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Abstract

Forest disturbances leading to replacement of whole tree stands are a cornerstone of forest 

dynamics, with drivers including fire, wind-throw, biotic outbreaks and harvest. The frequency of 

disturbances may change over the next century, impacting the age, composition and biomass of 

forests. However, the variation in disturbance return time, i.e. the mean interval between 

disturbance events, across the world’s forested biomes remains poorly characterised, hindering 

quantification of their role in the global carbon cycle. Here we present the global distribution of 

stand-replacing disturbance return time inferred from satellite-based observations of forest loss. 

Prescribing this distribution within a vegetation model with a detailed representation of stand 

structure, we quantify the importance of stand-replacing disturbances for biomass carbon turnover 

globally over 2001-2014. Return time varied from less than 50 years in heavily-managed 

temperate ecosystems to over 1000 years in tropical evergreen forests. Stand-replacing 

disturbances accounted for 12.3% (95% confidence interval, 11.4-13.7%) of annual biomass 
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carbon turnover due to tree mortality globally, and in 44% of forested area biomass stocks are 

strongly sensitive to changes in disturbance return time. Relatively small shifts in disturbance 

regimes in these areas would substantially influence the forest carbon sink, that currently limits 

climate change by offsetting emissions.

The amount of carbon stored in global forest biomass is similar to that in the atmosphere1, 

and, excluding the effects of land-use change, has been estimated to have grown at ca. 1.5 

PgC a-1 over recent decades2. This uptake has significantly slowed the atmospheric growth 

rate of carbon dioxide and thus the rate of climate change3. The accumulation of carbon in 

the stems of growing trees results from the balance between the growth rates of vegetation 

and the average length of time carbon remains in live biomass (hereafter, “biomass”), the 

turnover time, calculated as the carbon stock divided by the flux of carbon loss through plant 

and tissue death4. Quantification of this turnover time is crucial because it governs the size 

of biomass stocks for a given growth rate and it is one of the most significant uncertainties 

affecting projections of the terrestrial carbon cycle5,6. Large-scale estimates of carbon 

turnover times for whole ecosystems and for biomass have been recently developed7,8, but 

offer limited insight into the processes governing biomass stocks because the turnover flux 

could only be approximated by estimates of net primary productivity (NPP). This conflates 

turnover of soft tissues, such as leaves and roots, with that of the woody carbon pools that 

dominate biomass carbon stocks1. To understand forest biomass turnover times globally, 

large-scale tree mortality rates must be quantified.

Tree death is often the culmination of a prolonged period of physiological stress related to a 

shortage of essential resources required for the synthesis of basic metabolites, for instance, 

due to shading by other plants, low water availability, or a shortage of soil nutrients such as 

N and P in plant-available forms9,10. Alternatively, disturbances such as wind-throw, fire, 

insect and disease outbreaks, or anthropogenic activities such as wood harvest may 

constitute the cause of death11–16. Disturbances act on scales ranging from a single tree to 

whole forest stands or landscapes. Here we investigate stand-replacing disturbances, defined 

operationally as discrete events resulting in the death of all, or almost all, living tree biomass 

at a scale of 0.1 ha or larger. Such events affect the average tree age as well as the stature, 

density and composition of forest stands11,17, in turn impacting carbon storage18. There is 

evidence that the frequency of disturbances may be changing globally, with continued 

change likely in the future8,13–15,19,20. Yet, to understand the consequences of future 

changes, it is first necessary to provide a baseline of current conditions. Such a baseline is 

lacking for stand-replacing disturbances across global forests.

