate change average for different 

animals ranged from −11 to 9 spk/s; this change was significant in 15 out of 46 individual 

experiments, Figure 5A, Table S1). Thus IT neurons could consistently guide the evolution 

of highly effective images, despite minor adaptation. Moreover, these evolved images were 

often more powerful stimuli for these neurons than were the best natural images tested, 

despite the fact that the synthetic images were far from naturalistic. When comparing the 

cells’ maximum responses to natural vs. evolved images in every experiment, cells showed 

significant differences in 25 of 46 experiments (P < 0.03, permutation test after false 

discovery correction), and, in all but one case, the synthetic images evoked the greater 

response (Figure 5B; see Table S4 for further quantification of natural and evolved image 

responses). Figure 5C shows a histogram of response magnitudes for PIT cell Ri-10 to the 

top synthetic image in each of the 210 generations and responses to each of the 2550 natural 

images (data for both synthetic and natural images collected 2 days later). Early generations 

are indicated by lighter gray and later by darker, so it is apparent that later generation 

synthetic images gave larger responses. We also illustrate one of the few experiments where 

natural images evoked stronger responses than did synthetic images in Figure 5D (monkey 

Ge, site 7), which compares the site’s responses to synthetic images against 2,550 natural 

images. This site responded slightly better (by an average of four spikes/s, or 3.7% of its 

maximum rate) to images of an animal-care person who visits the animals daily, wearing our 

institution-specific protective mask and gown. Even in this case, one clear benefit of 

XDREAM is that, by coming up with effective stimuli in a manner independent from the 

hand-picked image set, it reveals specific features of the natural image that drove the 

neuron’s selectivity, stripped of incidental information.

IT neurons guided the evolution of images that varied from experiment to experiment, but 

retained consistent features for any given recording site (see Fig. S4 for measure of 
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similarity across and between sites), features that bore some similarity to each neuron’s 

preferences in natural image sets. Figure 6 shows the final-generation evolved images from 

two independent evolution experiments for IT sites in five monkeys, along with each site’s 

top 10 natural images. In each case a reproducible figure emerged in the part of the synthetic 

image corresponding to the contralateral visual field. In three monkeys (Ri, Gu, and Ge) 

response profiles to natural images indicated that the arrays were located in face-preferring 

regions, whereas in monkey Y1, the array was in a place-preferring region, and in monkey 

Jo the array was in an object selective region. Face-selective unit Ri-23 evolved something 

face-like in the left (contralateral) half of the image; this is most apparent if one covers up 

the right (ipsilateral) half of the synthetic image. The images evolved by unit Ge-7 bore 

some resemblance to the unit’s top natural image, a familiar person wearing protective 

clothing (see Fig. S3 for additional independent evolutions from this site). Unit Ge-15 

consistently evolved a black dot just to the left of fixation on a tan background (see Fig. S3 

for additional independent evolutions from this site). This unit may be similar to posterior-

face-patch neurons described previously that responded optimally to a single eye in the 

contralateral field (Issa and DiCarlo, 2012) (see Fig. S3 for additional independent 

evolutions from this site). Monkey-face-selective unit Ge-17 evolved a tan area with two 

large black dots aligned horizontally, and a light area below (see Fig. S3 for additional 

independent evolutions from this site). Unit Jo-6 responded to various body parts, and 

evolved something not inconsistent with a mammalian body; interestingly, a whole ‘body’ in 

one evolution and a larger partial ‘body’ in the other. Unit Jo-5 evolved a small black square, 

and unit Jo-4 something black with orange below. Unit Jo-21 consistently evolved a small 

dark shape in the contralateral half of the image. Scene-selective unit Y1–14 evolved 

rectilinear shapes in the left (contralateral) field. Additional independent evolutions for some 

of these and other units are shown in Fig. S3.

Predicting neuronal responses to a novel image from its similarity to the evolved stimuli

If these evolved images are telling us something important about the tuning properties of IT 

neurons, then we should be able to use them to predict neurons’ responses to novel images. 

The deep generator network had been trained to synthesize images from their encoding in 

layer fc6 of AlexNet (4096 units;(Krizhevsky et al., 2012)), so we used the fc6 space to find 

natural images similar to the evolved images. In particular, we could ask whether a neuron’s 

response to a novel image was predicted by the distance in fc6 space between the novel 

image and the neuron’s evolved synthetic image. To do this we calculated the activation 

vectors of the evolved synthetic images in AlexNet fc6 and searched for images with similar 

fc6 activation vectors. We used 2 databases for this: the first comprised ~60,000 images 

collected in our laboratory over several years, and the second set comprised 100,300 images 

from the ILSVRC2012 dataset (Russakovsky et al., 2015); we included 100 randomly 

sampled images from each of its 1,000 categories, and two additional ImageNet categories 

of faces [ID n09618957], macaques [ID n02487547], as well as 100 images of local animal 

care personnel with and without personal protective garb.

