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Summary

Microbiota from various maternal sites, including the gut, vagina and 
breast milk, are known to influence colonization in infants. However, 
emerging evidence suggests that these sites may exert their influence prior 
to delivery, in turn influencing fetal immune development. The dogma of 
a sterile womb continues to be challenged. Regardless, there is convincing 
evidence that the composition of the maternal gut prior to delivery influ-
ences neonatal immunity. Therefore, while the presence and function of 
placental microbiome is not clear, there is consensus that the gut micro-
biota during pregnancy is a critical determinant of offspring health. Data 
supporting the notion of bacterial translocation from the maternal gut to 
extra-intestinal sites during pregnancy are emerging, and potentially ex-
plain the presence of bacteria in breast milk. Much evidence suggests that 
the maternal gut microbiota during pregnancy potentially determines the 
development of atopy and autoimmune phenotypes in offspring. Here, we 
highlight the role of the maternal microbiota prior to delivery on infant 
immunity and predisposition to diseases. Moreover, we discuss potential 
mechanisms that underlie this phenomenon.
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Introduction

The human body is home to a range of microorganisms, 
including viruses, bacteria, fungi, archae and unicellular 
eukaryotes. The bacterial contingent of this community, 
the microbiota, are known to affect our health in profound 
ways, bringing to the forefront the symbiotic relationship 
that exists between these microbes and their human host. 
Vertical transmission of microbes from various maternal 
body sites contribute to the developing infant gut micro-
biota, including the gut, vagina, skin and breast milk [1,2]. 
Many of these exert their influences during delivery or 
postpartum, after exposure to maternal vagina, stool and 
skin [3], but emerging evidence suggests that their influ-
ence may begin in utero. Historically, it has been assumed 
that the uterine environment is sterile [4]. This dogma 
has since been challenged [5–8], with unique placental 
microbiome in some studies [5,9] but not others [7,10].

Regardless of whether there is a fetal or placental micro-
biome, there is evidence of a strong influence of maternal 

gut microbiota during pregnancy on infant microbiota. 
Maternal gut strains have been shown to be more persistent 
in the infant gut and ecologically better adapted compared 
to those from other sources [11]. In mice, genetically labeled 
bacteria were present in meconium samples that matched 
those that were orally administered to the mother [8]. In 
addition, germ-free pregnant dams transiently colonized 
with a modified Escherichia coli strain and returned to 
germ-free status prior to delivery [12] had pups with altered 
innate lymphoid and mononuclear cells, suggesting that 
transient changes in maternal microbiota during pregnancy 
drive fetal immune programming. Therefore, whether or 
not the fetus is indeed colonized in-utero, the period dur-
ing pregnancy is the first point of maternal microbes influ-
encing fetal immunity. The mechanisms through which 
maternal microbiota prior to delivery program neonatal 
immunity are yet to be elucidated. Here, we review current 
literature on the impact of maternal microbiota during 
pregnancy on infant immunity.
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Prenatal gut microbiome and fetal immunity

Antibiotic-induced shifts in microbiota

A significant body of work implicates exposures and events 
during gestation as critical determinants of offspring disease 
predisposition later in life [13–16]. This concept has formed 
the basis of the developmental origins of health and disease 
(DOHaD) hypothesis [17,18]. These influences include 
maternal diet, toxins, stress and smoking and may act 
through changing metabolism, epigenetics and/or micro-
biota [19]. Support for microbial-mediated mechanisms 
are widespread. Tormo-Badia et al. [20] observed signifi-
cantly increased proportions of CD8+  T cells in the mes-
enteric lymph nodes (MLN) of pups born to non-obese 
diabetic (NOD) dams treated with antibiotics during preg-
nancy compared to control pups. Similarly, pups born to 
mothers treated with antibiotics orally during gestation 

and postpartum exhibited increased susceptibility to vac-
cinia virus infection and reduced interferon (IFN)-γ pro-
duction by CD8+  T cells when compared to controls [21]. 
Follow-up experiments revealed that the observed CD8+ T 
cell impairment was driven by an altered activation and 
expression of T cell receptor (TCR) critical for sustained 
cytokine production [22]. We recently showed, using mouse 
models, that altering maternal intestinal microbiota during 
pregnancy alone impacted inherent immunity in pups at 
14  days postpartum [1] (Fig. 1). We intended to only 
alter the microbiota in maternal gut and not at other 
body sites by administering oral vancomycin, which has 
poor oral bioavailability, during gestation. Indeed, we did 
not detect any vancomycin in maternal plasma 2  days 
after delivery, indicating that the antibiotic was not sys-
temically absorbed. Although the intervention was targeted 
to maternal gut in our model, we observed perturbations 
in breast milk microbiota, and to a lesser degree vaginal 