The frequency of stand-replacing disturbances

We estimated the frequency of stand-replacing disturbances across all global forests at 1° 

spatial resolution. Drawing on a Landsat-based (2000-2014) forest-loss product21, we 

performed a space-for-time substitution, calculating the disturbance rotation period, τ, 

defined as the mean time period for the area disturbed to equal the area of the grid cell11,
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τi = AT , i
AL, l − AC, l

(1)

where i is a grid-cell index, AT is total forest area in that 1° x 1° grid cell, AL the annual 

mean total forest loss over 2000-2014 calculated based on all Landsat-pixels within the grid 

cell and AC the annual mean forest loss due to conversion to a non-forest land-use type 

(Methods). This observation-based τ is referred to as τo. While rare disturbances may be 

undersampled for individual grid cells, this is less of an issue across a neighbourhood of 

many grid cells, and the global-scale pattern is expected to be robust (Suppl. Note 1). We 

take τ as indicative of the typical or average disturbance return time from all causes at any 

location in a grid cell, reflecting causes such as wood harvest, as well as natural disturbances 

such as fires, large-scale wind-throws and biotic outbreaks. Whilst the drivers of each of 

these disturbance agents differ markedly, their consequences for carbon turnover in live 

biomass are assumed to be similar at large scales. Disturbances associated with the 

conversion of forests to other land-uses were explicitly excluded (Methods), allowing us to 

focus on dynamics within closed-canopy forests.

Disturbance return time varies substantially across the global forest area (Fig. 1a). The 

stand-replacing disturbances quantified here are more common in needleleaf and mixed 

forests (median τo of ca. 300 years) than they are in temperate or tropical broadleaf forests 

(median τo of 830 to more than 1000 years), however forest type emerges as a poor predictor 

of the spatial distribution of τo (Fig. 1c). In large areas of forest, stand-replacing 

disturbances are actually very rare events; 35% of forest area experienced stand-replacing 

disturbances with an average frequency equivalent to less than once every thousand years. In 

these forests the vast majority of tree mortality must thus be non-stand-replacing. The 95% 

confidence intervals for τo typically span a range less than one third of the absolute value of 

τo, except in areas of substantial land-use change (Fig. 1b, Suppl. Fig. 7).

We compared our results against an inventory-based compilation of forest stand age 

(GFADv1.122). Despite the different scale and characteristics of inventory data we found 

qualitative consistency in tropical evergreen and boreal forests, as well as some regions 

under intensive forest management, but also suggestions of a substantial amount of 

disturbance in some temperate forests below the scale captured in the Landsat data and of 

legacies of past afforestation (Suppl. Note 2, Suppl. Fig. 1). We also found consistency 

between our results and previous studies of disturbance frequencies in the tropics17,23,24 and 

Canada25 (Suppl. Note 3; Suppl. Fig. 2), and biotic outbreak disturbances in the U.S.A.26 

(Suppl. Note 3; Suppl. Fig. 3).

Influence of stand-replacing disturbances on the carbon cycle

We apply the gridded estimates of τo within a dynamic global vegetation model (DGVM) 

with an explicit representation of forest stand structural development. τ was kept constant in 

each grid cell for the entire model simulation, calculating the pseudoequilibrium effect of τo 

on forest dynamics. Stand-replacing disturbances are simulated to dominate overall tree 

mortality, and associated carbon turnover, across large areas of the mid-latitude and boreal 
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forests, accounting for over 60% in some locations, but are not the dominant cause of 

mortality in most tropical forests (Fig. 2a,b).

The total turnover of biomass carbon as a result of stand-replacing disturbances at pseudo-

equilibrium in our simulations is 1.00 (95% confidence interval, 0.91-1.11) PgC a-1, 

equivalent to 4.4 (4.0-4.9) % of total biomass carbon turnover in closed-canopy forests (i.e. 

including soft-tissue turnover) (Fig. 2b,c). These numbers are supported by an empirical 

cross-check based on satellite-derived NPP and biomass estimates which combined satellite 

LIDAR and radar observations with ground-based reference plots (red dots in Fig. 2b,c; 

Methods). The fraction of biomass carbon turnover due to mortality must be taken with 

caution, however, until biomass turnover rates from other forms of mortality can be fully 

constrained. Likewise the total turnover flux is dependent on accurate calculation of global 

biomass stocks, which remain uncertain1.