First, we focus on the evolution experiment for PIT single unit Ri-17. This cell evolved a 

discrete shape near the top left of the image frame, comprising a darkly outlined pink convex 

shape with two dark circles and a dark vertical line between them (Fig. S5A). When tested 
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with the 2,550 natural images, this neuron responded best to images of monkeys, dogs, and 

humans (Fig. S5B). We propagated this evolved image through AlexNet along with the 

100,300 ImageNet examples, ranked all the fc6 vectors by their Pearson correlation to the 

evolved image vector, and identified the closest, middle, and farthest 100 matches. The 

synthetic image showed an average vector correlation of 0.38 to the closest images, 0.06 to 

the middle and −0.14 to the farthest images. The 9 nearest ImageNet images were cats, dogs 

and monkeys (Fig. S5C). To visualize the common shape motifs of this image cluster, we 

identified the individual fc6 units most strongly activated by the synthetic image and used 

activation maximization (deepDreamImage.m) to generate examples of preferred shapes for 

those fc6 units. All the units preferred round tan/pink regions with small dark spots (Fig. 

S5D). To rule out that these matches could be due to an overrepresentation of animals in 

ImageNet, we also looked at the least correlated matches, which were indeed not animals, 

but were pictures of places, rectilinear textures, or objects with long straight contours (Fig. 

S5E).

We applied this image-search approach to all evolution experiments by identifying the top 

100 matches to every synthetic image in fc6 space (the Pearson correlation coefficients of 

these images ranged from 0.30 to 0.61, median 0.36) and visualized the WordNet 

(PrincetonUniversity, 2010) labels of the matching images via word clouds. In monkey Ri, 

whose array showed natural-image preferences for faces, the categories that best matched 

the synthetic images were “macaques”, “toy terrier”, and “Windsor tie” (the latter containing 

images of faces and bodies) (Fig. S5F); in contrast, in monkey Y1, where most of the 

neurons in the array had shown natural-image preferences for places, the categories that best 

matched were “espresso maker,” “rock beauty” (a type of fish), and “whiskey jug”; by 

inspection these images all contained extended contours (Fig. S5G). We confirmed this 

matching trend by quantifying the WordNet hierarchy labels associated with every matched 

natural image (Table S2).

To find out whether similarity in fc6 space between a neuron’s evolved synthetic image and 

a novel natural image predicted that neuron’s response to that novel image, we first 

performed 3–4 independent evolution experiments using the same (single- or multi-) unit in 

each of three animals. After each evolution, we took the top synthetic image from the final 

generation and identified the top 10 nearest images in fc6 space, 10 images from the middle 

of the distance distribution and the farthest (most anticorrelated) 10 images (9 of each shown 

in Figure 7A). Then, during the same recording session, we presented these images to the 

same IT neurons and measured the responses to each group (near, middle, far) as well as to 

all 40 evolved images of the last generation. Figure 7B shows that synthetic images gave the 

highest responses, the nearest natural images the next highest responses, and the middle and 

farthest images the lowest. To quantify this observation, we fit linear regression functions 

between the ordinal distance from the synthetic image (near, middle, and far) and the unit’s 

mean responses, and found median negative slopes ranging from −5.7 to −21.1 spikes/s 

across monkeys (Table S3). Thus distance from the evolved synthetic image in fc6 space 

predicted responses to novel natural images. This does not indicate that this space is the best 

model for IT response properties; instead, this shows that it is possible to use the neurons’ 

evolved images to predict responses to other images. Importantly, responses to the synthetic 

images were the highest of all.
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Invariance to evolved vs natural images

IT neurons retain selectivity despite changes in position, size and rotation (Ito et al., 1995; 

Kobatake and Tanaka, 1994), although it has been reported that more selective neurons are 

less transformation-invariant (Zoccolan et al., 2007). The later observation is also consistent 

with the alternative interpretation that the more optimal a stimulus is for the neuron, the less 

invariant the neuron will be, and this is consistent with what we found. To compare the 

invariance of IT neurons to synthetic and natural images, we presented 3 natural and 3 

evolved synthetic images at different positions, sizes and fronto-parallel rotations in two 

animals (monkeys Ri and Gu). The natural images were chosen from the nearest, middle, 

and farthest matches from ImageNet. The synthetic images were chosen from the final 

generation. Every image was presented at three positions relative to the fovea: (−2.0°, 