Fig. 1. Experimental model of the impact of maternal gut microbiota during gestation on offspring immunity. To test the role of maternal gut 
microbiota during gestation on offspring immunity, pregnant BALB/c dams were fed vancomycin in drinking water for 5 days prior to delivery. No 
antibiotics were administered to control dams. All mice in these groups received normal water after delivery. Pups born to dams treated with 
vancomycin during gestation only had altered intestinal microbiota compared to controls. In addition, pups born to vancomycin breeders had 
significantly higher splenic cell counts, higher numbers of total B cells as well as follicular B cells versus control pups [1].
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microbiota postpartum, suggesting that gut microbiota 
during pregnancy may also impact that at distal sites [1] 
and this may, in part, be a mechanism through which 
maternal gut microbiota influence neonatal immunity.

Gut–breast milk bacterial axis

An early study by Martin et al. reported that select gut 
bacteria from the maternal gastrointestinal tract can access 
the mammary glands through an enteromammary pathway 
[23]. Although controversial, some studies have offered 
a scientific basis for such physiological translocation 
(reviewed in [24]). The mechanisms could involve dendritic 
cells (DCs) and CD18+  cells [25,26], which take up non-
pathogenic bacteria from the gut lumen and subsequently 
transport them to other locations, including lactating 
mammary glands. Bacterial translocation from the gut to 
the mammary glands and milk has been observed in mice 
late in gestation [27]. Two lactic acid bacteria strains, 
Lactococcus lactis and L. salivarius, were orally adminis-
tered to pregnant dams and later detected in mammary 
tissue and milk [27]. While the breast milk microbiota 
influences immune development postpartum [28–30], the 
composition of these microbiota is partly shaped prior 
to delivery and is dependent on gut microbiota during 
pregnancy [1]. Therefore, gut composition prior to delivery 
indirectly drives early offspring immune development via 
the gut–breast milk axis. However, further research is 
needed to explore the existence of the bacterial entero-
mammary pathway. This novel form of maternal–neonatal 
communication could influence our present understanding 
of fetal immune development.

Vaginal microbiota during pregnancy and infant 
immunity

The vagina contains more than 170 species of bacteria, 
and these communities are less diverse and remarkably 
stable throughout pregnancy [31–33]. Previous work sug-
gests that the vagina might be a source of microbes that 
reach the placenta, amniotic fluid and fetus, via transloca-
tion across the choriodecidual plate [34,35]). However, 
microbes in the vagina are probably themselves critical 
in programming neonatal immunity. A great deal of data 
exist regarding immunological differences between vaginal 
versus caesarean-delivered infants, suggesting a role of 
vaginal microbiota in immune education in offspring 
[36–38]. Maternal vaginal microbiota during labor and 
delivery is probably determined during pregnancy. There 
is also evidence that maternal vaginal microbiota during 
pregnancy impacts infant immunity even before passage 
through the vaginal canal during delivery in utero. 
Newborns whose mothers were vaginally colonized with 
Lactobacillus during pregnancy had higher proportions 
of CD45RO+  cells and reduced IL-12 in cord blood, 

indicating that lactobacilli in the maternal vagina impact 
fetal immune development [39]. Benn et al. [40] found 
that the presence of certain maternal vaginal microbes 
was associated with risk for wheezing in children at 
4–5  years of age. The mechanisms of this interaction 
remain unknown, but could be due to bacterial metabo-
lites, ascending organisms or simply that women’s vaginal 
microbiota is largely dependent on that of the gut 
microbiota.