The tropical broadleaved evergreen forest type provides the largest contribution to global 

biomass carbon turnover from stand-replacing disturbances, followed by needleleaved 

evergreen forest (Fig. 2c). Although stand-replacing disturbances are infrequent in tropical 

evergreen forest, the disturbance-related flux is significant, as the amount of biomass in 

these forests is very high compared to elsewhere27–30. Conversely, low τ will tend to 

suppress biomass stocks, limiting the turnover flux generated in each disturbance event. Our 

estimates of biomass carbon losses for tropical evergreen forest will tend towards the upper 

limit of uncertainty because τo was capped at 1000 years for reasons of sampling (Methods); 

disturbance return times could in fact be even longer in some parts of the tropics31. 

However, as demonstrated below, the sensitivity of biomass to very high τ is low. Different 

disturbance agents cannot be distinguished in our data, but carbon emissions from wildfire 

taken from the GFED dataset32 summed over the same global forest area give a mean of 

0.12 Pg C a-1 over 2000-2014 (Methods), suggesting that fires are globally a relatively minor 

driver of stand-replacing disturbances in closed-canopy forests.

Sensitivity of forest biomass to disturbance return time

We ascertain the influence on ecosystem properties of possible changes in τ, or errors in its 

determination, for a randomly-selected grid cell from each of the tropical, temperate and 

boreal zones. For each grid cell we run 100 individual simulations varying τ sequentially 

within a plausible range of 10 to 1000 years. The resultant range in pseudo-equilibrium 

carbon stocks reflects variation in τ alone, independent of other environmental conditions or 

vegetation attributes (in particular that the resilience of vegetation to disturbance does not 

change with τ). The resulting curve of biomass carbon versus τ shows two distinct regimes 

(Fig. 3a); a regime of strong sensitivity of biomass to τ when τ is low, and a weak sensitivity 

regime when τ is high. These regimes result from shifts in the primary cause of dominant 

tree death. With low τ the majority of trees die from stand-replacing disturbance before they 

get old enough to die from another cause. Thus, τ emerges as the primary limit on simulated 

stand biomass across almost all stands. In contrast, when τ is large most canopy trees die 

from causes other than stand-replacing disturbances. In this case, τ is not a primary limit on 

simulated stand maximum biomass and changes in τ will only affect a subset of stands 

across the landscape at any time.
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To map the sensitivity of forests to changes in τ globally we propose a new metric based on 

a fractional reduction of τo. Plotting τo against the difference in simulated biomass between 

global simulations run with τo and 0.5τo reveals a similar curve to the site-based simulations 

(Fig. 3b). We categorise global forests into two classes of sensitivity to disturbances: where 

the biomass under 0.5τo is less than 90% of that under τo, the forest is classified as having 

strong sensitivity to changes in τ (i.e. stand-replacing disturbance frequency is a strong 

control on biomass), with other areas having weak sensitivity (i.e. other forms of mortality 

control biomass). The τ0 at which this sensitivity threshold, τcrit,90, is crossed varies with 

forest type, with a global average of 444 (429-457) years. This implies a mean recovery time 

of 222 years (i.e. 0.5τcrit,90) to 90% of biomass stocks under τo. This is substantially longer 

than the 66 years reported for regain 90% of old-growth biomass in individual tropical forest 

stands33 and follows because our simulations take account of succession and also scale one 

stage further to the net landscape change in biomass. I.e. individual stands may recover 

rapidly, but across the landscape more stands are in a recently-disturbed state. Overall, 44 

(39-49) % of global forest falls into the strongly sensitive category, with 23 (20-27) % 

falling into a very strong sensitivity category in which halving τo leads to biomass dropping 

below 80% of that under τo (τcrit,80). Forests in weak-sensitivity τ regimes are particularly 

located in tropical and temperate zones.(Fig. 3c).

The biomass content of weak-sensitivity forests would still be vulnerable to very large 

reductions in τ, for instance through a catastrophic shift to an entirely new disturbance 

regime34 or introduction of a new disturbance type35, but is robust to moderate changes in τ. 

This is demonstrated in additional simulations using τo adjusted up or down by a factor of 

up to 4; weak-sensitivity forests show large biomass changes only with substantial 

reductions in τ, whereas high-sensitivity forests show a steep relationship with τ (Fig. 3d). 