−2.0°), (−2.0°, 2.0°) and (0.0°, 0.0 °); three sizes (width of 1°, 2°, 4°) and 4 rotations (0°, 

22°, 45° and 80°, counterclockwise from horizontal) (Fig. S6A). Invariance was defined as 

the similarity (correlation coefficient) in the neuron’s rank order of preferences for images 

under different transformation conditions (the more similar the rank order, the higher the 

invariance). The rank order was better maintained across transformations for the natural 

images than for the synthetic images (Fig. S6 B&C). Thus the degree of invariance for these 

neurons changed depending on the stimulus set, and the neurons were the least invariant for 

the more optimal synthetic images. This result suggests that the degree of invariance 

measured for particular neurons may not be a fixed feature of that neuron, but rather may 

depend on the effectiveness of the stimulus used to test the invariance.

Evolution of preferred stimuli for populations of neurons

Single- and multi-units in IT successfully guided the evolution of synthetic images that were 

stronger stimuli for the neuron guiding the evolution than large numbers of natural images. 

To see if our technique could be used to characterize more coarsely sampled neuronal 

activity than a single site, we asked whether we could evolve strong stimuli for all 32 sites 

on an array. Each of the chronically implanted arrays had up to 32 visually responsive sites, 

spaced 400 μm apart. We conducted a series of evolution experiments in 3 monkeys (Ri, Gu, 

and Y1) guided by the average population response across the array. Evolution experiments 

for all 3 monkeys showed increasing responses to synthetic images over generations 

compared to reference images: The median population response changes to synthetic images 

for monkeys Ri, Gu and Y1 were 9.4 spikes/s/generation (2.8 – 19.6, 25th-75th percentile), 

30.7 (17.6 – 48.3, 25th-75th %tile) and 27.8 (18.8 – 39.6, 25th-75th %tile). In these 

population-guided evolutions, 61%, 93% and 99.5% of individual sites showed increases in 

firing rate (statistical significance defined by fitting an exponential function to 250 

resampled firing rate/generation curves per site; an increase was significant if the 95% CI of 

the amplitude bootstrap distribution did not include zero). Therefore larger populations of IT 

neurons could successfully create images that were on average strong stimuli for that 

population. When the populations were correlated in their natural-image preferences, the 

synthetic images were consistent with those evolved by individual single sites in the array: 

for example, in monkey Ri, the population-evolved images contained shape motifs 

commonly found in ImageNet pictures labeled “macaques,” “wire-haired fox terrier,” and 

“Walker hound.” This suggests that the technique can be used with coarser sampling 
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techniques than single-unit recordings, such as local field potentials, electrocorticography 

electrodes, or even functional magnetic resonance imaging.

Testing XDREAM using the ground truth of primary visual cortex

We recorded from one single unit and three multiunit sites (six evolution experiments total) 

in monkey Vi, which had a chronic microelectrode array in V1. The stimuli were centered 

on each receptive field (measuring ~0.79° square root of the area), but wer e kept at the same 

size as in the IT experiments (3°×3°-wide). In addition to the synthetic images, we 

interleaved reference images of gratings (3°×3° area) of different orientations (0°, 45°, 90° 

and 1 35°) and spatial frequencies (~0.5, 1 and 2 cycles/°) at 100% contrast. In all 

experiments, neurons showed an increase in firing rate to the synthetic images (median 84.0 

spikes/s/generation, 77.4 – 91.2, 25th-75th percentile; Table S1). Thus on average, V1 sites, 

like IT, responded well to late-generation synthetic images (Table S4). To measure the 

distribution of orientations of the region of the synthetic images that fell within each V1 

receptive field (~0.8°×0.8°), we performed a discrete Fourier transform analysis on the 

central 0.8°×0.8° of the synthetic images and correlated the resulting spectrogram to the 

spectrograms expected from 16 gratings with orientations ranging from 0° to 135°. Across 

experiments, the mean correlation between the orientation content profile of the patch and 

the orientation tuning measured from the gratings was 0.59±0.09 (mean ± SEM), compared 

to 0.01±0.26 for a shuffled distribution (P-values ≤ 0.006 in 5/6 experiments, permutation 

test, Niterations = 999). Thus V1 neurons guided the evolution of images dominated by their 

independently measured preferred orientation.