Maternal microbiota during pregnancy and offspring 
immune-related disorders

Allergy and asthma. There is substantial epidemiological 
evidence that exposure to farming and pets in early life is 
associated with reduced incidence of asthma and allergies 
[41–43]. In addition, a large European study revealed that 
mothers exposed to farm animals during pregnancy were 
less likely to have children who developed allergies, and the 
immunological tolerance to allergens was already present in 
cord blood [44]. Similarly, a recent study in a Chinese cohort 
observed that maternal exposure to farming during 
pregnancy impacted the quantity and function of neonatal 
regulatory T cells (Tregs), partly contributing to reduction of 
incidences of allergies and asthma in offspring [45]. 
Maternal pet exposure has been associated with reduced 
cord blood levels of immunogloblulin (Ig)E [46] and 
increased numbers of Tregs which ameliorate the effect of 
allergy-mediated T helper type 2 (Th2) cytokines [47,48]. 
Douwes et al. [49] showed that maternal exposure during 
pregnancy to animals and/or grain and hay reduced the 
symptoms of asthma, hay fever and eczema in their children. 
Prenatal exposure was found to contribute to low prevalence 
of these atopic diseases, and continued exposure only 
contributed additional protection in some cases. 
Importantly, the timing of these exposures is crucial, with 
the strongest effects observed in utero and during the first 
year of life [50]. The interaction between farm-derived 
biological factors and the immune responses and disease 
susceptibility in the host has also been tested in mouse 
models. An interesting study by Conrad et al. [51] 
investigated the asthma-protective effect of prenatal exposure 
to farm-derived microorganisms. Intranasal exposure to 
Acinetobacter lwoffii F78 (cowshed-derived bacterium) 
protected against the development of experimental asthma 
in the progeny, and this protection was dependent on intact 
maternal Toll-like receptor (TLR) signaling [51]. While the 
exact mechanism of allergic protection is unclear in humans, 
as both prenatal and postnatal pet exposure alters infant gut 
microbial composition [52] it is likely that modulation of the 
microbiota plays a role.

Microbiome modulation by probiotics has also been 
shown to impact pediatric allergy development [53]. 
Combined pre- and postnatal probiotic supplementation 
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was shown to be crucial for the preventive effects of 
probiotics on infant eczema; prenatal or postnatal sup-
plementation alone was ineffective [53,54]. However, others 
have found the prenatal component to be more influential 
[55]. While probiotic-induced changes in maternal gut 
microbiota during pregnancy and lactation may reduce 
incidence of pediatric allergies, further research is war-
ranted to determine optimal timing and dosage.

More direct evidence for the influence of maternal 
microbiota during pregnancy on offspring atopic disease 
is antibiotic use during pregnancy, which can cause pro-
longed alterations to the microbiota and their metabolites 
[56]. In a Danish birth cohort, the use of prenatal anti-
biotics was associated with increased odds of atopic der-
matitis at 18  months of age in infants of mothers with 
atopy [57]. In addition, in children aged 2–10  years, 
maternal use of any antibiotics during pregnancy was 
associated with a 1·3-fold increased risk of asthma in the 
offspring [95% confidence interval (CI) = 1·21–1·42] ([58]). 
However, in a Swedish study by Örtqvist et al. [59] anti-
biotic exposure in fetal life was associated with increased 
risk for asthma in a cohort analyses but not sibling analy-
ses, suggesting that the link between antibiotic use and 
atopy may be confounded by shared familial risk factors.  
Furthermore, a recent study showed that maternal anti-
biotic exposure during pregnancy is associated with a 
dose-dependent increase in child asthma risk [60], but 
so was maternal antibiotic use before pregnancy and in 
the 9  months postpartum. However, in a well-designed 
sibling-control study, Mulder et al. [61] found prenatal 
antibiotic use to be predictive of childhood asthma even 
compared to sibling controls. Although some studies show 
influence regardless of trimester of maternal antibiotic 
use [57], this study found the influence to be more pro-
found when antibiotic use occurs during the third trimester 
[61]. Although more research is needed to determine 
whether timing is crucial, multiple lines of evidence sug-
gest the maternal microbiota during pregnancy plays a 
key role in preventing an allergy-prone immune phenotype 
in infants.