These results were robust to assumptions on the type of disturbance (shaded areas in Fig. 

3d), although we note that selective effects of disturbance type on species composition35,36, 

and thus potentially on biomass and turnover37, could only be treated crudely within the 

plant functional type classes used for global simulation and there may be non-linear shifts 

not accounted for in the model38. The time taken for forest biomass to approach a new 

pseudo-equilibrium state will depend on the new value of τ to which the ecosystem is 

subjected. In general, changes in τ will only be fully reflected in carbon fluxes over the next 

century if that new τ is of the order of 100 years or less.

Unlike the influence of τ on biomass (Fig. 3d), its influence on soil carbon stocks is strongly 

sensitive to the rate of decompostion of the resulting litter and soil organic matter, and also 

depends on biomass removals, for instance in conjunction with wood harvest (Fig. 3e). 

When disturbed biomass is transferred to the litter, disturbance only has notable negative 

consequences when τ becomes very low, reducing the fraction of longer-lived woody 

biomass entering the litter. However, harvest removals or burning of biomass substantially 

reduce the input rate of carbon to the soil, leading to a strong positive relationship between 

soil carbon density and τ. This strong sensitivity of soil carbon storage to the type, as well as 

the frequency, of disturbance, underlines the need for improved discrimination of different 

disturbance types at the global scale39. Response times for soil will lag those for vegetation, 

and be influenced by the form of necromass left after disturbance40, another area of high 

process uncertainty. Summing over both vegetation and soil, a widespread shift in 
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disturbance regimes equivalent to a halving of τo across all closed-canopy forests would 

ultimately release 47-80 Pg C, depending on the form of that disturbance, while an increase 

in time between disturbances could promote carbon uptake (Suppl. Fig. 10).

Concluding remarks

The results of this study allow us to partition one important component of overall biomass 

turnover rates in global forests1,8. Although stand-replacing disturbances constitute a 

relatively small portion of the overall global biomass turnover flux, small changes in τ 
would exert a strong influence on biomass stocks in almost half of the world's forests. 

DGVMs and land-surface models currently incorporating explicit representations of forest 

demography41 must properly account for stand-replacing disturbances to avoid biases in net 

carbon uptake or erroneous calibration of processes to account for these biases. Our study 

highlights the importance of accounting for variability in forest disturbance regimes, yet 

constitutes only a first step; 88% of global carbon turnover due to tree mortality is not 

explained by stand-replacing disturbances. It thus remains crucial to constrain other causes 

of mortality, including disturbances below stand-scale23,42, drought43, and demography. 

High-resolution data from satellites, along with forest inventories, will be key in this regard.

Our results provide a snapshot of a global stand-replacing disturbance pattern that may be 

undergoing rapid change13–15. Drivers of such change, whether climate, management or 

otherwise are uncertain and likely highly region-specific13–16,19,20. Future work must 

consider how carbon emissions through changes in τ are likely to interact with other aspects 

of environmental change, such as the fertilising effects of rising CO2 concentrations, which 

may reduce vulnerability to disturbance44, as well as seeking to close the feedback loops 

between disturbances, climate and vegetation properties. Changing disturbances could both 

augment and offset carbon loading of the atmosphere caused by anthropogenic carbon 

emissions3; better understanding the role of forest disturbances in the carbon cycle is 

therefore highly relevant to the assessment of emissions reductions necessary to meet 

climate targets.