DISCUSSION

We introduce XDREAM, a new algorithm for studying the response properties of visual 

neurons using a vast generative image space. Our approach is an extension of previous work 

that uses adaptive sampling to reveal neuronal tuning in the ventral stream (Carlson et al., 

2011; Hung et al., 2012; Kalfas et al., 2017; Vaziri et al., 2014; Vaziri and Connor, 2016; 

Yamane et al., 2008). In our approach, adaptive sampling enables the exploration of a 

stimulus space potentially large enough to span the selectivity of ventral pathway neurons. 

Starting with random textures and evolving images based on neuronal responses, the 

algorithm created images that elicited large responses in V1, in different parts of IT, in 

single-units, in multi-units, and in average population responses. Remarkably, XDREAM 

evolved stimuli that evoked higher responses than the best natural images found by an 

extensive exploration of large image sets.

A powerful approach for modeling neuronal responses has been to use stimuli sampled in a 

fully-defined parametric space. For example, one innovative study (Yamane et al., 2008), 

which inspired our approach, defined response properties in IT according to 3D curvature 

and orientation. In a more recent study, Chang and Tsao (2017) used face images 

parameterized along appearance and shape axes to describe and predict neuronal responses 

in face patches. Parametric stimulus spaces lead to quantitative neuronal models that are 

easier to describe than models built on the learned, vast, and latent space of a deep network. 

But these approaches are complementary: standard parametric models operate in a 
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circumscribed shape space, so these models may not capture the entire response variability 

of the neuron. Generative neural networks are powerful enough to approximate a wide range 

of shape configurations, even shapes diagnostic of monkey faces or bodies. If the response 

evoked by the best stimulus in a parametric space is less than that evoked by a generative-

network stimulus, it would indicate that the parametric model is overly restricted. This is 

important because a neuron could be tuned to different aspects of a stimulus: a face-

preferring neuron might show tuning for high curvature, but curvature tuning alone is 

insufficient to explain the neuron’s selectivity. A generative-network-based approach can 

serve as an independent, less constrained, test of parametric models. Indeed, in some 

instances, the evolved stimuli contained features of animal faces, bodies, and even animal-

care staff known to the monkeys, consistent with theories of tuning to object categories and 

faces, whereas in other instances, the evolved stimuli were not identifiable objects or object 

parts, suggesting aspects of neuronal response properties that current theories of visual 

cortex have missed. Thus our approach can also serve as an initial step in discovering novel 

shape configurations for subsequent parametric quantification. In sum, our approach is well-

positioned to corroborate, complement, contrast with, and extend the valuable lessons 

learned from these previous studies.

What are these powerful stimuli ‘dreamed of’ by the neurons? To start to answer this, we 

looked for images that were nearest to the evolved images in AlexNet layer fc6 space, 

because the generative network had been trained on that space and because higher layers of 

this network can predict neuronal responses (Yamins et al., 2014). Similarity to the evolved 

images in fc6 space predicted neuronal selectivity. For neurons defined using natural images 

as monkey- and face-preferring the closest images to the evolved ones were macaques and 

dogs or contained faces and torsos of monkeys or other mammals. In contrast, for place-

preferring neurons, the nearest images instead included a variety of objects with extended 

straight contours, such as espresso makers and moving vans.

Although the evolved synthetic images were not life-like, sometimes not even identifiable 

objects, they nevertheless tell us something quite novel about what information might be 

encoded by IT neurons. PIT neurons have been reported to be selective for low-level features 

like radial gratings (Pigarev et al., 2002), color (Zeki, 1977), or single eyes (Issa and 

DiCarlo, 2012), and face cells in CIT have been shown to be tuned to distinct face-space 

axes (Chang and Tsao, 2017; Freiwald et al., 2009). Our experiments revealed that both PIT 

and CIT neurons evolved complex synthetic images, usually consisting of intact objects with 

multiple, spatially organized, features and colors, not just disjointed object parts. This is 

consistent with the finding that even cells tuned to particular feature parameters, like eye 

size, do not respond well to that parameter in isolation, but rather only in context (Freiwald 

et al., 2009). It has been proposed that neurons are tuned to abstract parameters, such as axes 

(Chang and Tsao, 2017; Freiwald et al., 2009; Leopold et al., 2006) that distinguish between 

things in the environment, rather than being tuned to the things themselves. That is, neuronal 

responses may carry information about an object in the environment, not a veridical 

representation of it. The unrealistic nature of our evolved images, plus the fact that these 

images were more effective than most or all the images in an extensive natural-image 

database, suggest that these images may lie somewhere on tuning axes that extend beyond 

anything the animal would normally encounter. Lastly, the neurons that evolved images 
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resembling lab staff wearing face masks indicate a major role for experience in the 

development of neuronal response properties (Arcaro et al., 2017).