Type 1 diabetes. Apart from allergy and asthma, the 
prenatal microbiome has also been implicated in other 
immune disorders, including type 1 diabetes and 
inflammatory bowel disease. Studies in rodent models of 
spontaneous type 1 diabetes (T1D) have linked the gut 
microbiota to disease susceptibility [62,63]. Livanos et al. 
[64] demonstrated that administering a subtherapeutic low-
dose penicillin (STAT) to mice during the late pregnancy 
period and postpartum accelerates the incidence of T1D in 
male offspring compared to untreated controls; however, 
whether these effects were mediated in the antepartum 
period is unclear. Either way, there were no differences in 

the frequencies of the lamina propria Treg or Th17 cells 
between STAT and control pups. In an elegant murine study 
conducted by Hu et al., oral administration of a combination 
of neomycin, polymyxin B and streptomycin to pregnant 
NOD dams led to a delay in the development of diabetes in 
these susceptible offspring. The incidence of diabetes was 
also significantly reduced relative to offspring born to 
untreated dams [65]. Authors observed shifts in microbiota 
of both dams and pups, suggesting a direct role of the 
microbiota in modulating the predisposition of T1D in 
offspring [65]. Furthermore, antibiotic treatment of NOD 
dams during pregnancy led to lower frequencies of both 
CD4+ and CD8+ T cells production of IFN-γ in the MLN in 
pups compared to those born to untreated dams. 
Interestingly, dams treated with vancomycin during 
pregnancy had different alterations in gut microbiota and 
increased susceptibility to T1D via opposing immunological 
effects, possibly mediated by alterations in antigen-
presenting cells (APCs) [66].

Inflammatory bowel disease. Beyond T1D, the 
microbiota has also been implicated in inflammatory bowel 
diseases (IBD) [67–69]. The composition of the gut during 
pregnancy has been shown to influence IBD outcomes in 
offspring. For example, antibiotic exposure during 
pregnancy but not during infancy was associated with an 
increased risk of very early onset IBD, regardless of whether 
there was antecedent gastroenteritis [70]. In a murine study 
using an IL-10 knock-out colitis model, exposing dams to 
antibiotics from the third week of gestation until weaning 
led to increased susceptibility to chemically induced dextran 
sulfate sodium (DSS) colitis and inflammation in her 
offspring, lasting into adulthood [71]. This suggests that 
maternal microbiota during pregnancy is a critical 
determinant of IBD development. Taken together, the T1D 
and IBD studies discussed demonstrate that maternal 
dysbiosis during pregnancy has immunological 
consequences in the offspring and is a determinant of infant 
predisposition to autoimmune disorders.

Potential mechanism of cross-talk between maternal 
microbiota and offspring immunity

Although the exact mechanisms remain to be revealed, 
microbiota during pregnancy are thought to initiate off-
spring immune programming in various somewhat inter-
related ways which are not necessarily mutually exclusive 
(Table 1, Fig. 2).

Maternal microbiota influence fetal microbiota. There 
are data supporting the possibility that the fetal microbiota 
may develop in utero via the placental barrier or through 
ingestion of amniotic fluids [72], and therefore may impact 
the developing fetal immune system. Various studies have 
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indicated that certain bacteria from the maternal gut may 
translocate to extradigestive sites in healthy hosts [73–75]. 
Murine and human studies have shown that meconium is 
colonized with bacteria during pregnancy [76–78]. Jimenez 
et al. [8] isolated a tagged Enterococcus faecium from the 
meconium of offspring after orally inoculating the strain to 
pregnant dams, indicating that maternal gut microbes 
potentially cross the placenta to offspring gut.

In theory, fetal intestines may be exposed to commensal 
microbes and their products in swallowed amniotic fluid, 
which may therefore be an important contributor to early 
immune development. For example, memory CD4+  and 
CD8+  T cells can be identified towards the end of the 
first trimester in human fetal gut [79]. Memory CD4 T 
cells in fetal intestines have been shown to co-localize 
with APCs and produce IFN-γ, IL-2 or tumor necrosis 
factor (TNF)-α, promoting intestinal development [80,81]. 
Altogether, these suggest that early fetal exposure to 
microbial antigens may impact immunity. While it is not 
clear what the relative contribution of maternal versus 
fetal microbiome is to offspring immunity, it is plausible 
that both these microbiota are critical in programming 
fetal immunity prior to delivery.