Methods

Calculation of τo 

τo was calculated as defined in Eq. 1. We first created a forest mask by aggregating year 

2000 forest canopy cover data at 0.00025° (ca. 30 m) resolution21 to 0.01° resolution. Grid 

cells with at least 50% canopy cover at 0.01° resolution were assigned as closed-canopy 

forest. Further aggregation then provided the fractional coverage of closed-canopy forest at 

1° resolution (AT). Across each 1° grid cell we then summed up the total area of 0.00025° 

pixels which underwent forest loss during 2000-2014 and were located within the 0.01° grid 

cells assigned as closed-canopy forest. A grid cell could only be counted as lost once during 

the period. Dividing this sum by the length of the 14 year observation period provided AL . A 

threshold of 25% forest cover at the 1° grid cell level was used throughout this study in order 

to provide sufficient statistical power for calculation of τo. The total forested area meeting 

these conditions is 2.71 × 107 km2. Fig. 1c was calculated from the gridded τo estimate 

using the “boxplot” function of Matlab® 2014b.
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This above definition provides a calculation of τ as a function of forest area. An alternative 

definition of τ would be to define it relative to canopy area. In this case AT would be the 

total canopy area within the 0.01° grid cells designated as closed canopy forest, making use 

of the fractional canopy cover metric provided by Hansen et al. 21, and AL would be the sum 

of pixels undergoing forest loss multiplied by the fractional canopy cover of those pixels 

before disturbance. Using this canopy-area definition slightly reduces our estimates of τo in 

most locations (Suppl. Fig. 4), but the forest-area definition is preferred as it recognises that 

whilst disturbances reduce canopy cover, they do not reduce the area of forest unless 

associated with a land-use change.

Forest losses due to land-use change, AC, were calculated for the period 2000-2014 using the 

ESA CCI landcover product v2.0.7 (accessed 29th June 2017). ESA CCI landcover classes 

were simplified into forested (classes 50, 60, 61, 62, 70, 71, 72, 80, 81, 82, 90, 100, 160, 

170) and non-forested (classes 10, 11, 20, 30, 110, 130, 190) classes, the latter 

corresponding to cropland, grassland and urban land uses. Then the area of 0.0028° pixels 

which were classified as forested in 2000 but non-forested in 2014 was calculated. The 

forest loss due to land-use change calculated from this dataset shows excellent consistency 

with the total forest loss dataset based on Hansen et al. 21, with only very few locations 

where the loss due to land-use change is reported to be larger than the total (Suppl. Fig. 5).

Uncertainties in τo due to the sample sizes in the forest loss data were estimated through 

bootstrapping. In each 1° grid cell 1000 samples of AL were created by resampling with 

replacement the 0.01° grid cells designated as closed-canopy forest. Uncertainties in AC
result from classification accuracy and scaling differences between the Hansen et al.21 and 

ESA CCI datasets. Producer’s accuracy for the forest and non-forest classification in ESA 

CCI v2.0.7 is 92% and 78% respectively, whilst the corresponding user’s accuracy is 78% 

and 85%45. However, because we count the whole area of the pixel when an ESA CCI pixel 

changes from forest to non-forest, and the CCI pixel area is ca. 100 times that of Landsat, a 

scaling inaccuracy is induced, whereby the fraction of forest conversion within the grid cell 

may be enough to cause a land-cover classification switch, but substantially less than 

complete deforestation of the ESA pixel. To conservatively account for classification and 

scaling errors we thus assume a 95% confidence interval of +- 50% in the forest conversion 

area values. For each 1° grid cell, 1000 samples of AC were taken from a normal distribution 

defined by this confidence interval. We crossed these 1000 samples of AC with those from 

AL to create a matrix of 1 x 106 estimates of the denominator in Eq. 1. The 2.5th and 97.5th 

percentiles of this matrix were then used to estimate the 95% confidence limits of τo. This 

resampling of the forest loss areas within the 1° pixel addresses the uncertainty induced 

when the forest area in the pixel is relatively small, in which case confidence in the fidelity 

of the space-for-time swap would be reduced. It also accounts for classification errors if 

those errors are not correlated across the grid cell. Hansen et al. 21 report a tendency to 

underestimate forest loss by ca. 4% in the tropics and overestimate it by ca. 6% in the 

temperate and boreal regions. These classification biases are not captured in our uncertainty 

estimate, nor are potential biases from AT  for which global quantification was not available. 

Based on the available information, these biases are expected to be small and focused in 
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regions where the uncertainty is already assessed as being large (Suppl. Note 4; Suppl. Fig. 