It is unclear whether our approach has uncovered globally optimum stimuli for these cells, 

but it is equally unclear whether there should be a single global optimum stimulus for a 

neuron. Different evolutions for the same units yielded synthetic images that shared some 

features but differed in others (e.g. Figure 4B), as would be expected from a cell that shows 

invariance to nuisance transformations like position, color, or scale. Even in early visual 

areas complex cells respond equally well to the same stimulus in multiple locations within a 

cell’s receptive field (Hubel and Livingstone, 1985; Hubel and Wiesel, 1968), and this 

complexification/OR gate-like operation is likely to occur at multiple levels in the hierarchy 

(Hubel and Livingstone, 1985; Riesenhuber and Poggio, 1999), so it follows that multiple 

different feature combinations could strongly activate a particular neuron in IT. However, the 

facts that our approach can recover known properties of neurons; that it can discover 

unknown response properties; that the synthetic images can be better than any in a large set 

of natural stimuli; and even better than highly-optimized stimuli based on convolutional 

neural network models of neurons—currently the best models of visual neurons 

(Supplementary Fig. S7 Supplementary Table S6) —all indicate that we have discovered 

stimuli that give us a best glimpse at what IT neurons are tuned to. These results 

complement classical methods for defining neuronal selectivities and demonstrate the 

potential for uncovering internal representations in any modality that can be captured by 

generative neural networks.

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Requests for resources should be directed to and will be fulfilled by the Lead Contact, 

Margaret Livingstone (mlivingstone@hms.harvard.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures were approved by the Harvard Medical School Institutional Animal Care and 

Use Committee, and conformed to NIH guidelines provided in the Guide for the Care and 

Use of Laboratory Animals.

Behavior—Six adult male macaca mulatta (9 −13 kg; 5–14 years old) and one adult male 

macaca nemestrina (9kg, 10 years old) were socially housed in standard quad cages on 

12/12hr light/dark cycles.

Recording arrays—Monkeys Ri, Gu, Ge, Jo, and Y1 were implanted with custom 

floating microelectrode arrays manufactured by MicroProbes for Life Sciences 

(Gaithersburg, MD); each had 32 platinum/iridium electrodes per ceramic base, electrode 

lengths of 2–5 mm, impedances between 0.7– 1.0 MΩ. The recording sites in the chronic 

arrays were stable across days; in particular, for all the experiments where we compare 

evolutions from the same site recorded on different days, the correlation in category 

preference was greater than 0.89. Monkey Vi was implanted with a 96channel Utah array 
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(Blackrock microsystems, Salt Lake City, Utah). Monkey B3 had an acute recording 

chamber, and neuronal activity was recorded using a 32 channel NeuroNexus Vector array 

(Ann Arbor, Michigan) that was inserted each recording day.

Surgical procedures—All animals were implanted with custom-made titanium or plastic 

headposts before fixation training. After several weeks of fixation training, the animals 

underwent a second surgery for array or chamber implantation. PIT insertion sites were just 

anterior to the inferior occipital sulcus; CIT sites were on the lower lip of the STS 6–8 mm 

anterior to the interaural line. All surgeries were done under full surgical anesthesia using 

sterile technique.

METHOD DETAILS

Behavioral task—The monkeys were trained to perform a fixation task. They fixated on a 

0.2°diameter fixation spot in the middle of the screen. Eye position was monitored using an 

ISCAN system (Woburn, MA). Animals were rewarded with a drop of water or juice for 

maintaining fixation within 1.0° of the fixation spot for 2–7 image presentations; the interval 

was gradually decreased over the experimental session as the monkey’s motivation 

decreased.

Physiological recording—Neural signals were amplified and extracellular action 

potentials were isolated using the box method of an on-line spike sorting system (Plexon, 

Dallas, TX). Spikes were sampled at 40 kHz.