Maternal microbiota during pregnancy influence early-
life infant microbiota and immunity. Although not a direct 
effect during pregnancy, maternal microbiota during 
pregnancy shape the vaginal and breast milk microbiota, 
which will alter the pioneer infant microbiota during a 

critical window in immune development. Indeed, we have 
recently demonstrated that altering maternal gut 
communities only during gestation indirectly impacts breast 
milk and, to a lesser degree, vaginal microbiota [1] (Fig. 1). 
In addition, vancomycin-induced shifts in maternal gut 
microbiota profoundly impacted infant gut microbiota 
14  days postpartum. Pups born to dams treated with 
vancomycin during gestation had significantly higher 
numbers of CD4+ T and B cells compared to controls [1]. 
Together, our findings reveal a multi-factorial link among 
maternal gut microbiota during pregnancy, breast milk 
microbiota, infant intestinal microbiota and postnatal 
immune development.

Bacterial metabolites. Maternal microbiota may impact 
infant immunity by the action of bacterial metabolites. Gut 
bacteria produce numerous metabolites that are critical 
mediators of various host physiological functions, immune 
modulation and energy production [82]. The immune 
system senses microbial products (including metabolites) 
and pathogen-associated molecular patterns, and the 
recognition of these molecules can influence host immunity 
[83–85]. Short-chain fatty acids (SCFAs) such as acetate, 
propionate and butyrate are end-products of bacterial 
anaerobic fermentation and have been shown to impact 
intestinal immunity [86], Treg development [87], DC biology 
[88,89] and epithelial integrity [90]. During pregnancy, 
SCFAs produced by maternal gut bacteria may indirectly 
impact the developing fetal immunity. For example, 

Table 1. Mechanisms of cross-talk between maternal microbiota and offspring immunity

Study theme Outcome Species Refs

Maternal microbiota influence fetal 
microbiota

1. Maternal gut bacteria translocate to meconium in 
offspring

Mouse [73]

2. Fetal gut is colonized with bacteria during pregnancy Human [76–78]
3. Placenta harbors a unique microbiome Human [5,9]

Maternal microbiota influence 
infant microbiota and immunity

1. Maternal gut strains are more persistent in infant gut 
compared to those from vagina and skin

Human; [11]

2. Maternal microbiota during gestation impacts 
offspring microbiota and immunity

Mouse [1,12,20]

3. Offspring born to mothers with an altered 
microbiota are susceptible to viral and bacterial 
infections

Mouse [99,100]

4. Maternal gut microbiota indirectly impacts 
extraintestinal microbiota

Mouse [1]

Bacterial metabolites 1. SCFA impact intestinal immunity Mouse; [86,87,89,90,101]
2. SCFA produced during pregnancy impact fetal 

immunity
Mouse [12,91,93]

Maternal IgG 1. Maternal gut microbiota during pregnancy impacts 
maternal IgG effectively influencing passive 
immunity to offspring

Mouse [1]

2. Immunoglobulins are involved in microbial 
opsonization

Human; [97]

3. IgG mediates bacterial transfer in utero Mouse [12]
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bacterial metabolites potentially translocate from maternal 
gut during pregnancy to mammary glands, and could 
influence postnatal immune development during 
breastfeeding. Furthermore, a reversible maternal 
colonization model showed that microbial constituents such 
as aryl hydrocarbon ligands induce transcriptional changes 
in the fetal gut, enhancing cellularity of the innate immune 
system [12]. Similarly, maternal retinoic acid (RA) induces 

fetal type 3 innate lymphoid cells and therefore secondary 
lymphoid organ development [91]. Clostridia spp. in the gut 
can modulate RA concentration by suppressing the 
expression of retinol dehydrogenase 7 (Rdh7) in intestinal 
epithelial cells [92].