8). Note that the capping of τo at 1000 years often leads to very low uncertainty for these 

grid cells, i.e. there is very high certainty that τo > 1000 years. Calculated τo is robust to 

subsampling of the 14 year observational period, especially when the data series exceeds 10 

years (Suppl. Fig. 6).

The resolution of ESA CCI landcover means it will have limited sensitivity to very small-

scale land-use conversions, such as have been recently reported in the Amazon46. However, 

given that our τo values in the tropical evergreen forests are very high, even in absence of the 

land-use correction (Suppl. Fig. 7) we expect the influence on our results to be minimal.

The use of a 1° aggregation resolution represents a compromise between spatial detail and 

sufficient area to make an effective space-for-time substitution. Following the simplifying 

assumption that disturbance events are equally likely in all locations in the grid cell, the 

maximum τ that we can expect to reliably quantify, τm, for a given disturbance size, D, can 

be calculated as:

τm = AT × t
D , (2)

where t is the total number of years sampled. The largest disturbance events are generally 

fires, especially in the Canadian boreal region, for which the typical large fire size is 6000 

ha47. Assuming a grid-cell area of 628 000 ha (60° latitude), a forest coverage of 25% of 

grid-cell area (i.e. AT = 157 000 ha) and a 14-year sampling period, τm is 350 years at this 

scale. For smaller disturbances much larger values of τ can be expected to be reliably 

captured. Substantial undersampling of large rare events at 1° resolution would be expected 

to induce scatter in our results, but Fig. 1 shows spatial coherence in variation of τ, 

suggesting any such under-sampling to have minimal effects. τo was capped at 1000 years to 

avoid spuriously large values in grid cells with very infrequent disturbance. The influence of 

this capping on simulated forest biomass is very small (e.g. Fig. 3b).

Forest type classification

Forest types were classified based on ESA CCI landcover v2.0.7. The mapping of landcover 

classes to the forest types used in this analysis in shown in Suppl. Table 2. A map of these 

forest types is shown in Suppl. Fig. 11. There is a small fraction of forest area that is not 

assigned to any of these major forest classes, but is included in the global totals. Note that 

open canopy forests (<50% canopy cover at 0.01° scale, see above) are not included in any 

of the calculations herein. Forest type codes are: Tropical broadleaved evergreen (TrBE), 

tropical broadleaved deciduous (TrBD), temperate broadleaved evergreen (TeBE), temperate 

broadleaved deciduous (TeBD), needleleaved evergreen (NE), needleleaved deciduous (ND), 

broadleaved-needleleaved mixed forest (MX).

Forest age dataset

For cross comparison of spatial patterns in our results, we used the Global Forest Age 

Dataset (GFAD v1.1)22, a forest stand age dataset developed as part of the EU FP7 

GEOCARBON project. It provides a distribution of stand age and associated uncertainties in 

Pugh et al. Page 8

Nat Geosci. Author manuscript; available in PMC 2020 February 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



10-year age bins up to an age of 140 years from a base year of 2010 on a 0.5° grid. The 

salient features are summarised here and described in more detail in Pugh et al.48. It 

combines datasets of forest age distributions from the following forest inventories: United 

States Forest Inventory and Analysis (v 5.1, state summaries, representative for the 2000s), 

IIASA Russian Forests and Forestry Database (late 2000s), Canadian Forest Inventory 

(CanFI, state summaries, 2001-2006), EFISCEN (Europe, 32 countries, 2000s), 6th National 

Forest Inventory (China, 1999-2003), and the national forest inventories of Kazakhstan 

(2000s), New Zealand (2000s), Mongolia (2000s) and Japan (2005). GFAD estimates forest 

age in tropical regions, where widespread inventories are not available, by applying plant-

functional-type-specific biomass-age curves49 to a large-scale forest biomass dataset50.