Deep Generative Neural Network—The pre-trained generative network (Dosovitskiy 

and Brox, 2016) was downloaded from the authors’ website (lmb.informatik.uni-freiburg.de/

resources/software.php) and used without further training with the Caffe library (Jia et al., 

2014) in Python. To synthesize an image from an input image code, we forward propagated 

the code through the generative network, clamped the output image pixel values to the valid 

range between 0 and 1, and visualized them as an 8-bit color image. Some images 

synthesized by the network contained a patch with a stereotypical shape that occurred in the 

center right of the image (e.g., second and third image in Figure 4B, and ‘late synthetic’ in 

Figure 5 C,D). This was identified as an artifact of the network commonly known as “mode 

collapse” and it appeared in the same position in a variety of contexts, including a subset of 

simulated evolutions. This artifact was easily identifiable and it did not affect our 

interpretations. In the future, more modern GNN training methods should avoid this problem 

(personal correspondence with Alexey Dosovitskiy).

Initial generation—The initial generation of image codes for all evolution experiments 

reported here was 40 achromatic textures constructed from a set of Portilla and Simoncelli 

(2000) textures, derived from randomly sampled photographs of natural objects on a gray 

background. We started from all-zero codes and optimized for pixelwise loss between the 

synthesized images and the target images using backpropagation through the network for 

125 iterations, with a learning rate linearly decreasing from 8 to 1 × 10−10. The resulting 

image codes produced blurred versions of the target images, which was expected from the 
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pixelwise loss function and accepted because the initial images were intended to be quasi-

random textures.

Genetic algorithm—The algorithm began with an initial population of 40 image codes 

(‘individuals’), each consisting of a 4096-dimensional vector (‘genes’) and associated with a 

synthesized image. Images were presented to the subject, and the corresponding spiking 

response was used to calculate the ‘fitness’ of the image codes by transforming the firing 

rate into a Z-score within the generation, scaling it by a selectiveness factor of 0.5, and 

passing it through a softmax function to become a probability. The 10 highest-fitness 

individuals were passed on to the next generation without recombination or mutation. 

Another 30 children image codes were produced from recombinations between two parent 

image codes from the current generation, with the probability for each image code to be a 

parent being its fitness. The two parents contributed unevenly (75%:25%) to any one child. 

Individual children genes had a 0.25 probability of being mutated, with mutations drawn 

from a 0-centered gaussian with standard deviation 0.75. Hyperparameter values were not 

extensively optimized. All source code is available upon request.

Evolutions in CaffeNet units—We selected 100 random units each in 4 layers in 

CaffeNet as targets for evolution. For convolutional layers, only the center unit in each 

channel was used. Each unit was evolved for 500 generations, 10,000 image presentations 

total. The best image in the last generation was used in the analysis, although most of the 

total activation increase was achieved by 200 generations. As a control, we recorded 

activations of the units to all 1,431,167 images in the ILSVRC2012 dataset, including the 

training set of CaffeNet. To visualize the ground truth best in CaffeNet layer conv1, 11 × 11 

× 3 images were produced from the 11 × 11 × 3 filter weights according to image(x, y, c) = 

0.5 + sign(weight(x, y, c))/2, because this is a linear transformation. In other words, positive 

weights corresponded to a pixel value of 1 and negative weights 0, and the ground truth 

optimum only contained black, white, red, green, blue, magenta, cyan, and yellow pixels. To 

further visualize the magnitude of the weights, each pixel was made transparent to a grey 

checkerboard in inverse proportion to its contribution to the overall activation, so that the 

greyer a pixel, the less it affected the overall activation.

Visual stimuli—We used MonkeyLogic2 (https://www.nimh.nih.gov/labs-at-nimh/

research-areas/clinics-and-labs/ln/shn/monkeylogic/index.shtml) as the experimental control 

software. Images were presented on an LCD monitor 53 cm in front of the monkey at a rate 

of 100 ms on, 100–200 ms off. Most of the images were from (Konkle et al., 2010); human 

and monkey images were from our lab, and the rest of the images were from public domain 

databases.

QUANTIFICATION AND STATISTICAL ANALYSIS

Spike rate changes during evolutions—We defined the neuronal response as the spike 

rate measured in the 70–200 ms time window after image onset and subtracted the rate in the 

0–60 ms window. In the evolution experiments, there were 40 synthetic and 40 reference 

images per generation, each presented once. To track firing rate change per generation, we 

averaged responses to all 40 synthetic and 40 reference images separately. To estimate the 
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inter-generational changes in response we fit the mean response/generation separately for 

synthetic and reference images with a decaying exponential function −a × exp − x
τ + c, 

which models firing rate as starting at the first block with rate and asymptotically 

approaching the rate (a + c) with decay constant τ. We restricted the amplitude change to be 

within physiologically plausible values (magnitude no more than the absolute maximum rate 

difference between any two generations in that day). To assess statistical significance, we 

generated new mean rate per generation curves by resampling responses (with replacement) 

from each of the 40 synthetic and 40 reference image presentations within one generation, 

then fit the exponential function each time (N = 500 repetitions). The 95% confidence 

intervals reported are the 0.025/500 and 0.975/500 (12th and 488th) value of the 

bootstrapped distribution. We used responses from all generations except for one acute 

experiment in monkey B3, where a single-unit isolation change nullified the initial 15 

generations and two chronic experiments in monkey Ge, where spike thresholding 

adjustments nullified the initial 17 generations in one experiment, and the final 35 

generations in the other.