Epigenetics. In addition, metabolites or other molecules 
produced by the bacteria potentially impact the developing 

Fig. 2. Potential mechanisms of crosstalk between maternal microbiota and offspring immunity. Maternal gut microbiota during pregnancy 
translocate to the maternal-fetal interface. Commensals microbes translocate from the maternal gut to the placenta or fetal gut during pregnancy 
(maternal gut placenta axis) or to mammary glands. These microbes impact developing fetal immunity via various mechanisms including epigenetic 
changes, release of short chain fatty acids and alteration of the cytokine environment. Bacteria or bacterial metabolites transfer to the mammary 
glands (gut-breastmilk axis) impacting infant gut colonization and continued immune development after delivery.
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fetal immune unit through epigenetic modulation. Thorburn 
et al. [93] observed that exposing mice to acetate in drinking 
water during pregnancy led to suppression of allergic airway 
disease in offspring by enhancing Treg cell number and 
function. Acetate exerted its effects through increased 
acetylation at the forkhead box protein 3 (FoxP3) promoter, 
probably by histone deacetylases (HDAC)9 inhibition. In 
humans, maternal farm exposure has been shown to have an 
effect on epigenetic regulation of neonatal FoxP3 expression 
by impacting the Treg-specific demethylated region (TSDR) 
conserved element [94]. The amount of demethylated TSDR 
was higher with any single exposure compared with that 
seen after no exposure, although significantly only for 
maternal intake of farm milk during pregnancy [95]. Michel 
et al. (2013) observed changes in DNA methylation patterns 
of asthma- and allergy-related genes in children. Regions in 
ORMDL sphingolipid biosynthesis regulator 1 (ORMDL1) 
and signal transducer and activator of transcription 
(STAT)-6 were hypomethylated in DNA from farmers’ 
compared to non-farmers’ children, while regions in RAD50 
double-strand break repair protein (RAD50) and IL-13 were 
hypermethylated [96]. Farm exposure possibly mediates 
epigenetic effects through changes the gut microbiota which, 
in turn, alters bacterial metabolites [52,96]. Therefore, fetal 
exposure to maternal bacterial metabolites can impact the 
developing immune system via induction of epigenetic 
changes.

Maternal immunoglobulins. Maternal microbiota during 
pregnancy alters maternal immunity which ultimately 
impacts passive immunity to the offspring. We recently 
observed altered levels in breast milk IgG in mothers with 
vancomycin-induced alterations in intestinal microbiota 
during pregnancy [1]. While the transferred antibodies in 
milk are meant to provide immune protection in the 
neonate, they may also be transferring IgG-bound bacteria 
that could impact on the developing immune system. 
Indeed, the concept of IgA- or IgG-coated bacteria has 
previously been demonstrated in various body sites [97]. 
Moreover, there is evidence of transplacental IgG-mediated 
bacterial transfer. For example, when Gomez de Aguero et al.  
performed their aforementioned maternal transient 
colonization experiments [12], they tested the role of IgG in 
mediating the effects by transferring serum from the 
transiently colonized dams to unexposed pregnant mice and 
observed a similar effect on offspring immunity. However, 
when the serum was depleted of IgG prior to transfer, the 
impact on offspring immunity was lost. This suggest that 
fetal programming of immunity in utero is partially 
dependent on IgG-mediated transfer of bacterial 
components. Apart from IgG-mediated immunomodulation, 
transplacental immune regulation may also be mediated by 
cytokines and hormones [98], as well as bacterial components 
such as lipopolysaccharides [51].

Conclusions

Here, we highlight current literature on the role of maternal 
microbiota during pregnancy on the developing fetal and 
infant immunity, including the development of immune-
mediated diseases such as autoimmunity and atopy. We 
describe potential mechanisms through which maternal gut 
microbes during pregnancy impact infant immunity. It is 
clear that immune development in the fetus begins prior 
to delivery and is probably driven by translocation of micro-
biota or their metabolites from the maternal gut to the 
maternal–fetal unit or other mucosal surfaces. While it is 
appreciated that the largest infusion of microbes occurs at 
delivery when the neonate comes into contact with external 
microbiota, data are limited on the role of vaginal micro-
biota during pregnancy on fetal immunity. Maternal immu-
noglobulins at these sites augment transfer of these 
components to the fetus, contributing to microbiota or 
immune reprogramming. Altogether, the gestational micro-
biota induce an immune imprint in the fetus that has lasting 
postnatal immunological consequences.
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