Forest modelling

The LPJ-GUESS DGVM v4.051 was used to calculate the effects of τ on forest structure, 

dynamics and carbon cycling. LPJ-GUESS explicitly simulates forest stand development 

and canopy structure divided among age cohorts of trees co-occurring in patches 

representative of a wider landscape. Leaf area to sapwood area ratio and maximum crown 

area for tropical evergreen tree types were set to 10 000 and 130 m2 respectively, in 

accordance with estimates for tropical forests52,53. Mortality and establishment are 

stochastic, with replicate 1000 m2 patches simulated to capture the distribution of stands of 

different time-since-last-disturbance across each grid cell. Stand-replacing disturbances are 

simulated by clearing all trees in a patch and transferring their biomass stocks to litter or out 

of the ecosystem (see below). We introduced a spatially-varying stochastic disturbance 

frequency with an annual probability defined by 1/τ. In order to allow LPJ-GUESS to 

simulate the closed-canopy forest area unrestricted by the 25% cover threshold used to 

calculate τo, the nearest-neighbour rule was used to assign τ values to grid cells with less 

than 25% forest coverage. All forest-type-level and global numbers are presented based on a 

5% minimum forest coverage mask at the grid-cell level to avoid overextrapolation of τo to 

regions with very low forest cover. The map in Fig. 2 is presented with a 25% closed-canopy 

forest cover map for consistency with Fig. 1. Inclusion of τo in LPJ-GUESS improves the 

simulation of biomass compared to the disturbance settings in the standard version of the 

model (Suppl. Fig. 12).

In the standard simulation setting, all cleared biomass is transferred to the litter pools. For 

sensitivity simulations underlying ranges in Fig. 3d,e and Suppl. Fig. 10 two further setting 

types were employed to test the effect of the fate of disturbed material. In the harvest 

sensitivity simulations fine root and leaf biomass, along with 34% of woody biomass, are 

transferred to the litter, with the remaining woody biomass being removed from the 

ecosystem, emulating product extraction. The fire sensitivity simulations employ the 

interactive fire sub-model51,54 with a local probability of fire occurrence (burnt area 

fraction) set to 1/τ, resulting in most biomass carbon and some litter carbon being 

transferred to the atmosphere. Stochastic processes use the same seed to ensure replication 

between simulations. Simulations covered 1901-2014 using climate, atmospheric CO2 

mixing ratio and N deposition as described in Le Quéré et al.55. All model outputs shown 

are means for 2001-2014. The standard simulations with τo and 0.5τo used 100 replicate 

patches per grid cell. Simulations testing additional multiplicative perturbations of τ (0.25, 
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2, 4) and using the confidence intervals of τo used 10 replicate patches. Differences at forest-

type level were negligible between simulations with 10 and 100 patches.

Simulations used to create Fig. 3a used the standard model setup described above, but the 

model was only run for the specified three grid cells. 100 simulations were carried out for 

each grid cell using levels of τ from 10 years to 1000 years. A second-order exponential 

equation of the form B = aebτ + cedτ was fitted to these simulations using the “fit” function 

of Matlab® 2014b.

Sensitivity metric

The metric is based upon differencing biomass between the τo and 0.5τo simulations. The 

choice of a halving of τo for the sensitivity metric was informed by recent disturbance trends 

in Europe14, and is also similar to changes in background mortality rates in the western 

U.S.A.56. It thus represents a reasonable sensitivity test. The sensitivity threshold τcrit 

(Suppl. Table 1) was estimated by first plotting against τo the difference between biomass 

simulated with τ = τo and that simulated with τ = 0.5τo, (Fig. 3b, Suppl. Fig. 13). A second-

order exponential function was fitted to the data as for Fig. 3a. These fits were carried out 

both globally and for individual forest types. 95% confidence intervals for the fits were 

calculated using 1000 bootstrapped samples of the modelled grid cells. τ crit,90 and τ crit,80 

were taken as the intersection of the fitted line with a difference of -10% and -20% biomass 

respectively (Suppl. Fig. 13), with confidence intervals for τ crit estimated using the 

confidence intervals of the fitted lines. Scatter in the results is caused by the stochastic 

nature of the LPJ-GUESS model, as well as variation in climate across the domain. The 90% 

biomass threshold is consistent with recent work on the recovery of forest biomass33 and 

with the character of the curve in Fig. 3b.