Responses to evolved vs. reference images—For every evolution experiment, we 

measured how the neurons’ maximum firing rate to the evolving images compared to the 

neurons’ maximum firing rate to the reference images. To estimate maximum firing rate and 

its standard error, we re-sampled (with replacement) all single-trial responses to synthetic or 

reference images, computed the observed maximum per sample, repeated 500 times and then 

reported the mean and standard deviation across samples. To determine if the max firing 

rates to synthetic images were different from those to reference images, we used a 

randomization test: We created a null distribution of differences between two maximum 

responses by randomly sampling twice from the pooled distribution of synthetic and 

reference images and measuring the difference in the maximum response between the 

samples. We repeated this process 499 times, and then measured how often the absolute 

differences for the mixed-distribution were larger than the observed absolute maximum 

difference. This two-tailed test indicated if either the reference or synthetic images evoked a 

significantly larger maximum response.

Assigning natural image labels to the evolved images—Every evolved image was 

propagated through AlexNet and its fc6-layer activation was compared to those of 100,300 

natural images sampled from ImageNet. Every photograph in ImageNet is labeled by 

categories defined by WordNet, a hierarchically organized lexical database 

(PrincetonUniversity, 2010). After ranking every natural image by its proximity to the 

evolved image, measured by Pearson correlation coefficient, we used a tree search algorithm 

to crawl through each labeled image’s label hierarchy for the specific search terms-- 

“macaque,” “monkey”, “face,” and “appliance” (“place” was not used because place images 

often contained people). We measured the frequency of labels associated with all evolved 

images for every subject. To estimate confidence intervals for every observed frequency, we 

re-sampled the top matches to each evolved image 200 times (with replacement) and 

repeated the analysis. To test if the frequency of photographs labeled “monkeys” and 

“appliance” were statistically different between subjects Ri and Y1, we used a permutation 

test. The null hypothesis was that these frequency values arose from the same distribution, so 
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we shuffled labels from the Ri and Y1 populations, sampling twice with replacement, and 

measured the difference, 500 times. We then compared the observed difference in frequency 

values with the null distribution.

Calculation of stimulus rank order—Background was firing rate 0 to 60 ms after 

stimulus onset. Spikes evoked in response to each stimulus were averaged over all stimulus 

presentations from 70 to 200 ms after stimulus onset, minus background. Rank order was 

determined from the evoked firing rate for each stimulus.

DATA AND SOFTWARE AVAILABILITY

Source code is available at https://github.com/willwx/XDream.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A generative deep neural network evolved images guided by neuronal firing

• Evolved images maximized neuronal firing in alert macaque visual cortex.

• Evolved images activated neurons more than large numbers of natural images.

• Similarity to evolved images predicts response of neurons to novel images.

Neurons guided the evolution of their own best stimuli with a generative deep neural 

network.
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Figure 1. Synthesis of preferred stimuli via neuron-guided evolution.
(A) Generative adversarial network. Architecture of the pre-trained deep generative network 

(Dosovitskiy and Brox, 2016). The network comprised three fully connected layers and six 

deconvolutional modules. (B) The initial synthetic images were random achromatic Portilla 

and Simoncelli (2000) textures; 30 examples are shown here. (C) Behavioral task. Animals 

fixated within a 2° diamet er window while images were presented for 100 ms followed by a 

100 to 200 ms blank period. Red cross: fixation point; dashed line, population RF. (D) 

Experimental flow. Image codes were forwarded through the deep generative adversarial 

network to synthesize images presented to the monkey. Neuronal responses were used to 

rank image codes, which then underwent selection, recombination and mutation to generate 

new image codes (for details see Star Methods).
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Figure 2. The XDREAM algorithm produced super stimuli for units in CaffeNet.
(A) Evolved images resembled the ground truth best images in the first layer of CaffeNet. In 

the ground truth best, transparency indicates the relative contribution of each pixel to the 

unit’s activation. Only the center 11×11 pixels of the evolved images are shown, matching 

the filter size of the units. (B, C) Most evolved images activated artificial units more 

strongly than all of > 1.4 million images in the ILSVRC2012 dataset (Russakovsky et al., 

2015). (B) Top, distribution of activations to ImageNet images and evolved images for one 

unit in the classification layer fc8, corresponding to the “Honeycomb” label. Grayscale 

gradient indicates generation of evolved images. Bottom, best 3 ImageNet images, and one 

evolved image, labeled with their respective activations. In this case, the evolved image 

activated the unit ~1.4× as strongly as did the best ImageNet image. (C) Distribution of 

(evolved / best in ImageNet) ratios across 4 layers in CaffeNet, 100 random units each layer.
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Figure 3. Evolution of synthetic images by a single monkey-selective neuron, Ri-10.
Each image is the average of the top 5 synthetic images for each generation (ordered L to R, 

top to bottom). The response of this neuron in each of these generations is shown in Figure 

4A.
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Figure 4. Evolution of synthetic images by maximizing responses of single neuron Ri-10 (same 
unit as Figure 3).
(A) Mean response to synthetic (black) and reference (green) images for every generation 

(spikes/s ± sem). Solid straight lines show an exponential fit to the response over the 

experiment. (B) Last-generation images evolved during three independent evolution 

experiments; the leftmost image corresponds to the evolution in (A); the other two 

evolutions were carried out on the same single unit on different days. Red crosses indicate 

fixation. The left half of each image corresponds to the contralateral visual field for this 

recording site. Each image shown here is the average of the top 5 images from the final 

generation. (C-E) Selectivity of this neuron to 2,550 natural images. (C) Top 10 images 

from this image set for this neuron. (D) Worst 10 images from this image set for this neuron. 

The entire rank ordered natural image set is shown in Fig. S2. (E) Selectivity of this neuron 

to different image categories (mean±sem). The entire image set comprised 2,550 natural 

images plus the best synthetic image from each of the 210 generations; 10–12 repetitions 

each; early synthetic was the first 10 generations and late the last 10. See Fig. S3 for 

additional independent evolutions from this site.

Ponce et al. Page 22

Cell. Author manuscript; available in PMC 2020 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Evolutions for other IT cells.
(A) Change in response to synthetic vs reference images over generations. Each point shows 

the mean change in firing rate to reference versus synthetic images in each experiment 

(change estimated by the amplitude coefficient of an exponential function fitted to the 

neuron’s mean response per generation; error bars = ±sem, per bootstrap, 500 iterations of 

data re-sampling). Solid circles indicate single units; open circles multi-units. (B) Scatter 

plot of maximum responses across all images for synthetic vs reference images (measured 

across all generations, max±SE per bootstrap). Colors indicate animal. The size of the circle 

indicates statistical significance (large circle: P < 0.03 after false discovery correction). 

Black square indicates the experiment in Figure 3. (C) Histogram of response magnitudes to 

natural (green) and synthetic (gray-to-black) images for unit Ri-10 (same unit as Figures 

3&4). Below the histogram are shown the best and worst natural and synthetic images. (D) 
Same for unit Ge-7. The evolution for this neuron can be seen in Video S1.
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Figure 6. Evolution of synthetic images in other IT neurons.
Each pair of large images show the last-generation synthetic images from two independent 

evolution experiments for a single chronic recording site in 5 different animals. To the right 

of the synthetic images are shown the top 10 images for each neuron from a natural image 

set. Red crosses indicate fixation. The arrays were in the left hemisphere of monkey Jo, and 

in the right hemisphere of all the other animals. The natural images shown interleaved 

during each evolution were from either a 108 reference image set containing faces, bodies, 

places, and line segments (used for cells Gu-21 and Y1–14) or the set of 2550 natural 

images rank ordered in Fig. S2 for unit Ri-10 (used for all the other units in this figure). We 

also conducted a separate session testing Ge-7 and Ri-10 responses to natural and synthetic 

images two days after one of their evolution experiments.
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Figure 7. Using evolved images to predict responses to novel images.
(A) Final-generation synthetic images from units Ri-10 and Ri-12 and the closest, 

intermediate, and farthest 9 images from the image set for each. For unit Ri-10 we used the 

60,000 image database, and for unit Ri-12 the 100,300 image database. (B) Responses from 

each unit to the last-generation evolved images compared to the nearest, intermediate, and 

farthest images from the evolved images in the fc6 space of AlexNet (mean±sem).
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