The area of forest in each sensitivity regime (Fig. 3c) was created by comparing τo for each 

grid cell with the τcrit for the forest type to which that grid cell was assigned. Uncertainty in 

the areas of the regimes (Main text) was calculated based on the 95% confidence intervals of 

τ O. For forest grid cells not classified by one of the seven forest types, not enough data 

points existed to make a reliable fit to calculate τ crit. Therefore the global mean τcrit was 

used to determine the sensitivity regime. Fig. 3d,e shows the difference in biomass and soil 

carbon density between model sensitivity simulations with different multiplicative factors of 

τ (see above) averaged across the area of forest allocated to each sensitivity class. Variation 

in response across the vulnerability classes is much less than that between them (Suppl. Fig. 

9).

Empirical cross-checks

For cross-checking of biomass carbon turnover flux due to disturbance (Fd) we used the 

GEOCARBON global biomass dataset27–29, in which biomass values are based on linking 

satellite-based LIDAR and radar observations with ground-based forest plot data. We 

replaced values for northern forests with those of Thurner et al.30 due to the latter’s more 

sophisticated approach to linking satellite-based radar observations with above- and below-

ground biomass in these regions. Below-ground biomass for the GEOCARBON dataset was 

estimated following Saatchi et al.50 and a biomass to carbon conversion factor of 0.5 was 
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assumed. We then multiplied the carbon content of this observationally-based total biomass 

dataset by 1/τo to calculate Fd. Cross-checking the fraction of total turnover due to 

disturbance (Tfrac) involved making the assumption that NPP and turnover fluxes are not 

drastically out of equilibrium, and therefore NPP must be broadly equal to the turnover flux 

of biomass carbon in the multi-annual mean. Annual mean NPP over the period 2001-2010 

was calculated from Zhao and Running57. Tfrac was then approximated as Fd/NPP. Fire 

emissions from the GFED dataset32 were calculated by summing the boreal, temperate and 

tropical forest wildfire emissions, excluding the savannah category, which does not fit our 

definition of closed-canopy forest. The mask of at least 5% forest cover per grid cell was 

applied to all these cross-check calculations as above.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Forest disturbance rotation periods.
a, τo calculated over 2000-2014. b, Uncertainty in τo, displayed as the difference between 

the 95% confidence intervals divided by the central estimate. Uncertainty values of zero 

reflect 95% confidence that τo is over 1000 years. c, Boxplot of τo grouped by forest type 

(see Methods for codes). Circles show the median value, black triangles the 95% confidence 

limits of the median, thick lines the interquartile range and whiskers extend to a maximum 

of 1.5 times the interquartile range. Numbers indicate the number of grid cells for each 

forest type.
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Figure 2. Carbon turnover fluxes from closed-canopy forest for 2001-2014.
a, Fraction of carbon turnover fluxes resulting from vegetation mortality due to stand-

replacing disturbances (colour scale capped at 50%), calculated using τo to drive LPJ-

GUESS. Breakdown by forest type of: b, fraction of carbon turnover fluxes resulting from 

vegetation mortality (whole bars) and from stand-replacing disturbances (darker shading); c, 

total turnover flux of vegetation carbon due to stand-replacing disturbance. Error bars show 

the range of simulations driven by the 95% confidence intervals of τo. Red dots show results 

from an observationally-based cross-check method (Methods). Forest types as in Fig. 1.
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Figure 3. Sensitivity of biomass to changes in τ.
a, Simulated biomass versus τ for three random forested locations. Dots show individual 

simulations and lines a fitted exponential function. b, Sensitivity to τo of difference in 

simulated biomass between simulations with τo and 0.5τo. c, Sensitivity of biomass carbon 

stocks to changes in τ. Shading indicates the sensitivity regime. d, e, Effect of multiplicative 

perturbation in τ on vegetation and soil carbon density averaged across the different 

sensitivity classes. Shaded areas show range of sensitivity simulations testing assumptions 

on the type of disturbance assumed (solid lines for standard simulation) (Methods).
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